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Strong cavity-pseudospin coupling in monolayer transition metal dichalcogenides
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Strong coupling between the electronic states of monolayer transition metal dichalcogenides (TMDCs) such as
MoS2, MoSe2, WS2, or WSe2, and a single in-plane optical cavity mode gives rise to valley- and spin-dependent
cavity-QED effects. The Dirac Hamiltonian for this two-dimensional gapped semiconductor with large spin-orbit
coupling facilitates pure Jaynes-Cummings-type coupling with spin-valley locking—providing an additional
handle for spintronics using circularly polarized light. Besides being an on-chip light source, the strong cavity
coupling causes the TMDC monolayer to act as a spontaneous spin oscillator. In addition, this system can be a
sensitive magnetic field sensor for an in-plane magnetic field. It also displays unusual persistent Rabi oscillations
between different conduction-band states that are insensitive to small magnetic field variations. Our analysis for
dissipation due to finite exciton relaxation times and cavity losses suggests that these effects are observable.
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I. INTRODUCTION

Light and matter can become strongly coupled in an optical
cavity giving rise to qualitatively new physics and resulting in
numerous applications in laser physics, optoelectronics, and
quantum information processing. The coherent coupling of
light and matter in such systems is described by cavity quantum
electrodynamics (QED). The advent of quantum information
processing has led to significant activity investigating optical
cavity-like systems for coherent conversion of qubits between
matter or topological states to phonons, photons, and circuit
oscillators [1–9]. Strong cavity coupling allows solid-state
qubits to communicate via the photons [10] or can even allow
photonic qubits to interact via the atom [11].

The atom-photon coupling should be very strong in two
dimensions because of the small mode volume. Monolayers
and bilayers of transition metal dicalcogenides (TMDCs) are
gapped two-dimensional (2D) Dirac materials with strong
spin-orbit (SO) interactions. The quantum Hall effect is yet to
be observed in these materials. Meanwhile it has been shown
that they have excellent optical properties. TMDCs strongly
couple to light since they have direct band gaps and their large
effective masses result in a large density of states and excitonic
binding energies [12–14]. Furthermore, TMDC’s large SO
coupling results in spin-valley polarized valence bands [15,16].
The magnetic moment associated with their valley pseudospin
gives rise to valley-dependent circular dichroism [13,14]. In
general, the polarization-dependent photoluminescence for
WSe2 indicates that the optical selection rules derived from
the single-particle picture are also inherited by neutral and
charged excitons [12].

Access to these valley and spin degrees of freedom can
allow for hybrid on-chip optoelectronic and spintronic devices.
Since the spin degrees of freedom for a band are coupled to
a particular valley in momentum space, TMDCs might also
be candidates for qubits with long coherence times, and there
have been suggestions for implementing single-qubit gates in
TMDC quantum dots [17] and bilayers [18].
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FIG. 1. Schematic of a monolayer TMDC in a 2D photonic
cavity (a) with incident circularly polarized light (CPL) to break
the valley degeneracy and (b) with an in-plane magnetic field By , for
magnetometry. (c) Band structure about K and K ′ showing lifting
of conduction-band degeneracy from By . Colors indicate the band’s
spin.

There are a number of ways in which 2D materials can
strongly couple to various cavity modes. Graphene-TMDC
heterostructures are used for photovoltaics [19] and graphene
(Gr) can couple to a photonic crystal’s evanescent mode [20].
There have also been suggestions for coupling quantum two-
level systems (TLSs) to surface plasmon modes in Gr [21].
Very recently, 2D exciton lasers [22] have been experimentally
realized by placing TMDCs inside microdisks [23], tunable
Bragg reflectors [24], and on photonic crystals [25]. These are
often geared toward lasers and photovoltaics and the coupling
to the electromagntic mode in the cavity is different [22–25]
from what we are interested in.

We go beyond traditional optoelectronics in this paper.
Unusual properties and device functionalities are shown to
arise from strong light-matter interactions between a gapped
valley-selectable SO-split 2D Dirac material and a single
in-plane optical cavity mode. Usually the TLS-field coupling
occurs via a dipole- or nonlinear-interaction-type terms in
cavity QED. Here, canonically transforming the linear k-
dependent 2D Dirac term, directly gives Rabi- or Jaynes-
Cummings coupling between the cavity mode and the lattice
pseudospin. This leads to interesting effects since the valley
and spin indices are coupled in TMDCs, and each valley can
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be addressed by using circularly polarized light (CPL) of a
given handedness [26].

