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Long-lived and ultraconfined plasmons in two-dimensional (2D) electron systems may provide a subwavelength
diagnostic tool to investigate localized dielectric, electromagnetic, and pseudo-electromagnetic perturbations. In
this article, we present a general theoretical framework to study the scattering of 2D plasmons against such
perturbations in the nonretarded limit. We discuss both parabolic-band and massless Dirac fermion 2D electron
systems. Our theory starts from a Lippmann-Schwinger equation for the screened potential in an inhomogeneous
2D electron system and utilizes as inputs analytical long-wavelength expressions for the density-density response
function, going beyond the local approximation. We present illustrative results for the scattering of 2D plasmons
against a pointlike charged impurity and a one-dimensional electrostatic barrier due to a line of charges. Exact
numerical results obtained from the solution of the Lippmann-Schwinger equation are compared with approximate
results based on the Born and eikonal approximations. The importance of nonlocal effects is finally emphasized.
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I. INTRODUCTION

Plasmons, ubiquitous collective charge density oscillations
that occur in metals and semiconductors, have been studied
for a long time [1–3]. In particular, plasmons in ultraclean
two-dimensional (2D) electron systems are particularly inter-
esting since they suffer few losses and can be tuned by the
electric field effect. At temperatures well below the optical
phonon energy scale, plasmons in high-quality GaAs/AlGaAs
heterostructures [4], for example, appear as very sharp peaks
in inelastic light scattering spectra, displaying intriguing cor-
relation and nonlocal effects at ultralow electron densities [5].

The field of “2D plasmonics” has been recently greatly
revitalized by real-space investigations of plasmons in sup-
ported graphene sheets by means of scanning near-field optical
microscopes [6,7]. Experimental investigations of graphene
plasmons have also been carried out in graphene sheets
encapsulated between hexagonal boron nitride (hBN) crystals
[8–13]. These samples display nearly ideal transport charac-
teristics [8–13], whereby only one scattering mechanism (i.e.,
electron-acoustic phonon scattering [14]) fully determines dc
transport times at room temperature, at least for sufficiently
large carrier densities. Room-temperature plasmons in hBN-
encapsulated graphene sheets have been demonstrated [15]
to display record-high confinement factors (∼107 volume
confinement) and lifetimes approaching 1 ps, the latter being
solely limited by the weak scattering of electrons against
graphene phonons.

In this article, we are interested in the scattering prop-
erties of 2D plasmons in parabolic-band electron gases and
encapsulated graphene sheets. To this end, we lay down a
Lippmann-Schwinger theory that enables us to calculate com-
plex reflection and transmission coefficients for 2D plasmons
impinging on a great variety of localized perturbations.

*Iacopo.Torre@sns.it

Scattering theories for surface plasmon polaritons in noble
metals have been introduced in the past [16–19]. More recently,
scattering of graphene plasmons against one-dimensional (1D)
defects has been studied in Refs. [20,21]. In particular,
the impact of electronic quasibound states on the scattering
properties of plasmons has been recently studied in Ref. [22].
Scattering of plasmons in more exotic electron systems has
also been considered, for example in Ref. [23].

The main difference between these earlier works and the
theory presented in this article is that we use an electrostatic
approximation, instead of solving Maxwell equations. This
offers several advantages with respect to previous works:
(i) our theory is essentially semianalytical, requires little
numerical effort, and, most importantly, takes into account
nonlocal effects; (ii) we calculate the density-density response
function from the knowledge of a microscopic Hamiltonian,
instead of assuming phenomenological models for the spatial
dependence of the conductivity profile (as done in all papers,
with the exception of Ref. [22]); (iii) we treat on equal footing
many different perturbations (not only electrostatic perturba-
tions coupling to the electron density operator); and (iv) we
provide a recipe to include exchange and correlation effects
beyond the celebrated random phase approximation (RPA) [3],
as we explain below in Appendix E.

The only disadvantage of our approach is that we are
unable to describe scattering of plasmons into far-field
modes of the electromagnetic field. In 2D electron gases in
GaAs/AlGaAs heterostructures and graphene sheets, these
dissipative processes are usually very weak as has been
demonstrated both theoretically [20] and experimentally (see,
for example, Ref. [24]) for sufficiently confined 2D plasmons.
The reason is that the plasmon momenta at play in these
electron systems are much larger that the photon momentum
ω/c. This implies that coupling to far-field modes of the elec-
tromagnetic field can occur only in the presence of extremely
sharp defects/perturbations. However, experimentally realized
(electrostatic) defects/perturbations for plasmons are smooth
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FIG. 1. The two scattering geometries considered in this work.
In panel (a), the perturbation is localized within a circle of radius
a (gray-shaded area). In panel (b), the perturbation is confined in
the rectangular strip −a < x < a (gray-shaded area). Translational
invariance is assumed in the ŷ direction. The perturbations δχ̃ (r,r ′,ω)
and δv(r,r ′,ω) introduced in the main text in Eqs. (10) and (11) are
negligible if either r or r ′ lie outside the scattering region.

and are therefore unable to couple plasmons to photons. The
situation is particularly “extreme” in hybrid heterostructures
containing graphene, hBN, and nearby metal gates [24,25]. A
metal gate in close proximity to graphene suppresses the long-
range tail of the interelectron Coulomb interaction, morphing
the usual 2D unscreened plasmon [3] with ωpl(q) ∝ √

q into
an acoustic plasmon mode [24,25] with a phase velocity that
is extremely close to the electron Fermi velocity vF. For
a given illumination frequency ω, such acoustic plasmons
have therefore momenta that are much larger that those
of unscreened plasmons. Recent experiments [24] in which
plasmons in such stacks were launched against smooth 1D
electrostatic barriers show that our approximation is fully
justified and that our theory explains in a fully quantitative
fashion experimental data with no fitting parameters.

Our paper is organized as following. In Sec. II we present
a brief overview of how to approach the nontrivial problem of
plasmons in inhomogeneous media [26,27] and we introduce
two fundamental quantities: (a) the proper density-density
response function χ̃nn(q,q ′,ω) and (b) the screened potential
Vsc(q,ω). In Sec. III we introduce two scattering geometries
of interest in this work, which are schematically reported in
Fig. 1, and a Lippmann-Schwinger equation for the screened
potential, which automatically fulfils appropriate asymptotic
conditions. In Sec. IV we introduce the key quantity of our 2D
Lippmann-Schwinger plasmon scattering theory: the transition
function T (q,θ,ω). The latter fully controls the scattering
amplitude f (θr ,θ,ω) in the geometry in Fig. 1(a) and reflection

rθ,ω and transmission tθ,ω coefficients in the geometry in
Fig. 1(b). In Sec. V we derive a useful relation between
the amplitude of forward scattering and the total scattering
cross section, which is known, in the context of electromag-
netic scattering, as optical theorem. Paralleling single-particle
quantum-mechanical scattering theory [28], in Secs. VI–VIII
we present three approximations for the evaluation of the
scattering observables: the Born approximation, the eikonal
approximation, and the method of partial waves, respectively.
Finally, two concrete problems, i.e., scattering of a plasmon in
a 2D parabolic-band electron system against an electrostatic
potential generated by (i) a pointlike charged impurity and (ii)
a 1D line of charges, are explicitly solved in Sec. IX. These
are used to compare exact numerical results—obtained from
the full solution of the Lippmann-Schwinger equation—with
approximate results based on the Born and eikonal approxima-
tions. In the second geometry, we also explicitly quantify the
impact of nonlocal effects. A summary of our main results and
a brief set of conclusions and perspectives is finally reported in
Sec. X. The evaluation of the transition function requires exact
expressions for the proper density-density response function
of an inhomogeneous 2D electron system, which are carefully
derived in Appendix A. We here stress the importance of the
results contained in Eqs. (A24), (A30), and (A32): these give
the high-frequency behavior of the density-density response
function of an inhomogeneous 2D electron liquid subject to a
very general perturbation, up to next-to-leading order in the
frequency. In Appendix B we extend these results to the case of
an inhomogeneous electron liquid hosted in a graphene sheet.
Four additional appendices report a wealth of useful technical
details.

II. PLASMONS IN INHOMOGENEOUS MEDIA

The linear density response n1(q,ω) induced by an external
scalar potential in an electron liquid can be expressed in terms
of the screened potential Vsc(q,ω) and the proper density-
density response function [3] according to

n1(q,ω) =
∑

q ′
χ̃nn(q,q ′,ω)Vsc(q ′,ω). (1)

The screened potential is in turn related to the induced density
via

Vsc(q,ω) = Vext(q,ω) +
∑

q ′
v(q,q ′,ω)n1(q ′,ω), (2)

where Vext(q,ω) is the external potential and v(q,q ′,ω) is the
Fourier transform of the electron-electron interaction potential.
For example, v(q,q ′,ω) = δq,q ′2πe2/[qε̄(ω)] for a 2D electron
system (q = |q|) surrounded by a homogeneous and isotropic
dielectric, with a frequency-dependent permittivity ε̄(ω). The
interaction potential v(q,q ′,ω) accounts for all screening
effects stemming from nearby dielectrics. Note that we are
neglecting retardation effects (c = ∞).

Plasmons are self-sustained charge density oscillations that
occur in absence of an external field. They correspond to
nontrivial solutions of the integral equation∑

q ′
ε(q,q ′,ω)Vsc(q ′,ω) = 0, (3)
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where we have introduced the dynamical dielectric function:

ε(q,q ′,ω) = δq,q ′ −
∑

q ′′
v(q,q ′′,ω)χ̃nn(q ′′,q ′,ω). (4)

For electron systems that are invariant under spatial transla-
tions, χ̃nn(q,q ′,ω) = δq,q ′ χ̃nn(q,ω), v(q,q ′,ω) = δq,q ′v(q,ω),
and Eq. (3) reduces to the familiar equation [3]

[1 − v(q,ω)χ̃nn(q,ω)]Vsc(q,ω) ≡ ε(q,ω)Vsc(q,ω) = 0. (5)

The solutions of Eq. (5) for Vsc(q,ω) are delta functions peaked
at the zeros of ε(q,ω) and correspond to plane waves in real
space.

III. LIPPMANN-SCHWINGER THEORY
FOR 2D PLASMONS

We now specialize Eq. (3) to describe the scattering of a
plasmon off a spatially localized inhomogeneity in the 2D
electron system. We consider two types of inhomogeneities:
(a) one that is localized inside a circle of radius a around the
origin and (b) one that is invariant under spatial translations
in one direction (the ŷ direction) and is confined to a strip of
finite width 2a in the x̂ direction, i.e., for −a < x < a. These
are sketched in Figs. 1(a) and 1(b), respectively.

We now write the proper response function χ̃nn(q,q ′,ω) as
the sum of a homogeneous part χ̃h(q,ω)δq,q ′ plus a perturbation
δχ̃ (q,q ′,ω), the latter describing the inhomogeneity present in
the 2D electron system:

χ̃nn(q,q ′,ω) = χ̃h(q,ω)δq,q ′ + 1

S
δχ̃ (q,q ′,ω). (6)

Here, S = LxLy is the 2D electron system area. In writing the
above equation we assumed, for the sake of simplicity, that
the 2D electron system in the absence of perturbations is ho-
mogeneous and isotropic—this implies that the homogeneous
part χ̃h(q,ω) of the density-density response function depends
only on q = |q|.