In a suitable optical cavity this could lead to spontaneous
spin oscillations for spintronics. However, CPL flips its
handedness upon reflection from a conventional surface—
hence it is not easy to design a cavity that will only sustain
either just left or right CPL. Some reflective chiral surfaces
can suppress this cross polarization [27,28]. Alternatively, the
evanescent mode of a chiral photonic crystal [29] could also be
used, but then the TLS-cavity coupling will not be too strong.

We suggest a different approach and point out an additional
advantage of a fully 2D architecture. 2D resonator cavities
are now quite common in circuit QED [8,9]. In the strongly
coupled system of a 2D TMDC monolayer inside a 2D
cavity, spontaneous vacuum Rabi oscillations occur even in the
absence of photons. Since a 2D cavity only supports linearly
polarized electromagnetic modes, Rabi oscillations occur for
both valleys with opposite spin. We propose introducing
an additional CPL beam incident on the 2D cavity-QED
system [see Fig. 1(a)]. Sufficiently intense CPL selects valley.
Since intravalley transitions conserve spin, this leads to spin-
polarized Rabi flopping. These spin oscillations can occur
spontaneously with zero cavity photons. The overall degree
of valley polarization depends on the CPL’s intensity which
blue-shifts the Rabi frequency. At higher photon number
coherent cavity states, spin-polarized collapse and revival of
Rabi oscillations occur.

This cavity-pseudospin system also has other applications.
It is a highly sensitive sensor of an in-plane magnetic field.
An in-plane magnetic field shifts the vacuum Rabi frequency.
We show that this frequency shift is scale invariant, which is
a very promising finding. Whereas one usually seeks strong
cavity-TLS coupling, here the scale invariance suggests high
field sensitivity for weak cavity coupling. This can lead to
important field sensor applications.

In addition, this 2D system without any of the additional
fields can also be an on-chip coherent light source and a
frequency comb. We explicitly calculate dissipation from
cavity losses and TMDC’s exitonic lifetimes and show that
the effects discussed in this paper will be observable.

II. THE MODEL

Consider the model Hamiltonian for a monolayer TMDC in
an in-plane magnetic field along y: H ′

o = Ho + Hb, where Ho

is the following effective 4 × 4 two-band k · p Hamiltonian
for a given valley,

Ho = u(τ σ̃xkx + σ̃yky) + Eg

2
σ̃z + �so

2
τsz(σ̃z − I ), (1)

where Eg is the band gap, �so is the SO splitting, and u is
the velocity. Here Hb = g‖μBBysy where g‖ is the in-plane g

factor and μB is the Bohr magneton. In this paper we work
in normalized units of g‖By , because published g‖ data is
presently sparse.

The Pauli spin matrices along j are sj , and σ̃j are the
pseudospin Pauli matrices in the orbital basis, {ψc,ψ

τ
v } =

{|dz2〉,|dx2+y2 + iτdxy〉}. It is implied that σ̃j = I ⊗ σj and
sj = σj ⊗ I .

TABLE I. Coupling strengths; �± corresponds to ω± = Eg ±
�so transitions for various TMDCs.

Material �− (GHz) �+ (GHz)

MoS2 140 144
WS2 200 247
MoSe2 118 124
WSe2 148 165

First consider the case of a monolayer TMDC in a cavity
with By = 0. For a reflective cavity, with the single mode
of an electric field oscillating along x̂, one can canonically
transform kx → kx + Ax , where Ax is the vector potential
along x. The TMDC-cavity coupling Hamiltonian is Hi =
uτ σ̃xAx(t) = �τσ̃x(a∗eiωt + ae−iωt ) where � is the coupling
constant between the cavity’s electric field and the TMDC
bands. Second quantizing the cavity field and invoking the
rotating wave approximation, �τσ̃x(a† + a) ≈ �τ (a†σ̃− +
aσ̃+), where σ± = σx ± iσy , and a†(a) are the photon creation
(annihilation) operators, the total system Hamiltonian [see
Fig. 1(b)] can be expressed as

H = u(τ σ̃xkx + σ̃yky) + Eg

2
σ̃z + �so

2
τsz(σz − I )

+ ω

2
a†a + �τ (a†σ− + aσ+). (2)

This is now block diagonal in the dressed orbital state
basis and the overall basis also has a spinor part: {[|+〉,|−〉] ⊗
[|ψc,n〉,|ψτ

v ,n + 1〉]}. The cavity and the spin parts (|+〉,|−〉)
are decoupled without an in-plane magnetic field.

We estimate � for a simple rectangular cavity of volume
V = lx ly lz, where the [011]T E mode gives nonzero electric
field only along x. We choose lx = 0.25 μm, lz = 0.75 μm
and constrain ly = [(ω−/4πc)2 − l−2

z ]−1/2 = 0.446 μm for
�− coupling in MoS2. Note that lx is allowed to be even smaller
for the [011]T E mode which results in stronger cavity coupling.
The coupling constants for different TMDC monolayers
are shown in Table I for two different transitions: �± ∝
u sin(κyy) sin(κzz)[εoV (Eg ± �so)]−1/2. An etched Bragg re-
flector is a possible cavity candidate. Using Lindblad analysis,
we explicitly show in this paper that a cavity quality factor
Q = 105 is required. Roughly, �± > ω±/4Q to observe Rabi
flops. It should be noted that various high-Q cavities in
the optical regime have considerably matured over the years
[30,31], with Q reaching 109 [32].

The direct product of the photon state and the valance band
wave function at initial time t = 0 is �

τ,v
±,k = ∑

Cn|ψτ
v ; ±; n〉,

where |Cn|2 is the probability distribution number of n

photons. The wave function at time t is obtained by time
evolving with U = exp(−iH t).

Since the two valleys do not couple with each other one can
only consider intravalley optical effects in the present model.
For a given valley, in the absence of an external magnetic field,
the valence-to-conduction-band (CB) population inversion in
the cavity is

Wτ
±(k) =

∑
n

|Cn|2
[
ϑ± cos

(
ντ

±t

2

)
+ ϕ± sin

(
ντ

±t

2

)]
, (3)
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FIG. 2. The spin selection effects of using CPL on the TMDC
cavity-QED system as per Fig. 1. Relative spin- or valley-polarized
Rabi oscillations shown in (a) for τ = ±1 valleys and its correspond-
ing Fourier spectra shown in (b) for 〈n〉 = 0. Here (c) and (d) is
the same but for 〈n〉 = 10. For both valleys, the cavity is resonant
at ω = Eg − �so for a coherent state. The CPL intensity 〈E〉 = �,
which shifts the oscillation frequencies higher.

where

ϑ± = 1 + (E±2 − L2
±)

{[1 + (E± + L±)2][1 + (E± − L±)2]}1/2
,

ϕ± = w±(E± + L±) + w∗
±(E± − L±) + f±(E±2 − L2

± − 1)

{[1 + (E± + L±)2][1 + (E± − L±)2]}1/2
,

E± = (Eg ± τ�so)/2(τk′
x + ik′

y),

L± =
√

(Eg ± τ�so)2 + 4
(
k′2
x + k′2

y

)
/2(τk′

x + ik′
y).

Here �n = �
√

1 + n, k′
x(y) = ukx(y), �τ

± = Eg ± τ�so −
ω, ντ

± =
√

(�τ
±)2 + (τk′

x + τ�n)2 + k′2
y , f± = �τ

±/ντ
±, and

w± = (τ�n + τk′
x − ik′

y)/ντ
±. The ± signs represent different

spin states. Since these transitions are also k dependent, the
overall inversion probability is obtained after integrating over

k, Wτ
± =

∫
Wτ

±(k)dk.

III. DISCUSSION

A. Valley-selectable photonic spin oscillator

In the absence of By , in a monolayer TMDC, only interband
transitions between bands of the same spin are allowed. We
assume that the single cavity mode is initially in a coherent
state, |Cn|2 = exp(−〈n〉) 〈n〉n

n! where 〈n〉 is the average photon
number.

For a drive resonant with the gap, ω = Eg − �so, the
vacuum Rabi oscillations are shown in Fig. 2(a) along with
the corresponding Fourier spectra in Fig. 2(b). For 〈n〉 = 0
there is spontaneous emission and Rabi flipping for the TLS.
For the opposite spin states (with gap Eg + �so), the maximum
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FIG. 3. (a) Valley polarization and (b) peak Rabi frequency shift
as a function of CPL intensity and for different photon numbers.