In what follows, we introduce, without loss of generality,
the following parametrization of the uniform part of the proper
density-density response function:

χ̃h(q,ω) = D

e2π

q2

ω2
G(q,ω), (7)

where D is the so-called Drude weight [29] and G(q,ω) is a
correction factor that takes into account all the effects beyond
simple Drude theory, including nonlocal effects.

Similarly, we split the interaction potential into two parts:

v(q,q ′,ω) = δq,q ′v(q,ω) + 1

S
δv(q,q ′,ω), (8)

where

v(q,ω) = 2πe2

ε̄(ω)q
F(q,ω) (9)

represents the homogeneous part of the interaction, which does
not depend on the direction of q, while δv(q,q ′,ω) stems from
an inhomogeneity in the dielectric environment surrounding
the 2D electron system.

In Eq. (9), ε̄(ω) is a suitable frequency-dependent permit-
tivity and F(q,ω) is a form factor that takes into account
deviations from the pure 2D Coulomb law [3] 2πe2/q. These
may occur in quantum wells of GaAs/AlGaAs where F takes
into account the finite thickness of the quantum well and
its geometric form [30] or in graphene sheets encapsulated
between slabs of hBN crystals, where F captures effects
stemming from the finite thickness of hBN [31].

In real space, Eqs. (6) and (8) read as following:

χ̃nn(r,r ′,ω) = χ̃h(|r − r ′|,ω) + 1

S
δχ̃ (r,r ′,ω) (10)

and

v(r,r ′,ω) = v(|r − r ′|,ω) + 1

S
δv(r,r ′,ω). (11)

We assume that the perturbations δχ̃ (r,r ′,ω) and δv(r,r ′,ω)
are negligible if either r or r ′ lies outside the scattering region;
see Fig. 1.

We now introduce the homogeneous part of the dielectric
function

εh(q,ω) ≡ 1 − v(q,ω)χ̃h(q,ω)

= 1 − 2D

ε̄(ω)ω2
qF(q,ω)G(q,ω), (12)

the inverse of the effective interaction

W−1
h (q,ω) ≡ εh(q,ω)

v(q,ω)

= qε̄(ω)

2πe2F(q,ω)

[
1 − 2D

ε̄(ω)ω2
qF(q,ω)G(q,ω)

]
,

(13)

and the scattering kernel

�(q,q ′,ω) ≡ δχ̃ (q,q ′,ω) + δv(q,q ′,ω)

v(q,ω)
χ̃h(q ′,ω)

+ 1

S

∑
q ′′

δv(q,q ′′,ω)

v(q,ω)
δχ̃(q ′′,q ′,ω). (14)

Note that Eq. (14) establishes a crucial relationship between
scattering theory and microscopic many-body theory, which
can be used to calculate the response function δχ̃ (q,q ′,ω)
of the inhomogeneous 2D electron system that appears in
Eq. (14).

With these definitions, we can rewrite Eq. (3) in the
following appealing manner:

W−1
h (q,ω)Vsc(q,ω) = 1

S

∑
q ′

�(q,q ′,ω)Vsc(q ′,ω). (15)

Equation (15) closely resembles the momentum-space version
of Schrödinger’s equation for an electron of mass m in a generic
nonlocal potential U (q,q ′):(

E − h̄2q2

2m

)
ψ(q) = 1

S

∑
q ′

U (q,q ′)ψ(q ′). (16)

Comparing Eq. (15) with Eq. (16), we clearly see that
W−1

h (q,ω) plays the role of E − h̄2q2/(2m),�(q,q ′,ω) plays
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the role of the scattering potential U (q,q ′), and Vsc(q,ω) is the
analog of the wave function ψ(q).

In the following, we assume that the unperturbed system
has a single plasmon mode at a given frequency ω. This means
that εh(q,ω) has only one zero as a function of q for any given
ω. This allows us to unambiguously define the plasmon wave
vector of the homogeneous system as the solution qpl = qpl(ω)
of the following equation:

εh(qpl,ω) = 0. (17)

Our theory can be easily extended to anisotropic media, for
which qpl depends on the propagation direction, and to take
into account the presence of multiple plasmon modes at a given
frequency.

For the geometry in Fig. 1(a) and just as in the case of single-
particle quantum-mechanical scattering theory [28], we are
interested in solutions of Eq. (15) whose asymptotic behavior
is given by the sum of an incoming plane wave plus a scattered
wave:

Vsc(r,ω) � eiqpl·r + eiqplr

√
r

f (θr ,θ,ω), (18)

where qpl ≡ qpl[x̂ cos(θ ) + ŷ sin(θ )], θ is the polar angle of
the wave vector of the incoming wave, θr is the polar angle
of r , and f (θr ,θ,ω) is the scattering amplitude induced by the
inhomogeneity.

For the geometry in Fig. 1(b), which is translationally
invariant along the ŷ direction, the required asymptotic
behavior is given by

Vsc(r,ω)

� eiqpl sin(θ)y

{
eiqpl cos(θ)x + rθ,ωe−iqpl cos(θ)x, for x → −∞,

tθ,ωeiqpl cos(θ)x, for x → +∞,

(19)

where θ is the angle between the wave vector of the incoming
wave and the x̂ axis, while rθ,ω and tθ,ω are the reflection and
transmission coefficients, respectively.

The asymptotic behaviors (18) and (19) can be more easily
enforced using a formalism à la Lippmann-Schwinger [28].

Indeed, we claim that a solution of

Vsc(q,ω) = V (0)(q,ω) + Wh(q,ω)

× 1

S

∑
q ′

�(q,q ′,ω)Vsc(q ′,ω), (20)

with V (0)(q,ω) satisfying

εh(q,ω)V (0)(q,ω) = 0 (21)

and Wh(q,ω) satisfying the distributional equation

Wh(q,ω)
εh(q,ω)

v(q,ω)
= 1, (22)

is also a solution of Eq. (15).
To prove our assertion, it is sufficient to multiply Eq. (20)

by W−1
h (q,ω) and use Eqs. (21) and (22). Equation (20) is

the desired Lippmann-Schwinger equation for 2D plasmon
scattering.

The solutions of Eqs. (21) and (22) are not unique. To
impose the asymptotic conditions (18) and (19), we choose
(i) V (0) as a delta function in wave vector space (a plane wave
in real space):

V (0)(q,ω) = (2π )2δ(q − qpl), (23)

which corresponds to the first term in Eqs. (18) and (19),
and (ii) the solution of Eq. (22) corresponding to an outgoing
cylindrical wave. As shown in Appendix C, the solution of
Eq. (22) corresponding to an outgoing cylindrical wave is

W
(+)
h (q,ω) ≡ 1

W−1
h (q,ω) + i0+

= P 1

W−1
h (q,ω)

− iπC(ω)δ(q − qpl), (24)

where

C(ω) = lim
q→qpl

qpl − q

W−1
h (q,ω)

= 2πe2F(qpl,ω)

ε̄(ω)
[
1 + qpl

F ′(qpl,ω)
F(qpl,ω) + qpl

G ′(qpl,ω)
G(qpl,ω)

] . (25)

Here, F ′(q,ω) ≡ ∂F(q,ω)/∂q and G ′(q,ω) ≡ ∂G(q,ω)/∂q.
With these definitions we can separate the effective interac-

tion into a universal function of q plus a correction W(q,ω):

W
(+)
h (q,ω) = C(ω)

qpl

[
P 1

1 − q

qpl

− iπδ

(
1 − q

qpl

)
+ qpl

q
+ W(q,ω)

]
, (26)

where

W(q,ω) = F(q,ω)[F(qpl,ω)G(qpl,ω) + qplF ′(qpl,ω)G(qpl,ω) + qplF(qpl,ω)G ′(qpl,ω)]

F(qpl,ω) q

qpl

[
F(qpl,ω)G(qpl,ω) − q

qpl
F(q,ω)G(q,ω)

] − qpl

qpl − q
− qpl

q
. (27)

Note that W(q,ω) vanishes identically if both F(q,ω) and
G(q,ω) are set to 1.

Since the intensity associated with a traveling plasmon with
a fixed wave vector is proportional to the square of its potential,
the information about the flux of energy is carried by the
modulus square of the scattering amplitude |f (θr ,θ,ω)|2 in

the geometry of Fig. 1(a) and by the square modulus of rθ,ω

and tθ,ω in the geometry of Fig. 1(b). More precisely the ratio
between the amount of power scattered into a small angle dθ

around θr and the intensity (i.e., power per unit length) of the
incoming wave is |f (θr ,θ,ω)|2dθ . The total scattered power
divided by the intensity of the original wave is given by the
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total cross section

�(θ,ω) ≡
∫ π

−π

dθr |f (θr ,θ,ω)|2. (28)

In a rotationally invariant system �(θ,ω) obviously does not
depend on the angle θ and is a function of ω only.

IV. TRANSITION FUNCTION

We now turn to relate the scattering amplitude f (θr ,θ,ω)
and the reflection and transmission coefficients rθ,ω and tθ,ω

to the solutions of Eq. (20). To this end, it is useful to
define the transition function T . Since the final results are
slightly different for the two scattering geometries in Figs. 1(a)
and 1(b), we split the discussion into two separate parts, in
Secs. IV A and IV B, respectively.

A. Geometry in Fig. 1(a)

In this geometry, the transition function is defined by

T (q,θ,ω) ≡ 1

S

∑
q ′

�(q,q ′,ω)Vsc(q ′,ω), (29)

where Vsc(q,ω) is the solution of Eq. (20) with V (0)(q,ω) given
by (23) and effective interaction given by (24). Note that T is
a function of a reciprocal vector q, of an angle θ giving the
direction of the incoming wave, and of the frequency ω.

The transition function satisfies the following integral
equation:

T (q,θ,ω) = �(q,qpl,ω)

+ 1

S

∑
q ′

�(q,q ′,ω)W (+)
h (q ′,ω)T (q ′,θ,ω), (30)

as one can easily verify by inserting Eq. (20) in Eq. (29).
To make a link between the transition function and the scat-

tering amplitude f (θr ,θ,ω) we must consider the asymptotic
behavior of Eq. (20) in real space. This is carefully considered
in Appendix D. The final result is

f (θr ,θ,ω) = − ei π
4√

2π

√
qplC(ω)T (qpl r̂,θ,ω). (31)

B. Geometry in Fig. 1(b)

Since this geometry is translationally invariant in the ŷ
direction, we can rewrite the scattering kernel (14) as

�(q,q ′,ω) = 2πδ(qy − q ′
y)�(qx,q

′
x,qy,ω). (32)

Equation (20) then becomes

Vsc(qx,qy,ω) = V (0)(qx,qy,ω) + W
(+)
h

(√
q2

x + q2
y ,ω

)
× 1

Lx

∑
q ′

x

�(qx,q
′
x,qy,ω)Vsc(q ′

x,qy,ω), (33)

where Lx has been defined after Eq. (6).
We now separate the two components of Eq. (23):

V (0)(qx,qy) = 2πδ(qy − qpl sin(θ ))2πδ(qx − qpl cos(θ )).