Rabi oscillation amplitude ∼0 since ω is off-resonance with
this transition.

The valley-dependent Rabi oscillations are shown in Fig. 2.
These are pure spin oscillations from the cavity coupling. A
bias for a particular valley (hence spin) is created by using
CPL of a given handedness. We use an additional canonical
transformation for introducing CPL, k′

x → k′
x + 〈Ex〉 and

k′
y → k′

y ± i〈Ey〉 where 〈Ex〉 = 〈Ey〉 = 〈E〉 and 〈E〉 is the
time-averaged field. Right CPL favors the τ = 1 valley as
shown in Fig. 2 since it biases the Hamiltonian by adding a
〈Ex〉τ σ̃x + i〈Ey〉σ̃y term.

When 〈n〉 > 0, the Rabi oscillations undergo collapse
and revival (CR) which are more rapid, more distinct, and
temporally spaced further apart with increasing 〈n〉. Each
term in the summation over n represents Rabi flips weighted
by Cn, which are all correlated at t = 0. However, at longer
times the destructive interference between the weighted terms
leads to the collapses and then constructive interference leads
to revivals. Figure 2(c) shows that this purely quantum-
mechanical CR feature can be individually observed for each
valley. This CR happens even in the presence of CPL, but the
amplitudes of the CRs are inequivalent for each valley, and
they continue indefinitely with each revival being smaller in
amplitude and less distinct from the preceding collapse. The
Fourier spectra shows a frequency-comb-type behavior, where
the number of spectral peaks is ∝〈n〉. In the present treatment
CPL blue-shifts the central Rabi frequency peak, which is
discussed in greater detail next.

The valley (spin) polarization in this system can be
characterized as follows:

P = |Wτ=1
+ |2max − |Wτ=−1

− |2max

|Wτ=1+ |2max + |Wτ=−1
− |2max

. (4)

The degree of valley polarization depends on the CPL’s
intensity 〈E〉 as shown in Fig. 3(a). As 〈E〉 is increased, P
tends toward 1, but it also tends to saturate. For a given 〈E〉,
P is higher for smaller 〈n〉. This is because the cavity photons
are also vibrating along x which will tend to make the incident
light more elliptically polarized as 〈n〉 is increased. Increasing
〈E〉 also shifts the central Rabi frequency peak toward higher
frequencies as shown in Fig. 3(b), since CPL increases the
effective � (see ντ

±). The slope dω/d〈E〉 is roughly the same
for all 〈n〉 as expected.
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FIG. 4. (a) Normalized peak Rabi frequency as a function of the
normalized magnetic field for different 〈n〉. (b) Corresponding peak
oscillation amplitude for the �+ same spin population transfer for
τ = 1. Here ω = Eg + �so, �′ = h̄�+, and B ′

y = g‖μBBy .

A spin-Zeeman field along z does not affect these results;
it just adds a phase factor. In experiments it has been shown
that the valley degeneracy can be lifted by the valley-Zeeman
effect [33,34] where an external magnetic field affects the
valley exciton and trion dispersions.

The addition of an in-plane By field, however, leads to
level detuning and leakages—but again, it does not affect the
overall P for this system for g‖By up to 4 T. However, the
inclusion of By here reveals a technological application of a
2D cavity-QED system.

B. Application as a magnetometer

A monolayer TMDC in an optical cavity can be used
for sensitive magnetic field sensing applications. For a 2D
material, By only affects the spin states and does not lead
to the formation of Landau levels. However, now the two
orbital TLSs are not decoupled anymore and the dynamics
of this system is significantly altered in the presence of By .
We numerically calculate the population transfer probabilities
in the 4 × 4 dressed state basis.

The magnetic field modifies the zone-center energies to
Eg/2 ± By and −Eg/2 ∓

√
B2

y + �2
so, which leads to level

detuning. This leads to an increase in the Rabi oscillation
frequency and a decrease in the oscillation amplitude. The peak
Rabi-flop frequencies are shown as a function of a normalized
B ′

y/� for different photon numbers for the drive ω = Eg −
�so in Fig. 4.

At low By , ωpeak does not change much. And at higher
By , ωpeak saturates. However, the results in the intermediate
regime are extremely encouraging. First, the linear scaling of
ωpeak with By , and the invariance of this linear scaling and its
slope with By/� implies that this device can be used as a very
sensitive magnetometer.