(34)

Because of translational invariance in the ŷ direction, we can
take the solution to have the form

Vsc(qx,qy,ω) = 2πδ(qy − qpl sin(θ ))Vsc(qx,θ,ω). (35)

The Lippmann-Schwinger equation (20) then becomes

Vsc(qx,θ,ω)

= 2πδ(qx − qpl cos θ ) + W
(+)
h

(√
q2

x + q2
pl sin2 θ,ω

)
× 1

Lx

∑
q ′

x

�(qx,q
′
x,qpl sin θ,ω)Vsc(q ′

x,θ,ω). (36)

In analogy to Eq. (29), we define

T (qx,θ,ω) ≡ 1

Lx

∑
q ′

x

�(qx,q
′
x,qpl sin(θ ),ω)Vsc(q ′

x,θ,ω),

(37)
which satisfies the following integral equation:

T (qx,θ,ω) = �(qx,qpl cos(θ ),qpl sin(θ ),ω)

+ 1

Lx

∑
q ′

x

�(qx,q
′
x,qpl sin(θ ),ω)W (+)

h

× (√
q ′2

x + q2
pl sin2(θ ),ω

)
T (q ′

x,θ,ω). (38)

This is the equation we solved numerically in the geometry (b)
described in Sec. IX.

Using the asymptotic behavior of Eq. (36)—see
Appendix D—and comparing the result to Eq. (19), we finally
obtain

tθ,ω = 1 − i
C(ω)

cos(θ )
T (qpl cos(θ ),θ,ω) (39)

and

rθ,ω = −i
C(ω)

cos(θ )
T (−qpl cos(θ ),θ,ω). (40)

In the theory of single-particle quantum-mechanical scattering
[28] the analytical continuation of the transition function into
the upper half of the complex plane can display poles at purely
imaginary values of the wave vector corresponding to the
energies of single-particle bound states. Similarly, for the case
of plasmon scattering, a localized plasmon resonance—i.e., a
solution of Eq. (3) that decays exponentially, in real space, far
from the perturbation—manifests as a pole in the transition
function T (qx,θ,ω) at a purely imaginary value of qx .

V. OPTICAL THEOREM

In this section we derive a useful relation between the
amplitude of forward scattering (i.e., scattering in the same
direction of the incoming wave) and the total scattering cross
section. In the context of electromagnetic scattering, this is
known as an “optical theorem.” It holds if dissipation can
be neglected during the scattering process. Once again, we
split the derivation into two parts, depending on the scattering
geometry.
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A. Geometry in Fig. 1(a)

Using Eq. (29), we can write the imaginary part of the transition function for the forward scattering process as

Im{T (qpl,θ,ω)} = Im

⎧⎨
⎩ 1

S

∑
q ′

�(qpl,q ′,ω)Vsc(q ′,ω)

⎫⎬
⎭ = Im

⎧⎨
⎩ 1

S

∑
q ′

∫
d2q δ(q − qpl)�(q,q ′,ω)Vsc(q ′,ω)

⎫⎬
⎭. (41)

We can rewrite the delta function using the complex conjugate of the Lippmann-Schwinger equation (20), and Eqs. (23), (24),
and (29):

δ(q − qpl) = 1

(2π )2
V ∗

sc(q,ω) − 1

(2π )2

[
P 1

W−1
h (q,ω)

+ iπC(ω)δ(q − qpl)

]
T ∗(q,θ,ω). (42)

Substituting Eq. (42) into Eq. (41) we get

Im{T (qpl,θ,ω)} = −C(ω)

4π

∫
dq|T (q,θ,ω)|2δ(q − qpl) + Im

{∫
dq

(2π )2

∫
dq ′

(2π )2
V ∗

sc(q,ω)�(q,q ′,ω)Vsc(q ′,ω)

}

= −C(ω)qpl

4π

∫
dθ ′|T (qpl[x̂ cos θ ′ + ŷ sin θ ′],θ,ω)|2. (43)

The term in the second line of the previous equation is propor-
tional to the power absorbed by the inhomogeneous electron
system [3] and can therefore be neglected if dissipation is
small.

Making use of Eqs. (28)–(31) this relation can be recast in
the form of an optical theorem [28]

Im

{
2
√

2πe−i π
4

√
qpl

f (θ,θ,ω)

}
= �(θ,ω). (44)

B. Geometry in Fig. 1(b)

Following the same steps as those in Sec. V A, we derive
a very similar relation for the forward-scattering transition
function in the geometry sketched in Fig. 1(b):

Im{T (qpl cos θ,θ,ω)}

= −C(ω)

2

∫
dqx |T (qx,θ,ω)|2δ(√q2

pl sin2 θ − q2
x − qpl

)
.

(45)

Using the definitions in Eqs. (39) and (40) we get

|rθ,ω|2 + |tθ,ω|2 = 1. (46)

The latter simply expresses conservation of energy in the
absence of dissipation.

VI. THE BORN APPROXIMATION

In this section we discuss the Born approximation for the
two geometries of interest in this work.

A. Geometry in Fig. 1(a)

Equation (30) can be handled exactly in a numerical
fashion, as we will discuss below, provided that the scattering
kernel �(q,q ′,ω) is known. In this section, however, we wish to
introduce an approximate perturbative approach in powers of
�(q,q ′,ω), which is usually termed the “Born approximation”
in ordinary single-particle quantum-mechanical scattering
theory [28].

We start by writing the transition function as a power series:

T (q,θ,ω) ≡
∞∑

n=1

λnT (n)(q,θ,ω), (47)

where λ is a dimensionless bookkeeping parameter, which will
be set to unity at the end of calculation. We also multiply the
kernel �(q,q ′,ω) in Eq. (30) by the same parameter λ. The
equation for the transition function becomes

∞∑
n=1

λnT (n)(q,θ,ω) = λ�(q,qpl,ω)

+ 1

S

∑
q ′

λ�(q,q ′,ω)W (+)
h (q ′,ω)

×
∞∑

n=1

λnT (n)(q ′,θ,ω). (48)

Collecting terms that appear in Eq. (48) with the same power
of λ and setting λ = 1, we finally obtain

T (1)(q,θ,ω) = �(q,qpl,ω) (49)

and

T (n+1)(q,θ,ω) = 1

S

∑
q ′

�(q,q ′,ω)W (+)
h (q ′,ω)T (n)(q ′,θ,ω),

(50)

for n � 1. This series yields a scattering amplitude

f (θr ,θ,ω) =
∞∑

n=1

f (n)(θr ,θ,ω)

= − ei π
4√

2π

√
qplC(ω)

∞∑
n=1

T (n)(qpl r̂,θ,ω). (51)

As one can see from Eq. (49), the leading term of the expansion
in Eq. (47) is particularly easy to calculate since it is simply
given by the scattering kernel evaluated at the outgoing and
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incoming wave vectors:

f (1)(θr ,θ,ω) = − ei π
4√

2π

√
qplC(ω)�(qpl r̂,qpl,ω). (52)

Equation (52) represents the first-order Born approximation
for the scattering amplitude and often represents a good
starting tool to understand, at least qualitatively, the behavior
of 2D plasmon scattering in a purely analytical fashion.

We note that the scattering amplitude calculated using
the Born approximation does not fulfill the optical theorem
(44), order by order. For example, the right-hand side of
Eq. (44) calculated with f (θ ′,θ,ω) at the level of the first-
order Born approximation is equal to the left-hand side of
Eq. (44) with f (θ,θ,ω) calculated using the second-order Born
approximation.

A natural question that arises at this point is when the
Born series converges and when it is legitimate to keep
only the first terms of the series. The Born approximation
works well when the difference between the full solution
for the screened potential Vsc(r,ω) and the incoming wave
V (0)(r,ω) within the scattering region is small. Looking at the
real-space formulation of the Lippmann-Schwinger equation
in Appendix D, we can write the difference between the full
solution and the incoming wave for r ≈ 0 as

|Vsc(r ≈ 0,ω) − V (0)(r ≈ 0,ω)|

≈
∣∣∣∣
∫

d r ′W (+)
h (|r ′|,ω)

∫
d r ′′ 1

S
�(r ′,r ′′,ω)Vsc(r ′′,ω)

∣∣∣∣
≈

∣∣∣∣
∫

d r ′W (+)
h (|r ′|,ω)

∫
d r ′′ 1

S
�(r ′,r ′′,ω)V (0)(r ′′,ω)

∣∣∣∣
=

∣∣∣∣∣ 1

S

∑
q

W
(+)
h (q,ω)�(q,qpl,ω)

∣∣∣∣∣. (53)

If the above quantity is much smaller than unity, the perturba-
tive series converges and the Born approximation is good.

B. Geometry in Fig. 1(b)

In the case of the geometry in Fig. 1(b), we can still express
the transition function as a power series

T (qx,θ,ω) =
∞∑

n=1

T (n)(qx,θ,ω) (54)

with coefficients given by

T (1)(qx,θ,ω) = �(qx,qpl cos(θ ),qpl sin(θ ),ω) (55)

and

T (n+1)(qx,θ,ω)= 1

Lx

∑
q ′

x

�(qx,q
′
x,qpl sin(θ ),ω)

×W
(+)
h

(√
q2

pl sin2(θ )+q ′2
x ,ω

)
T (n)(q ′

x,θ,ω).

(56)

Transmission and reflection coefficients in the first-order Born
approximation read as following:

t
(1)
θ,ω = 1 − i

C(ω)

cos θ
�(qpl cos θ,qpl cos θ,qpl sin θ,ω) (57)

and

r
(1)
θ,ω = −i

C(ω)

cos θ
�(−qpl cos θ,qpl cos θ,qpl sin θ,ω). (58)

In general, these expressions do not respect the conservation
law (46), often leading to the unphysical result |t (1)

θ,ω| > 1.
For this reason, we prefer to extract the amplitude of the
transmission coefficient by using Eq. (46), with the reflection
coefficient being extracted from Eq. (58).

Following the same steps as in Eq. (53), we obtain a similar
convergence criterion:∣∣∣∣∣ 1

Lx

∑
qx

W
(+)
h

(√
q2

x + q2
pl sin2(θ ),ω

)

×�(qx,qpl cos(θ ),qpl sin(θ ),ω)

∣∣∣∣∣ � 1. (59)

VII. THE EIKONAL APPROXIMATION

In the geometry depicted in Fig. 1(b) it is possible to
introduce the simplest approximation of the full scattering
theory, i.e., the “eikonal approximation.” The latter allows the
calculation of the phase of the transmission coefficient. This
is the most important scattering observable in all situations in
which reflection is small (i.e., when |rθ,ω| � 1).

The eikonal approximation does not rely on the smallness
of the scattering kernel �(q,q ′,ω) but requires the plasmon
wavelength 2π/qpl to be much smaller than the length scale
over which the properties of the inhomogeneous electron liquid
vary appreciably.

We lay down the derivation of this approximation under
the two simplifying assumptions, which can be relaxed
if necessary: (i) δv(q,q ′,ω) ≡ 0 and (ii) χ̃nn(q,q ′,ω) =
q · q ′Dq−q ′/(Se2πω2), with Dq = 2πδ(qy)Dqx

. Physically,
(ii) derives from the assumption of a local conductivity
model σ (x) = iD(x)/(πω), with a Drude weight that changes
spatially only along the x̂ direction—see Fig. 1(b).

We start from Eq. (3) and use Eq. (4) and assumptions (i)
and (ii). Dividing by v(q,ω), we obtain

Vsc(qx,θ,ω)

v(q,ω)

= 1

πe2ω2

∫
dq ′

x

2π

(
qxq

′
x + q2

pl sin2 θ
)
Dqx−q ′

x
Vsc(q ′

x,θ,ω).

(60)

In real space, the previous equation becomes∫
dx ′v−1(x − x ′,qpl sin θ,ω)Vsc(x ′,θ,ω)

= 1

πe2ω2

{−∂x[D(x)∂xVsc(x,θ,ω)]

+ q2
pl sin2 θD(x)Vsc(x,θ,ω)

}
, (61)

where

v−1(x,qy,ω) ≡
∫

dqx

2π

eiqxx

v(q,ω)
(62)
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with q =
√

q2
x + q2

y . We now introduce in Eq. (61) the eikonal ansatz:

Vsc(x,θ,ω) = exp[iqpl cos θS(x)]. (63)

Our target is to derive an equation for the quantity S(x). We find∫
dx ′v−1(x − x ′,qpl sin θ,ω)e−iqpl cos θ[S(x)−S(x ′)] = 1

πe2ω2

{
q2

pl sin2 θD(x) − e−iqpl cos θS(x)∂x[D(x)∂xe
iqpl cos θS(x)]

}
. (64)

No approximation has been yet made in the derivation of Eq. (64).
When qpl is large enough, the exponential in the integrand on the left-hand side of Eq. (64) oscillates rapidly. In this case, only

a small range of values of x ′ (those for which qpl|x − x ′| � 1) contributes to the integral and we can approximate S(x ′) − S(x)
with [dS(x)/dx](x ′ − x). The left-hand side of Eq. (64) can therefore be estimated as

�[v(qpl

√
cos2 θS ′(x) + sin2 θ,ω)]−1, (65)

where S ′(x) ≡ dS(x)/dx. The right-hand side of (64) is instead approximated with its leading order in the limit qpl → ∞,
reducing to

�q2
plD(x){sin2 θ + cos2 θ [S ′(x)]2}. (66)

With these approximations, Eq. (64) becomes

qpl

√
cos2 θ [S ′(x)]2 + sin2 θ = qpl(x), (67)

where the local plasmon wave vector [26,27] qpl(x) is defined as the solution of

q2
pl(x)v(qpl(x),ω)D(x)

πe2ω2
= 1. (68)

The corresponding solution for the potential is, up to a multiplicative constant,

Vsc(x,θ,ω) ∝ exp

[
i

∫ x

0
dx ′

√
q2

pl(x
′) − qpl sin2 θ

]
. (69)

The phase of the transmission coefficient tθ,ω is found by looking at the difference between the solution (69) and the unperturbed
wave, i.e., exp(iqpl cos θ ):

arg(tθ,ω) =
∫ ∞

−∞
dx ′[√q2

pl(x
′) − qpl sin2 θ − qpl cos θ

]
. (70)

VIII. THE METHOD OF PARTIAL WAVES

In this section we introduce a decomposition of the scattering kernel and transition function in their angular components. This
can be useful to treat problems with rotationally invariant scatterers, or problems in which only a few angular components of the
scattering amplitude matter.

We Fourier-decompose the incoming wave, the screened potential, the scattering kernel, and the transition function with
respect to the polar angles of the relevant wave vectors:

V (0)
m (q,ω) =

∫ π

−π

dθq

2π
e−imθq V (0)(q,ω), (71)

Vsc,m(q,ω) =
∫ π

−π

dθq

2π
e−imθq Vsc(q,ω), (72)

�mm′ (q,q ′,ω) =
∫ π

−π

dθq

2π

∫ π

−π

dθq ′

2π
e−imθq+im′θq′ �(q,q ′,ω), (73)

and

Tmm′(q,ω) =
∫ π

−π

dθq

2π

∫ π

−π

dθ

2π
e−imθq+im′θT (q,θ,ω). (74)

With these definitions, Eq. (20) can be written as

Vsc,m(q,ω) = V (0)
m (q,ω) + W

(+)
h (q,ω)

∞∑
m′=−∞

∫ ∞

0

dq ′

2π
q ′�mm′ (q,q ′,ω)Vsc,m′ (q ′,ω), (75)
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while Eq. (30) becomes

Tmm′ (q,ω) = �mm′(q,qpl,ω) +
∞∑

n=−∞

∫ ∞

0

dq ′

2π
q ′�mn(q,q ′,ω)W (+)

h (q ′,ω)Tnm′ (q ′,ω). (76)

In Sec. IX we present the results of a numerical solution this equation in a concrete situation.

Once Eq. (76) is solved, the scattering amplitude can be
easily calculated by using

T (q,θ,ω) =
∞∑

m=−∞

∞∑
m′=−∞

eimθq−im′θTmm′(q,ω). (77)

Even in this geometry, the presence of a localized plasmon
resonance manifests as a pole of the analytical continuation of
Tmm′ (q,θ,ω) to the upper half of the complex plane, at a purely
imaginary value of q.

For systems with rotational invariance, only the diagonal
components of �mm′ and Tmm′ are nonzero. This greatly
simplifies the solution of Eq. (76). In this case, the scattering
amplitude depends only on the angle between the incoming
and scattered waves and can be written as

f (θ,ω) ≡ f (θ,0,ω)

= −ei π
4

√
qplC(ω)√

2π

+∞∑
m=−∞

eimθTm(qpl,ω), (78)

where Tm(q,ω) ≡ Tmm(q,ω). Using Eq. (78) and the optical
theorem (44) we obtain

∞∑
m=−∞

|qplC(ω)Tm(qpl,ω)|2
2

+ Im[qplC(ω)Tm(qpl,ω)] = 0.

(79)

Since the quantities Tm(qpl,ω) for different values of m are
independent from each other, every term of the sum in Eq. (79)
must vanish. This restricts the region of the complex plane
allowed for the values of qplC(ω)Tm(qpl,ω) to a circle of radius
1 centered in −i. This region can be parametrized by a single
real number −π/2 � δm,ω � π/2, called phase shift, in the
following way:

qplC(ω)Tm(qpl,ω) = −2 sin(δm,ω)eiδm,ω . (80)

We can therefore express the scattering amplitude and the total
cross section in terms of the phase shifts in a compact way:

f (θ,ω) = 2eiπ/4√
2πqpl

∞∑
m=−∞

sin(δm,ω)eiδm,ω+imθ (81)

and

�(ω) ≡
∫

dθ |f (θ,ω)|2 = 4

qpl

∞∑
m=−∞

sin2(δm,ω). (82)

IX. EXPLICIT EXAMPLES

In this section we illustrate the power of our Lippmann-
Schwinger theory by solving two concrete problems, one for
each of the geometries displayed in Fig. 1.

We consider the scattering of plasmons in a 2D parabolic-
band electron gas subject to an external scalar perturbation
generated by (a) a charged pointlike impurity with charge
Ze,Z being an integer number, positioned at (x,y,z) =
(0,0,d) and (b) a line of charged impurities with charge density
per unit length λ, positioned at x = 0 and z = d. Here, z = 0
is the position of the 2D electron gas, which, in the absence
of the impurities, has a uniform density n̄. For the sake of
definiteness, we take ε̄ = 12 and m = 0.067me, where me is
the electron mass in vacuum. These material parameters refer
to a 2D parabolic-band electron gas in a GaAs quantum well.

The electric potential generated by the external charges
perturbs the uniform ground-state density inducing a nontrivial
density profile n(r) = n̄ + δn(r), which depends only on
r = |r| in geometry (a) and only on x in geometry (b).
These density profiles are shown in Figs. 2(a) and 2(b).
Details on how n(r) is actually calculated are reported
below.

As explained in Sec. III, we first need to calculate the
homogeneous part χ̃h(q,ω) of the density-density response
function of the system in the absence of the perturbations, i.e.,
for Z = 0 in geometry (a) and for λ = 0 in geometry (b). To
this end, we use Eqs. (A11) and (A12) with q ′ = q, retaining
terms O(ω−4) (i.e., expanding up to � = 3). The first moment
is given by

M (1)(q,q) = n̄

m
q2, (83)

the second moment M (2)(q,q) is identically zero, while the
third moment reads as following:

M (3)(q,q) = 3n̄ε0

m2
q4 + n̄h̄2

4m3
q6, (84)

where ε0 = EF/2 is the kinetic energy per particle of the
noninteracting 2D electron system [3]. Here, EF = πn̄h̄2/m

is the Fermi energy. Using these three results we find that
χ̃h(q,ω) can be expressed as in Eq. (7) with D = πe2n̄/m and

G(q,ω) = 1 + 3

4

v2
Fq

2

ω2
+ 1

4

h̄2q4

m2ω2
, (85)

where vF = h̄kF/m is the Fermi velocity and kF = √
2πn̄ is

the Fermi wave number.
For the sake of simplicity, in Eq. (9) we neglect the

frequency dependence of ε̄(ω), by taking ε̄(ω) → ε̄, and also
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FIG. 2. (a) Spatial dependence n(r) of the density profile induced
by a pointlike charged impurity located above a 2D parabolic-band
electron gas, at (x,y) = (0,0) and z = d = 2/kF. These results have
been obtained for a Wigner-Seitz density parameter [3] rs = 0.5. (It
is only in this weak-coupling limit that the application of RPA is
rigorously justified [3].) Different curves refer to different values
of the impurity charge Ze. (b) Same as in panel (a) but for a line
of charged impurities located at x = 0 and z = d = 2/kF. Different
curves refer to different values of the dimensionless parameter �

introduced in Eq. (108). (c) RPA dispersion relation of plasmons in a
uniform 2D parabolic-band electron system (evaluated at rs = 0.5).
The blue dashed line is the result of the local theory, obtained by
setting G(q,ω) = 1, while the green solid line is the result of our
nonlocal theory. The gray-shaded area represents the electron-hole
continuum, where plasmons suffer Landau damping [3].

finite-size effects, by setting F(q,ω) ≡ 1. Using Eq. (25) we
find

C(ω) = 2πe2

ε̄

1 + 3
4

v2
Fq2

pl

ω2 + 1
4

h̄2q4
pl

m2ω2

1 + 9
4

v2
Fq2

pl

ω2 + 5
4

h̄2q4
pl

m2ω2

, (86)

while using Eq. (27) we obtain the nonlocal correction to the
effective interaction

W(q,ω) = qpl − q

q

E2
Fq

2
pl

h̄2ω2k2
F

×
3
(

q

qpl
+ 2

) + q2
pl

k2
F

(
q3

q3
pl

+ 2q2

q2
pl

+ 3q

qpl
+ 4

)
(
1 − q

qpl

) + 3E2
Fq2

pl

h̄2ω2k2
F

(
1 − q3

q3
pl

) + E2
Fq4

pl

h̄2ω2k4
F

(
1 − q5

q5
pl

) .
(87)

Plasmon modes of the uniform 2D parabolic-band electron
system analyzed in this work are shown in Fig. 2(c). Results
of the local theory [i.e., obtained by neglecting M (3)(q,q ′)] are
simply G(q,ω) = 1, C(ω) = 2πe2/ε̄, and W(q,ω) = 0. We
now analyze separately the two geometries (a) and (b). In
case of geometry (a), we calculate the phase shifts δm,ω and
the scattering cross section �(ω) as functions of the plasmon
wave vector and impurity charge Z, limiting ourselves to the
local approximation. In the case of geometry (b), we calculate
transmission and reflection coefficients as functions of the
plasmon wave vector and impurity charge density λ using
the full nonlocal theory and compare these results with the
corresponding ones in the local approximation.