This is a key result. Usually very strong cavity coupling is
desired. Here because of the invariance as a function of By/�

one could get to very small magnetic field sensing limits. This
is only possible because of the unique combination of a gapped
material with large SO interactions in a 2D geometry—all of
which are necessary. The direct gap makes the system optically
active and the 2D geometry allows By to couple to spin without
introducing unwanted Landau levels which then subsequently
couples the CB orbitals.

In theory these effects can be reproduced if one just
added a Byσy term to the Jaynes-Cummings Hamiltonian.

But physically one cannot have an electric dipole coupling
and a magnetic field coupling in the same matrix element for
an orbital two-level system. We also argue that this would
be robust even with cavity imperfections and spin dephasing
and relaxation as one is not concerned with the decay of the
signal, but just with the main Fourier peak. Experimentally
this amounts to spectrally decomposing the time-dependent
photoluminescence signal.

C. Persistent intervalley conduction-band oscillations

In the presence of By , either direct or indirect transitions
between all four states in a valley are allowed. However, some
rather peculiar features stand out for the CB ψc,− ↔ ψc,+
transitions. These results were obtained by exact numerics by
unitarily time evolving the system using U = exp(−iH t), and
projecting the dressed ψc,± CB eigenstates of H ′

o.
The Rabi flops for these transitions are shown in Fig. 6. At

very small but finite By , the vacuum Rabi flops reach 1. As the
magnetic field strength increases, the amplitude decreases, but
the Rabi frequency does not shift. But again, if By = 0, this
Rabi flopping would vanish.

This behavior can be explained analytically. Note that in
general [H0,Hb] �= 0; however, in order to gain better intuition
one can approximate U ≈ e−iH t e−iHbt , which is valid for small
By . Then the CB population inversion is

〈�c
−|U |�c

+〉 ∼ cos(Byt)(W ′+ − W ′−)

+ i sin(Byt)(C+W ′+ − C−W ′−), (5)

where C± = (
√

B2
y + �2

so ± τ�so)/By and W ′± =∑ |Cn|2[cos( ν±t

2 ) + �±
ν±

sin( ν±t

2 )]. Equation (5) approaches 1
in the limit of a vanishing By .

The peculiar Rabi flopping in Fig. 6(a) can therefore be
explained as follows. In the absence of a magnetic field, the
CB c± states are degenerate but are completely decoupled
from each other in the present k · p model. An infinitesimally
small By lifts this degeneracy and couples the two CB states
allowing �c

− ↔ �c
+ transitions. However, now since the two

levels are still nearly degenerate for a small By , there is an
almost perfect overlap of the wave functions. As a result the
Rabi flops reach 1 for infinitesimally small By’s. Equation
(5) reproduces this behavior in the limit of small By . As the
magnetic field strength increases, the amplitude decreases, but
the Rabi frequency does not shift.

We also examine the photon number dependence of this
behavior. In Figs. 6(a) and 6(b) the dependence for 〈n〉 = 0 and
〈n〉 = 10 is respectively shown. For 〈n〉 = 10, the collapseand
revival type behavior is seen for these conduction-band states
as expected. Like the 〈n〉 case, no notable distinction can be
drawn between the 〈n〉 = 10 g||By = 0.1T and 0.01T cases
because of the nearly degenerate CB states.

This behavior is characterized more carefully in Fig. 5
where the maxima of the Rabi oscillations between opposite
spin conduction-band states is shown as a function of the mag-
netic field and different photon numbers. The Rabi oscillation
amplitudes and frequencies remain relatively unaffected for
smaller magnetic fields.
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band states: ψc,− ↔ ψc,+ shown for different photon numbers and
magnetic fields for ω = Eg − �so and τ = 1.

The energy gap between the spin-split conduction-band
states is 2μBg||By . It should be noted that in actual TMDC
monolayers, the CB states are also nondegenerate and spin
split, although the spin splitting is far smaller than that of
the valence band [17,35,36]. While this CB splitting does not
affect the other results, the CB population transfer amplitudes
would be less than what is shown in Fig. 6. Overall, this is
an important effect to take into account when considering
quantum information processing applications since the Rabi
oscillations would be insensitive to small magnetic field
fluctuations such as from nuclear spins.

D. Cavity imperfections and finite exciton lifetimes

Finally we consider system imperfections such as cavity
losses and finite exciton lifetimes which will lead to decoher-
ence. In TMDCs free-electron–hole pairs in different valleys
respond to CPL of different handedness. However, in the case
of excitons—bound-electron–hole pairs. The electrons in one
valley interact with the holes in the other valley resulting in
both bright and dark excitons. These interactions result in the
excitonic dispersion having a longitudinal (L) and a transverse
(T) split as a function of its center-of-mass momentum K. The
L and T levels respond to two orthogonal linearly polarized
modes of light. This splitting between exciton states with
opposite angular momentum can also be explained in terms
of the Berry curvature using a gapped two-band Dirac model
[37]. Other variants of the massive Dirac model have also
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FIG. 6. Maxima of the Rabi oscillations between opposite spin
conduction-band states as a function of the magnetic field and
different photon numbers. Here ω = Eg − �so and τ = 1.

been used to explain the properties of excitons in TMDCs
[38,39]. However, the excitonic band-structure calculations
differ. Some studies show that the exciton bands split into a
lower parabolic band and an upper parabolic and nonanalytic
branch [40].

In general, bright and dark excitonic transitions at K = 0
and K = K are allowed. The massive Dirac model captures
many of the useful features of theK = 0 excitons which mainly
contribute to the optical properties. In this paper we examine
the cavity QED of excitons within the framework of a simple
two-band massive Dirac model [37–39] about K = 0 and for
a 1s-level exciton gap ωx . Following the procedure to derive
Eq. (2), we arrive at

H ′ = u �K · �σ + ωx

2
σz + ω

2
a†a + �(a†σ− + aσ+). (6)

Excitons have finite lifetimes which along with the cavity
imperfections places limitations on the number of Rabi flops
that can be observed before they decohere. The experimentally
measured radiative lifetime of excitons in monolayer MoS2 is
about 820 ps [41] which is very similar to other monolayer
TMDCs [42]. Here we assume a relaxation time of T1 = 800 ps
and also consider the cavity imperfections via its quality factor.
The various dissipative processes will result in mixed states
and hence solutions can be sought in terms of the density
operator. Here we model the decoherence effects using the
Lindblad equations

ρ̇ ′ = − i

h̄
[ρ ′,H ] + �QL (a,ρ ′) + �eL (σ,ρ ′), (7)

where L (a,ρ) = a†aρ + ρa†a − 2aρa† and L (σ,ρ) =
σ+σ−ρ + ρσ−σ+ − 2σ−ρσ+, �Q = ω±/Q, and �e is the
exciton relaxation rate. The Lindbald equation can be solved
in the superoperator form:

�ρ ′(t) = exp(−St) �ρ ′(0), (8)

where �ρ is a vector and for exciton relaxation, e.g.,
the superoperator: S = −iH ⊗ I + iI ⊗ H + σ− ⊗ σ+ −
1
2 (σ+σ− ⊗ I + I ⊗ σ+σ−). We assume that at t = 0, the
TMDC’s pseudospin and the single cavity mode are un-
entangled pure states, i.e., ρ(0) = ρs(0) ⊗ ρc(0), where the
initial density operator for the pseudospin is ρs(0) = |ψτ

v 〉〈ψτ
v |

and for the cavity field is ρc(0) = ∑
n|Cn|2|n〉〈n|. We then

solve Eq. (8) and take a partial trace over the cavity field
ρ ′ = Trc[ρcρs].

The density matrix can be decomposed into its con-
stituent Bloch vector components ρ ′ = I + ∑

ηjσj where j ∈
{x,y,z}. In Fig. 7(a), the expectation values 〈ηj 〉 = Tr(σjρ) are
shown as a function of time for a perfect cavity, with 〈n〉 = 0
and T1 = 800 ps. Note that 〈ηy〉 and 〈ηz〉 are π/2 out of phase
as expected and are the two nonzero values as the electric field
is oscillating about x.

For a perfect cavity, numerous Rabi flops can be observed
as shown in Fig. 7(a) due to the strong cavity coupling and long
exciton life times. The greater limiting factor for cavity QED
with monolayer TMDC would be the cavity imperfections as
shown in Fig. 7(b). The exciton T1 lifetime is also included
here. For the � considered here, No Rabi oscillations will be
seen for Q = 103 while they are significantly long-lived for
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FIG. 7. (a) Expectation value of the Bloch vector components
〈ηy〉 and 〈ηz〉 as a function of time for a perfect cavity, Q = ∞, and
an excitonic relaxation time of T1 = 800 ps. (b) Expectation value
of 〈ηz(t)〉 for imperfect cavities with varying Q’s and an excitonic
relaxation time of T1 = 800 ps.