A. Scattering of a plasmon against a pointlike charged impurity

The potential generated by a charge eZ located at a distance
d from the plane of the 2D electron gas is

Uext(r) = − e2Z

ε̄
√

r2 + d2
. (88)

Its Fourier transform reads as following:

Uext(q) = −2πe2Ze−qd

ε̄q
. (89)

We can calculate the density-density response function of the
nonuniform system using the results in Appendix A. Retaining
only the first moment M (1)(q,q ′) we obtain

�(q,q ′,ω) = δχ̃ (q,q ′,ω) = q · q ′

mω2
δn(|q − q ′|). (90)

In this approximation the scattering kernel depends only on
the induced density perturbation. We now evaluate δn(q) by
using linear response theory [3] with respect to Uext(r) and the
RPA. The total potential is

Utot(q) = Uext(q)

ε(q)
, (91)

where the static dielectric constant of the uniform 2D
parabolic-band electron gas is [3,34]

ε(q) = 1 − 2πe2

ε̄q
χ0(q,ω = 0)

= 1 + qTF

q

⎡
⎣1 − �(q − 2kF)

√
q2 − 4k2

F

q

⎤
⎦. (92)

Here, χ0(q,ω = 0) is the static density-density response
function of a 2D parabolic-band electron gas [3,34] and
qTF = 2me2/(h̄2ε̄) is the Thomas-Fermi wave number [3,34].
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FIG. 3. (a) The numerically calculated phase shifts δm,ω for the
case of geometry (a) are plotted as functions of the plasmon wave
vector qpl for Z = 5 and 0 � m � 4. (b) The total cross section
�(ω) (calculated by including in the numerics partial waves with
|m| � 5) is plotted as a function of the plasmon wave vector qpl

for Z = 5 (red dots). The thick black line is the result of the
first-order Born approximation. The blue, green, and cyan-shaded
regions denote the contributions to the total cross section of partial
waves with m = 0, m = ±1, and m = ±2, respectively. Note that
the dominant contribution comes from the m = ±1 channel (p-wave
scattering).

Making use of well-known analytical expressions [3,34] for
χ0(q,ω = 0), we can write the density perturbation as

δn(q) = −N0

⎡
⎣1 − �(q − 2kF)

√
q2 − 4k2

F

q

⎤
⎦Utot(q), (93)

where N0 = m/(πh̄2) is the density of states at the Fermi
energy [3]. We now make a further approximation neglecting
all the terms that are proportional to �(|qx | − 2kF). Indeed,
since the plasmon wave vector qpl is a fraction of kF, we expect
that the contribution to the scattering problem coming from
wave vectors satisfying |qx | > 2kF is negligible. This amounts
to neglecting Friedel oscillations of the electron density. The
total density profile in real space n(r) = n̄ + δn(r) is shown
Fig. 2(a).

Using Eqs. (90)–(93) we can calculate the dimensionless
scattering kernel, obtaining the following expression:

qplC(ω)�(q,q ′,ω) = 2πe2Z

ε̄EF

q · q ′e−d|q−q ′|

|q − q ′| + qTF
. (94)
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π/2

π

−π/2
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FIG. 4. (a) Total scattering cross section �(ω) as a function of the
impurity charge Z, for a fixed value of the plasmon wave vector, i.e.,
qpld = 0.23 (red dots). The thick black line is the result of the first-
order Born approximation. The blue, green, and cyan-shaded regions
denote the contributions to the total cross section of partial waves with
m = 0, m = ±1, and m = ±2, respectively. (b) Angular dependence
of the numerically evaluated scattering cross section normalized by
Z2, |f (θ )|2/(Z2d), for qpld = 0.23 and different values of Z: Z = −5
(blue solid line), Z = −1 (green dashed line), Z = 1 (magenta dotted
line), and Z = 5 (red dash-dotted line). The black line is the result
of the first-order Born approximation. Again, only partial waves with
|m| � 5 were kept in all numerical calculations.

This quantity is related by Eq. (52) to the scattering amplitude
in the first-order Born approximation:

f (1)(θ,ω) = −ei π
4 q

3/2
pl√

2π

2πe2Z

ε̄EF

cos(θ )e−dqpl
√

2[1−cos(θ)]

qpl
√

2[1 − cos(θ )] + qTF
.

(95)

This is the most important analytical result of this section. Note
the presence of the overall factor cos (θ ), which is responsible
for the dominance of p-wave (i.e., m = ±1) scattering—see
Fig. 3(b)—and for the suppression of scattering in the direction
perpendicular to the incident one—see Fig. 4(b).

Since the problem at hand is rotationally symmetric, we
can decompose Eq. (30) for the transition function into
its cylindrical components, as described in Sec. VIII. This
procedure requires the knowledge of the angular components
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of the scattering kernel defined in Eq. (73):

qplC(ω)�mm(q,q ′,ω) = 2πe2Z

ε̄EF
qq ′

∫ π

−π

dθ

2π
e−imθ cos(θ )e−d

√
q2+q ′2−2qq ′ cos(θ)√

q2 + q ′2 − 2qq ′ cos(θ ) + qTF

. (96)

This quantity needs to be evaluated numerically for each m.

B. Scattering of a plasmon against a 1D line of charged impurities

The external potential generated by a line of charges can be calculated via the Gauss theorem and reads

Uext(x) = eλ

ε̄
ln

(
1 + x2

d2

)
. (97)

Its Fourier transform is

Uext(qx) = −2πeλe−d|qx |

ε̄|qx | . (98)

We are clearly in the case of Fig. 1(b), with translational invariance along the ŷ direction.
We are now in the position to calculate the scattering kernel. Using Eq. (14) and the results (A24), (A30), and (A32) we find

�(qx,q
′
x,qy,ω) =

(
qxq

′
x + q2

y

)
mω2

δn(qx − q ′
x) + 3

(
qxq

′
x + q2

y

)
m2ω4

[
qxq

′
xδTxx(qx − q ′

x) + q2
y δTyy(qx − q ′

x)
]

+ h̄2

m3ω4

(
qxq

′
x + q2

y

)[3

4
qxq

′
x(qx − q ′

x)2 + 1

4

(
qxq

′
x + q2

y

)2
]
δn(qx − q ′

x) + 1

mω4
qxq

′
x

〈
∂xxUtotnx̂(qx−q ′

x )
〉
. (99)

Here δn(qx) is the variation of the electron density with respect to its equilibrium value n̄, while δTij (qx) represents the variations
of the stress-tensor components with respect to their the equilibrium values.

To get an explicit analytical expression for the scattering kernel, we evaluate the expectation values in Eq. (99) by using linear
response theory [3] with respect to Uext(x) and the RPA. We follow the same steps as in the previous section. We start again by
calculating the Fourier transform of the total potential Utot(x):

Utot(qx) = Uext(qx)

ε(|qx |) . (100)

The density perturbation reads as following:

δn(qx) = −N0

⎡
⎣1 − �(|qx | − 2kF)

√
q2

x − 4k2
F

|qx |

⎤
⎦Utot(qx).

(101)

The resulting inverse Fourier transform of the density profile n(x) = n̄ + δn(x) is plotted as a function of x in Fig. 2(b).
The expectation value of the second derivative of the potential is, to linear order in Uext,〈

∂xxUtot(x)nx̂qx

〉 = −q2
x n̄Utot(qx). (102)

The components of the stress tensor can be evaluated using the density-stress tensor response function calculated in Appendix F.
We find

δTxx(qx) = −N0EFfx(|qx |)Utot(qx) (103)

and

δTyy(qx) = −N0EFfy(|qx |)Utot(qx). (104)

Here,

fx(q) = 1 + q2

2k2
F

− �(q − 2kF)
q

2k2
F

√
q2 − 4k2

F (105)

and

fy(q) = 1 − q2

6k2
F

− �(q − 2kF)
2
√

q2 − 4k2
F

3q

(
1 − q2

4k2
F

)
. (106)
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We neglect again all the terms in the expectation values that are proportional to �(|qx | − 2kF). In summary, our final result
for the dimensionless scattering kernel is

C(ω)�(qx,q
′
x,qy,ω) = �e−d|qx−q ′

x |
(
qxq

′
x + q2

pl sin2 θ
)

qpl(|qx − q ′
x | + qTF)

K(qx,q
′
x,qy,ω), (107)

where

� = 2πeλ

ε̄EF
(108)

is the dimensionless “impurity” concentration (for � > 0 the external potential is attractive for the electron system, while for
� < 0 it is repulsive) and K(qx,q

′
x,qy,ω) is a function that takes into account nonlocal effects:

K(qx,q
′
x,qy,ω) =

1 + 2E2
F

h̄2ω2k2
F

[
3
(
qxq

′
x + q2

y

) + qxq
′
x (qx−q ′

x )2

qxq ′
x+q2

y

] + E2
F

h̄2ω2k4
F

[(
6qxq

′
x − q2

y

)
(qx − q ′

x)2 + (
qxq

′
x + q2

y

)2]
1 + 9E2

Fq2
pl

h̄2ω2k2
F

+ 5E2
Fq4

pl

h̄2ω2k4
F

. (109)

We can now make use of Eqs. (57) and (58) to evaluate the
transmission and reflection coefficients in the first-order Born
approximation. We find

t
(1)
θ,ω = 1 − i

�qpl

qTF cos θ
K(qpl cos θ,qpl cos θ,qpl sin θ,ω)

(110)
and

r
(1)
θ,ω = i

�qpl cos(2θ )e−2dqpl cos θ

cos θ (2qpl cos θ + qTF)

×K(−qpl cos θ,qpl cos θ,qpl sin θ,ω). (111)

C. Numerical results

In the case of geometry (a), we solved numerically Eq. (76)
by using a first-order finite-element method for partial waves
with 0 � m � 5 and the local results for C(ω) and W(q,ω),
together with Eq. (94). From the resulting angular components
of the transition matrix we extracted the corresponding phase
shifts δm,ω by inverting Eq. (80). (Results for negative values
of m are readily obtained by using δm,ω = δ−m,ω.) Numerical
results for the phase shifts are shown in Fig. 3(a). We then used
the phase shifts to calculate the scattering amplitude f (θ,ω)
and the total cross section �(ω) according to Eqs. (81) and
(82). Numerical results for the cross section are shown in
Figs. 3(b) and 4(a) and compared to the results of the first-order
Born approximation. Figure 4 shows the angular distribution
of the scattered power (proportional to the square modulus of
the scattering amplitude) for a fixed value of the plasmon wave
vector qpl and different values of Z. We note that most of the
power is scattered in the forward direction inside an angle of
≈ ±45◦ from the incidence direction. A smaller fraction of
the power is backscattered, while “lateral” scattering is almost
negligible.

For the case of geometry (b), we solved numerically
Eq. (38) by using a first-order finite-element method, making
use of the expressions in Eqs. (86), (87), (107), and (109). All
numerical results for rθ,ω and tθ,ω have been obtained by setting
θ = 0 and evaluating ω at the plasmon dispersion. This implies
that ω changes with qpl, as dictated by the RPA equation (17). A
summary of our main results for the transmission and reflection
coefficients as functions of the plasmon wave vector qpl is

presented in Figs. 5 and 6. Full numerical results (denoted by
symbols) are compared with the results of the first-order Born
and eikonal approximations. We clearly see that the first-order
Born approximation works well for the amplitude of reflection
and transmission coefficients (Fig. 5) in the weak-coupling
limit |�| � 1. The same approximation works well in the
same limit for the phase of the transmission coefficient, as

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
qpld

0.00

0.05

0.10

0.15

0.20

0.25

|r θ
,ω
|

(a)

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
qpld
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0.985
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0.995

1.000

|t θ
,ω
|

FIG. 5. Numerically evaluated amplitudes of the reflection (a) and
transmission (b) coefficients, as functions of the plasmon wave vector
qpl, for different values and signs of the dimensionless parameter �:
� = −2.5 (blue circles), � = −1 (green squares), � = 1 (magenta
upward triangles), and � = 2.5 (red downward triangles). These
results include nonlocal effects. The solid lines with the same color
coding are the results of the first-order Born approximation. In
this approximation the results are even in �; therefore only curves
corresponding to positive values of � are shown.
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FIG. 6. Numerically evaluated phases of the reflection (a) and
transmission (b) coefficients, as functions of the dimensionless
product qpld , for different values and signs of the dimensionless
parameter �: � = −2.5 (blue circles), � = −1 (green squares),
� = 1 (magenta upward triangles), and � = 2.5 (red downward
triangles). The black solid lines in panel (a) represent the result of the
first-order Born approximation. The solid lines in panel (b) represent
the result of the first-order Born approximation, while the dashed
lines are the results of the eikonal approximation.

shown in Fig. 6(b). From the same figure, it is also clear that
the eikonal approximation performs better than the first-order
Born approximation in predicting arg(t), especially at strong
coupling.

In Fig. 7 we illustrate the dependence of |r|, arg(r), and
arg(t) on the coupling constant �. Full numerical results
(symbols) are compared with the results of the first-order Born
and eikonal approximations. The perturbative validity of the
former is again clear. The validity of the eikonal approximation
for arg(t) and its nonperturbative nature are also clear.

Finally, in Fig. 8 we compare our full numerical results
with the results of the local theory, which is obtained by set-
ting C(ω) ≡ 2πe2/ε̄,W(q,ω) ≡ 0, and K(qx,q

′
x,qy,ω) ≡ 1

in the general equations. As expected, the local theory fails
spectacularly in predicting |r| for large values of the product
qpld.

X. SUMMARY AND CONCLUSIONS

In summary, we have presented a general theoretical frame-
work to calculate the scattering properties of 2D plasmons
against perturbations coupling to density, current, and real-spin
operators. The theory discussed in this article differs from
other theories based on Maxwell equations combined with
local/phenomenological approximations for the spatial depen-
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FIG. 7. Coupling-constant dependence of |r|, arg(r), and arg(t).
(a) The quantity |r| as a function of �, for qpld = 0.23. For this value
of qpld , the reflection coefficient displays a maximum. Red circles are
numerical data (including nonlocal corrections) while the solid black
line is the result of the first-order Born approximation. (b) Same as
in panel (a) but for the phase of the reflection coefficient. (c) Same as
in panel (b) for arg(t). In this panel, the blue dashed line is the result
of the eikonal approximation.

dence of the conductivity: (i) it is essentially semianalytical,
requires little numerical effort, and takes into account nonlocal
effects; (ii) instead of assuming a phenomenological model
for the spatial dependence of the conductivity profile, it relies
on microscopic calculations of the density-density response
function for a given Hamiltonian in the presence of external
fields; iii) finally, it treats on equal footing a wide variety of
perturbations.

We have discussed in great detail the case of parabolic-band
2D electron systems, such as those that can be found in high-
mobility heterostructures based on GaAs. Due to subtleties
of the massless Dirac fermion Hamiltonian (i.e., presence of
interband particle-hole excitations of arbitrarily large energy),
the case of plasmon scattering in a doped graphene sheet has
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FIG. 8. Numerical results of the full nonlocal theory (symbols)
are compared with the corresponding results of the local theory (thin
lines). Color coding is identical to that used in Fig. 5. The black line in
panel (a) is the result of the first-order Born approximation (which is
“universal,” provided that |rθ,ω| is rescaled by |�|). As expected, the
local theory is a good approximation in the long-wavelength qpld → 0
limit.

been discussed only for external perturbations that couple to
the density operator and is presented in Appendix B.

Our theory starts from a Lippmann-Schwinger equation
for the screened potential Vsc(q,ω) in an inhomogeneous 2D
electron system—see Eq. (20). The key unknown quantity
in this equation is the scattering kernel, �(q,q ′,ω), which is
defined in terms of the density-density response function of
the inhomogeneous 2D electron system in Eq. (14). The latter
input is calculated analytically in the long-wavelength limit,
the key information being encoded in the so-called moments
M (1)(q,q ′),M (2)(q,q ′), and M (3)(q,q ′), which are explicitly
reported in Appendix A. For the reasons stated above, the
case of a doped graphene sheet is separately discussed in
Appendix B. Crucially, the density-density response function
is calculated transcending the usual local approximation.

In Sec. IX we have reported illustrative numerical results
for the scattering of 2D plasmons against a single pointlike
charged impurity and a 1D electrostatic barrier due to a line
of charges. The solutions of these two problems are mainly
used to highlight (i) the range of validity of the Born and
eikonal approximations (with respect to the exact numerical
solution of the Lippmann-Schwinger equation) and (ii) to
stress the importance of nonlocal effects. We emphasize, for
the sake of completeness, that the present theory has also been
very successfully used to explain experimental data related
to a plasmonic phase shifter realized by using encapsulated
graphene [24].

In the future, we plan to discuss examples in which a
dielectric perturbation causing a change δv(q,q ′,ω) in the
Coulomb interaction is present, to extend the graphene theory
of Appendix B to a larger variety of perturbations, and to deal
with the case of intense perturbations.
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APPENDIX A: NONINTERACTING DENSITY-DENSITY
RESPONSE FUNCTION OF AN INHOMOGENEOUS

ELECTRON LIQUID

The proper density-density response function of the in-
homogeneous 2D electron system under study is a crucial
input for the microscopic calculation of the scattering kernel
in Eq. (14).

In this Appendix we first consider a parabolic-band 2D
electron gas [3] subject to three different types of perturba-
tions that break translational and rotational invariance. We
calculate the proper density-density response function within
the aforementioned RPA [3]. Our results have the form of
a rigorous expansion in inverse powers of the frequency ω.
We calculate the leading and next-to-leading terms of this
expansion. Appendix B below will be devoted to the case of
an inhomogeneous graphene sheet.

The proper density-density response function χ̃nn(q,q ′,ω)
is defined in Eq. (1). In the RPA, this complicated function
is brutally replaced by the density-density response function
χH(q,q ′,ω) of a formally noninteracting system usually termed
the “Hartree system” [3]. In the case of a 2D parabolic-band
electron gas, the energy eigenstates of the Hartree system are
determined by the Hamiltonian

H = 1

2m

[
p + e

c
A(r)

]2

+ Utot(r) + Z(r) · σ . (A1)

Here m is the electron band mass, −e the electron charge, c

the speed of light,

Utot(r) = Uext(r) + UH(r) (A2)

is the sum of an external scalar potential Uext(r) and the self-
consistent Hartree potential [3] UH(r), A(r) is an external
vector potential, and, finally, Z(r) is an external Zeeman field
that couples to spin degrees of freedom. In Eq. (A1), σ is a
vector of spin-1/2 Pauli matrices, σα with α = x,y,z. Without
loss of generality, we work in the Coulomb gauge for the
vector potential, i.e., ∇ · A(r) = 0. In 2D, the electron orbital
motion is influenced only by the perpendicular component of
the magnetic field Bz(r), while the Zeeman field Z(r) couples
to all three components of the electron’s spin.
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For homogeneous electron systems UH is canceled exactly
by the background potential and the Hartree system reduces
to the corresponding homogeneous noninteracting electron
system [3].

Following Ref. [3], we express χH(q,q ′,ω) in terms of a
density-density correlator at different times:

χH(q,q ′,ω) = −i

Sh̄
lim

η→0+

∫ ∞

0
dτ ei(ω+iη)τ 〈[nq(τ ),n−q ′]〉,

(A3)

where the density operator at time τ is defined via the
usual Heisenberg time evolution operator, i.e., nq(τ ) =
exp(iHτ/h̄)nq exp(−iHτ/h̄), and nq is given by

nq = e−iq·r . (A4)

In Eq. (A3), the average must be taken over the ground state
of the Hamiltonian (A1) and [. . . , . . . ] denotes a commutator.
Now, the key point is that this average can be expanded [3] in
a Taylor series for small values of τ :

〈[nq(τ ),n−q ′]〉 =
∞∑

�=0

τ �

�!

〈[
n(�)

q ,n−q ′
]〉
, (A5)

where, for any operator O,

O(0) ≡ O, (A6)

and for integer values of � � 1 the �th time derivative of the
operator O is defined by

O(�) ≡ i

h̄
[H,O(�−1)]. (A7)

In the following, we make use of three useful identities
involving time derivatives of operators. For any � � 1 the
expectation value of the �th time derivative of an operator,
calculated over the ground state (or any other equilibrium
state), vanishes:

〈O(�)〉 = i

h̄
〈HO(�−1) − O(�−1)H〉 = 0. (A8)

Products of operators are differentiated with respect to time
according to the Leibniz rule:

(AB)(1) = i

h̄
(HAB − AHB + AHB − ABH)

= A(1)B(0) + A(0)B(1). (A9)

Combining Eqs. (A8) and (A9), we obtain the “integration by
parts” rule:

〈A(n+1)B(m)〉 = −〈A(n)B(m+1)〉. (A10)

After integration over time τ , Eq. (A5) translates into an
expansion of χH(q,q ′,ω) in inverse powers of ω:

χH(q,q ′,ω) =
∞∑

�=0

M (�)(q,q ′)
ω�+1

, (A11)

where

M (�)(q,q ′) ≡ i�

h̄S

〈[
n(�)

q ,n−q ′
]〉
. (A12)

The following reciprocity relations hold for the coefficients
M (�)(q,q ′):

M (2�)(q,q ′) = −[M (2�)(−q,−q ′)]∗, (A13)

M (2�+1)(q,q ′) = [M (2�+1)(−q,−q ′)]∗, (A14)

and

M (�)(q,q ′) = [M (�)(−q ′,−q)]t . (A15)

In Eq. (A15), [. . . ]t represents time inversion.
We now proceed to calculate the coefficients M (�)(q,q ′) of

the expansion in Eq. (A11) up to � = 3 for the system described
by the Hamiltonian (A1).