Q = 105. Further improvements for Q = 106 are quite small
where the exciton lifetime is now the limiting factor.

IV. SUMMARY

In summary the photonic cavity’s strong coupling to lattice
pseudospin leads to various interesting effects for an inver-
sion asymmetric monolayer TMDC. This system can act as
an on-chip coherent light source. The Dirac-type Hamiltonian
for a 2D gapped semiconductor with a large SO interaction

facilitates pure Jaynes-Cummings coupling for a single-mode
electric field. This gives rise to valley- and spin-dependent
optical properties which can be controlled in a 2D architecture
by using an additional CPL field. With CPL and strong
coupling effects spontaneous vacuum spin oscillations can
occur. Valley-selective collapse and revival of Rabi oscillations
occur for higher photon number coherent states. These effects
would be easily observable for Q ∼ 105.

The presence of an external in-plane magnetic field leads to
additional interesting effects. The TMDC cavity-QED device
can be used for sensitive magnetic field sensing applications,
which is possible because of the combination of a gapped 2D
material with large SO interactions and a 2D optical cavity.
As a consequence of By , Rabi oscillations between nearly
degenerate opposite-spin CB states become feasible in direct
gapped monolayer TMDC. These oscillations are also robust
against small magnetic field fluctuations which could be useful
for quantum information applications.
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445, 896 (2007).

[5] A. A. Kovalev, A. De, and K. Shtengel, Phys. Rev. Lett. 112,
106402 (2014).

[6] Ö. O. Soykal, R. Ruskov, and C. Tahan, Phys. Rev. Lett. 107,
235502 (2011).

[7] M. H. Devoret, D. Esteve, J. M. Martinis, and C. Urbina, Phys.
Scr. 1989, 118 (1989).

[8] R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664
(2008).

[9] J. M. Martinis, Quant. Inf. Proc. 8, 81 (2009).
[10] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A 69, 062320 (2004).
[11] L.-M. Duan and H. J. Kimble, Phys. Rev. Lett. 92, 127902

(2004).
[12] A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S.

Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao et al., Nat.
Nanotechnol. 8, 634 (2013).

[13] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nat. Phys. 10, 343
(2014).

[14] A. M. Jones, H. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J.
Yan, D. G. Mandrus, W. Yao, and X. Xu, Nat. Phys. 10, 130
(2014).

[15] K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and
J. Shan, Phys. Rev. Lett. 113, 026803 (2014).

[16] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li,
O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz,
Phys. Rev. Lett. 113, 076802 (2014).

[17] A. Kormányos, V. Zólyomi, N. D. Drummond, and G. Burkard,
Phys. Rev. X 4, 011034 (2014).

[18] Z. Gong, G.-B. Liu, H. Yu, D. Xiao, X. Cui, X. Xu, and W. Yao,
Nat. Commun. 4, 2053 (2013).

[19] L. Britnell, R. Ribeiro, A. Eckmann, R. Jalil, B. Belle, A.
Mishchenko, Y.-J. Kim, R. Gorbachev, T. Georgiou, S. Morozov
et al., Science 340, 1311 (2013).

[20] X. Gan, K. F. Mak, Y. Gao, Y. You, F. Hatami, J. Hone, T. F.
Heinz, and D. Englund, Nano Lett. 12, 5626 (2012).

[21] F. H. Koppens, D. E. Chang, and F. J. García de Abajo, Nano
Lett. 11, 3370 (2011).

[22] V. Menon, Nat. Mater. 14, 370 (2015).
[23] Y. Ye, Z. J. Wong, X. Lu, H. Zhu, X. Chen, Y. Wang, and X.

Zhang, Nat. Photonics 9, 733 (2015).
[24] S. Schwarz, S. Dufferwiel, P. Walker, F. Withers, A. Trichet,

M. Sich, F. Li, E. Chekhovich, D. Borisenko, N. N. Kolesnikov
et al., Nano Lett. 14, 7003 (2014).

[25] S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G.
Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar et al.,
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