For later convenience, we introduce the kinetic momentum
operator � with Cartesian components

�α ≡ pα + e

c
Aα(r). (A16)

The kinetic momentum operator has the same commutation
relation with the position operator as the canonical momentum
operator,

[rα,�β] = ih̄δαβ. (A17)

However, different Cartesian components of � do not com-
mute with each other [3]:

[�α,�β] = − ieh̄

c
εαβ∂αAβ(r) = − ieh̄

c
Bz(r), (A18)

where Bz(r) is the magnetic field in the ẑ direction at position r
in space. A sum over repeated indices is intended in Eq. (A18)
and below.

Introducing the kinetic momentum operator, we can rewrite
the Hamiltonian (A1) in the following manner:

H = 1

2m
�α�α + Utot(r) + Zα(r) ⊗ σα. (A19)

1. Calculation of M (0)

As we have seen above in Eq. (A6), the zeroth-order
derivative of an operator coincides with the operator itself:
n

(0)
q = nq . Density operators commute among each other

because they are functions of the position operator only,

[nq,n−q ′] = 0. (A20)

We therefore conclude that M (0)(q,q ′) vanishes identically.

2. Calculation of M (1)

The first nontrivial term of the expansion (A11) is deter-
mined by M (1). The time derivative of the density operator can
be easily calculated:

n(1)
q = i

h̄
[H,nq] = i

2h̄m
[�α�α,nq] = −iqαJq,α. (A21)

In deriving the second equality we made use of the fact that the
scalar and Zeeman terms of the Hamiltonian (A19) commute
with the density operator. In deriving the third equality, we
made use of the following commutator,

[�α,nq] = [pα,nq] = −h̄qαnq, (A22)
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and introduced the physical (i.e., gauge-invariant) current
operator in Fourier space:

Jq,α = 1

2m
{�α,nq}, (A23)

where {. . . , . . . } denotes an anticommutator. Note that
Eq. (A21) is the operator version of the continuity equation.

Using Eqs. (A22) and (A23) we calculate M (1)(q,q ′) finding

M (1)(q,q ′) = i

h̄S
〈[−iqαJq,α,n−q ′]〉 = qαq ′

α

mS
〈nq−q ′ 〉. (A24)

For q = q ′, Eq. (A11) for � = 1 and Eq. (A24) reduce to the
usual f-sum rule for homogeneous electron systems [1,3].

3. Calculation of M (2)

Using Eq. (A21), we immediately see that the second
derivative of the density operator is proportional to the first
derivative of the current operator,

n(2)
q = −iqαJ (1)

q,α. (A25)

The latter can be calculated by repeated use of the commutation
relations (A17), (A18), (A20), and (A22) and reads as
following:

J (1)
q,α = − iqβ

m

(
Tq,αβ − h̄2qαqβ

4m
nq

)
+ 1

m
Fq,α

− 1

m
∂αUtotnq − 1

m
∂αZβSq,β . (A26)

In Eq. (A26) we introduced the stress tensor operator

Tq,αβ ≡ 1

4m
{{�α,�β},nq}, (A27)

the Lorentz force-density operator

Fq,α ≡ −eεαβ

4mc
{{�β,Bz(r)},nq}, (A28)

and the spin-density operator

Sq,α ≡ nqσ
α. (A29)

Taking the commutator in Eq. (A12) with the density
operator at wave vector −q ′ we obtain the final result

M (2)(q,q ′) = qαq ′
αqβ

2

mS
〈Jq−q ′,β〉

− εαβqαq ′
β

ie

m2cS
〈Bz(r)nq−q ′ 〉

= qαq ′
α(qβ + q ′

β)

mS
〈Jq−q ′,β〉

− εαβqαq ′
β

ie

m2cS
〈Bz(r)nq−q ′ 〉. (A30)

In the second step we used the continuity equations (A21) and
the identity (A8) (the aim of this manipulation was to put the
result in a more symmetric form).

4. Calculation of M (3)

The calculation of the third moment, M (3)(q,q ′), is quite
cumbersome. It can be simplified by using an “integration by
parts” described in Eq. (A10), together with Eqs. (A25) and
(A21):

M (3)(q,q ′) = − i

h̄S

〈[
n(3)

q ,n−q ′
]〉 = i

h̄S

〈[
n(2)

q ,n
(1)
−q ′

]〉 = i

h̄S
qαq ′

β

〈[
J (1)

q,α,J−q ′,β
]〉
. (A31)

We then evaluate the commutator [J (1)
q,α,J−q ′,β] by using Eqs. (A23)–(A26) and the commutation rules (A17), (A18), (A20), and

(A22). We find

M (3)(q,q ′) = qγ q ′
γ qαq ′

β

3

m2S
〈Tq−q ′,αβ〉 + qαq ′

α

h̄2

m3S

{
3

4
[qβ(qβ − q ′

β )][q ′
β(qβ − q ′

β)] + 1

4
(qβq ′

β)2

}
〈nq−q ′ 〉

+ qαq ′
β

1

m2S
〈∂α∂βUtot(r)nq−q ′ 〉 + qαq ′

β

1

m2S
〈∂α∂βZγ (r)Sq−q ′,γ 〉 + qαq ′

α

e2

m3c2S

〈
B2

z (r)nq−q ′
〉

+ 3

2

(
qβq ′

βqα − q2q ′
α

) i

m2S
〈Fq−q ′,α〉 + qαq ′

γ εαβ

e

m2cS
〈Lq−q ′,βγ 〉 + qαq ′

βεαβ

e

m2cS
〈Lq−q ′,γ γ 〉. (A32)

Because of the presence of a nonuniform magnetic field, Eq. (A32) contains two terms that involve the tensor

Lq,αβ = 1

4m
{{�α,∂βBz(r)},nq}. (A33)

APPENDIX B: ON INHOMOGENEOUS 2D ELECTRON
SYSTEMS IN GRAPHENE

The technique used in the previous Appendix to calculate
the density-density response function of an inhomogeneous
parabolic-band electron liquid cannot be applied directly
to graphene. The main reason is that the high-frequency
expansion (A11) is invalidated by the presence of particle-hole

excitations of arbitrarily large energy, which are associated
with interband transitions [29,32].

In this case, instead of calculating microscopically the
density-density response function of an inhomogeneous sys-
tem of 2D massless Dirac fermions [33], we choose a
more humble approach. We find a semiphenomenological
expression for χH(q,q ′,ω) which is able to capture, even if in an
approximate way, nonlocal effects. The functional dependence
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of χH(q,q ′,ω) on wave vectors and frequency is chosen is
such a way that it respects the following requirements: (i) it is
equivalent to a local spatially dependent conductivity [20] at
second order in the wave vectors; (ii) it reduces to

χH(q,q ′,ω) = δq,q ′

[
EFq

2

πh̄2ω2
− E−1

F q2

4π
+ 3v2

FEFq
4

4πh̄2ω4

]
(B1)

in the homogeneous limit; (iii) it contains terms O(q4) (i.e.,
it takes into account nonlocal effects); (iv) it depends only on
the spatially dependent ground-state electron density n(r).

We propose the following simple expression that meets all
the requirements (i)–(iv):

χH(q,q ′,ω) = EF(q − q ′)q · q ′

πSh̄2ω2
− E−1

F (q − q ′)q · q ′

4πS

+ 3v2
FEF(q − q ′)(q · q ′)2

4πSh̄2ω4
. (B2)

Here EF(q) is defined by

EF(q) ≡
∫

d re−iq·r h̄vFsgn[n(r)]
√

π |n(r)|, (B3)

where vF is the graphene Fermi velocity [33] and n(r) the local
carrier density. Similarly,

E−1
F (q) ≡

∫
d re−iq·r [h̄vFsgn[n(r)]

√
π |n(r)|]−1. (B4)

Equation (B2) has been successfully used in Ref. [24] to
calculate the the transmission coefficient in an experimental
geometry of the type sketched in Fig. 1(b).

APPENDIX C: EFFECTIVE INTERACTION

The effective interaction satisfies Eq. (22). Assuming that
W−1

h (q,ω) has only one simple zero at qpl, the most general
solution of this distributional equation is

Wh(q,ω) = P 1

W−1
h (q,ω)

+ Aδ(q − qpl). (C1)

Here P stands for Cauchy principal value, while the constant
A must be chosen to satisfy the required boundary conditions.
To see what is the correct choice of A to have an outgoing
wave, we look at the asymptotic behavior of Wh in real space
for large r .

To begin with, we can single out the divergent part of the
interaction by rewriting Eq. (C1) as

Wh(q,ω) = C(ω)

[
P 1

qpl − q
+ Bδ(qpl − q) + 1

q
+ W(q,ω)

qpl

]
.

(C2)

Since the last term in Eq. (C2) is regular at q = qpl, it does not
affect the asymptotic behavior of the effective interaction at
large distances, i.e., for rqpl(ω) � 1. We can therefore write

Wh
(
r � q−1

pl ,ω
)

� C(ω)
∫

dq
(2π )2

eiq·r
[
P 1

qpl − q
+ Bδ(qpl − q) + 1

q

]

= C(ω)qpl

{
1

2
Y0(qplr) + B

2π
J0(qplr)

+ 1

4
[H0(qplr) − Y0(qplr)]

}
, (C3)

where J0(x) and Y0(x) are the first and second kind Bessel
functions and H0(x) is the Struve function. The term in square
bracket goes to zero like r−1 for large r , while J0(x) and Y0(x)
are oscillating functions whose amplitudes decay like r−1/2

for large r .
The correct combination for an outgoing (incoming)

cylindrical wave is obtained by setting B = ∓πi, a choice
which yields the first (second) Hankel function H(1-2)

0 (x) =
J0(x) ± iY0(x). With this choice of B the asymptotic behavior
of Wh is

W
(±)
h

(
r � q−1

pl ,ω
) � ∓i

2
qplC(ω)H(1-2)

0 (qplr)

� ∓i√
2πr

√
qplC(ω)e±i(qplr− π

4 ), (C4)

where we dropped all terms decaying faster than r−1/2 and
made use of the asymptotic behavior of Hankel’s functions.

If we neglect the correction W , the effective interaction in
real space is

W
(±)
h (r,ω)

= C(ω)qpl

{
∓ i

2
H(1-2)

0 (qplr) + 1

4
[H0(qplr) − Y0(qplr)]

}
.

(C5)

APPENDIX D: REAL-SPACE FORMULATION
OF THE SCATTERING EQUATIONS

1. Geometry in Fig. 1(a)

To make a connection between the scattering amplitude
f (θr ,θ,ω) and the solutions of the scattering equation in
momentum space it is useful to rewrite the latter equation
in real space. The real-space version of Eq. (15) reads as
following:

∫
d2r ′W−1

h (|r − r ′|,ω)Vsc(r ′,ω) = 1

S

∫
d2r ′�(r,r ′,ω)Vsc(r ′,ω), (D1)

while Eq. (20) becomes

Vsc(r,ω) = V (0)(r,ω) +
∫

d r ′W (+)
h (|r − r ′|,ω)

1

S

∫
d r ′′�(r ′,r ′′,ω)Vsc(r ′′,ω). (D2)
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Since the inhomogeneity is localized in a finite region of space of radius a,�(r,r ′,ω) vanishes if r or r ′ is bigger than a. For
r � a,q−1

pl we can also approximate |r − r ′| � r − r · r ′/r . Setting V (0)(r,ω) = exp(iqpl · r) we obtain

Vsc(r,ω) � eiqpl·r +
∫

r ′<a

d2r ′W (+)
h

(
r − r̂ · r ′,ω

) ∫
r ′′<a

d2r ′′ 1

S
�(r ′,r ′′,ω)Vsc(r ′′,ω)

� eiqpl·r − C(ω)
∫

r ′<a

d2r ′ i
√

qpl√
2πr

ei[qpl(r−r̂·r ′)− π
4 ]
∫

r ′′<a

d2r ′′ 1

S
�(r ′,r ′′,ω)Vsc(r ′′,ω)

� eiqpl·r −
√

qple
i π

4

√
2πr

C(ω)eiqplr

∫
r ′<a

d2r ′e−iqpl r̂·r ′
∫

r ′′<a

d2r ′′ 1

S
�(r ′,r ′′,ω)Vsc(r ′′,ω)

� eiqpl·r −
√

qple
i π

4

√
2πr

C(ω)eiqplr

∫
r ′<a

d2r ′e−iqpl r̂·r ′
T (r ′,θ,ω)

� eiqpl·r −
√

qple
i π

4

√
2πr

C(ω)eiqplrT (qpl r̂,θ,ω). (D3)

In the second approximate equality we used the asymptotic expression in Eq. (C4). Comparing Eq. (18) in the main text with the
result of Eq. (D3), we finally obtain Eq. (31).

2. Geometry in Fig. 1(b)

The Lippmann-Schwinger equation for this geometry is

Vsc(x,θ,ω) = V (0)(x,θ,ω) +
∫

dx ′W (+)
h (x − x ′,qpl sin(θ ),ω)

1

Lx

∫
dx ′′�(x ′,x ′′,qpl sin(θ ),ω)Vsc(x ′′,θ,ω), (D4)

where

W
(±)
h (x,qy,ω) =

∫
dqx

2π
eiqxxW

(±)
h (q,ω), (D5)

with q defined as right after Eq. (62), and

W
(±)
h

(√
q2

pl sin2(θ ) + q2
x ,ω

) = C(ω)

cos(θ )

[
P 1

qpl cos(θ ) + qx

+ P 1

qpl cos(θ ) − qx

∓ iπδ(qpl cos(θ ) − qx) ∓ iπδ(qpl cos(θ ) + qx)
]

+C(ω)

⎡
⎣
√

q2
pl sin2(θ ) + q2

x − qpl

q2
pl cos2(θ ) − q2

x

+ 1√
q2

pl sin2(θ ) + q2
x

+
W

(√
q2

pl sin2(θ ) + q2
x ,ω

)
qpl

⎤
⎦. (D6)

The asymptotic behavior for |x| � (qpl cos θ )−1 is completely controlled by the divergent terms in the first line. Fourier-
transforming only this part, we obtain the asymptotic behavior:

W
(±)
h (x,qpl sin(θ ),ω) � ∓ iC(ω)

cos(θ )
e±iqpl cos(θ)|x|. (D7)

Using Eq. (D7) in Eq. (D4), we finally find

Vsc(x,θ,ω) �
{

eiqpl cos θx − iC(ω)
cos θ

eiqpl cos θx
∫

dx ′e−iqpl cos θx 1
Lx

∫
dx ′′�(x ′,x ′′,qpl sin θ,ω)Vsc(x ′′,θ,ω), x → +∞

eiqpl cos θx − iC(ω)
cos θ

e−iqpl cos θx
∫

dx ′e+iqpl cos θx 1
Lx

∫
dx ′′�(x ′,x ′′,qpl sin θ,ω)Vsc(x ′′,θ,ω), x → −∞

�
{

eiqpl cos θx
(
1 − iC(ω)

cos θ

)
T (qpl cos θ,θ,ω), x → +∞

eiqpl cos θx − iC(ω)
cos θ

T (−qpl cos θ,θ,ω)e−iqpl cos θx, x → −∞.
(D8)

Comparing this result with Eq. (19) in the main text, we obtain
the desired expressions for the transmission and reflection
coefficients listed in Eqs. (39) and (40).

APPENDIX E: GOING BEYOND THE RPA

The simplest way of transcending the RPA [3] (i.e., the time-
dependent Hartree approximation discussed in Appendix A)

consists of using time-dependent density-functional theory
(TDDFT) [3,35]. This theory is appealing since, as we proceed
to show, it requires very little modifications of our scattering
equations.

We define the Kohn-Sham response function [3]

χKS
nn (q,q ′,ω) ≡ 1

S

∑
α,β

(fα − fβ)〈α|nq |β〉〈β|n−q ′ |α〉
h̄ω + εα − εβ + iη

, (E1)

035433-19



TORRE, KATSNELSON, DIASPRO, PELLEGRINI, AND POLINI PHYSICAL REVIEW B 96, 035433 (2017)

where |α〉, εα are eigenstates and eigenvalues of the self-
consistent Kohn-Sham Hamiltonian [3]. The density pertur-
bation generated by an external field is given by [3,35]

n1(q,ω) =
∑

q ′
χKS

nn (q,q ′,ω)

⎧⎨
⎩Vext(q ′,ω) +

∑
q ′′

[v(q ′,q ′′,ω)

+ fxc,L(q ′,q ′′,ω)]n1(q ′′,ω)

⎫⎬
⎭. (E2)

The first term in curly brackets is the response of the
noninteracting Kohn-Sham electron system, while the sec-
ond and third terms stem from the time variation of the
Hartree and exchange-correlation potentials, respectively. The
quantity fxc,L(q ′,q ′′,ω) is the wave-vector- and frequency-
dependent (longitudinal) exchange-correlation kernel [3]. We
now introduce—cf. Eqs. (6) and (8)—the following decompo-
sitions:

χKS
nn (q,q ′,ω) = δq,q ′χ0(q,ω) + 1

S
δχKS

nn (q,q ′,ω), (E3)

and

fxc,L(q,q ′,ω) = δq,q ′fxc,h(q,ω) + 1

S
δfxc(q,q ′,ω). (E4)

In writing Eq. (E3) we used the fact that the homogeneous
part of the Kohn-Sham response function coincides with the
noninteracting response function χ0(q,ω) of the homogeneous
electron system in absence of perturbation.

Comparing Eq. (E2) with Eqs. (1) and (2), it is straight-
forward to show that the TDDFT version of our Lippmann-
Schwinger scattering theory can be written down with the
following replacements:

χ̃h(q,ω) → χ0(q,ω), (E5)

δχ̃ (q,q ′,ω) → δχKS
nn (q,q ′,ω), (E6)

εh(q,ω) → 1 − [v(q,ω) + fxc,h(q,ω)]χ0(q,ω), (E7)

�(q,q ′,ω) → �(q,q ′,ω) + �xc(q,q ′,ω), (E8)

where

�xc(q,q ′,ω) = fxc,h(q,ω)

v(q,ω)
δχKS

nn (q,q ′,ω)

+ δfxc(q,q ′,ω)

v(q,ω)
χ0(q ′,ω)

+ 1

S

∑
q ′′

δfxc(q,q ′′,ω)

v(q,ω)
δχKS

nn (q ′′,q ′,ω). (E9)

Explicit calculations of the scattering kernel �xc(q,q ′,ω) re-
quite explicit expressions for the exchange-correlation kernel
fxc,L(q,q ′,ω) of the inhomogeneous electron system. To this
aim, we refer the reader to Ref. [3] and references therein.

APPENDIX F: STATIC STRESS TENSOR RESPONSE
OF A TWO-DIMENSIONAL ELECTRON LIQUID

TO A SCALAR POTENTIAL

In this Appendix we calculate the stress tensor of a 2D
electron system subject to an external scalar potential.

We consider Eq. (A27) with A(r) = 0. The average value
of the stress-tensor operator is given, up to linear order in the
external field, by

〈Tq,αβ〉 = 〈Tq,αβ〉0 +
∑

q

χαβ(q)Uext(q), (F1)

where 〈. . . 〉0 indicates an average over the ground state of the
homogeneous electron liquid, and χαβ(q) is the static density-
stress tensor response function. The latter can be expressed
using the Kubo formula [3]:

χαβ(q) = − i

h̄S
lim

η→0+

∫ ∞

0
dτe−ηt 〈[Tq,αβ(τ ),n−q]〉0, (F2)

where Tq,αβ (τ ) is the stress tensor operator at time τ in
the Heisenberg representation—see Appendix A—and the
expectation value must be taken over the ground state of the
unperturbed interacting electron liquid.

In the RPA, we can replace the response function of the
interacting electron system with

χαβ(q) = χ
(0)
αβ (q)

1 − v(q,ω = 0)χ0(q,ω = 0)
, (F3)

where χ
(0)
αβ (q) is the static density-stress tensor re-

sponse function of the noninteracting electron system and
χ0(q,ω = 0) is the noninteracting static density-density re-
sponse function [3].

For a noninteracting 2D parabolic-band electron system,
the right-hand side of Eq. (F2) can be easily calculated. We
find

χ
(0)
αβ (q) = g

S

∑
k

fk − fk+q

εk − εk+q
〈k|Tq,αβ |k + q〉

= −2g

S

∑
k

fk

h̄2

2m
[q2 + 2k · q]

〈k|Tq,αβ |k + q〉, (F4)

where g = 2 is a spin degeneracy factor, fk = �(kF − k) is
the usual zero-temperature Fermi step, and εk = h̄2k2/(2m) is
the band energy.

TABLE I. Explicit expressions for the functions ψ (n,�)(z). Here
λ = sgn[Re(z∗√z2 − 1)], and the function sgn(x) evaluates to 0 in
x = 0.

n � ψ (n,�)(z)

0 0 z − λ
√

z2 − 1

2 0 2
3 z3 − λ(1+2z2)

3

√
z2 − 1

0 1 z2 − 1
2 − λz

√
z2 − 1

0 2 4
3 z3 − z + λ(1−4z2)

3

√
z2 − 1
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Making use of the following matrix element of the stress tensor between plane-wave states,

〈k|Tq,αβ |k + q〉 = EF(2k̄αk̄β + q̄αk̄β + k̄αq̄β + q̄αq̄β), (F5)

where q̄ = q/kF, k̄ = k/kF, and assuming, without loss of generality, that q lies in the x̂ direction, we get

χ
(0)
αβ (x̂q) = −2EFN0

q̄

∫ 1

0
dk̄k̄

∫ π

−π

dθ

2π

2k̄2 cos2(θ )δαxδβx + 2k̄2 sin2(θ )δαyδβy + 2q̄k̄ cos(θ )δαxδβx + q̄2δαxδβx

q̄

2 + k̄ cos(θ )

= −EFN0
(−2)

q̄

∫ 1

0
dk̄k̄

∫ π

−π

dθ

2π

δαβ

(
k̄2 + k̄q̄ cos(θ ) + 1

2 q̄2
) + σ

(3)
αβ

(
k̄2 cos(2θ ) + k̄q̄ cos(θ ) + 1

2 q̄2
)

− q̄

2 − k̄ cos(θ )

= −N0EF
[
fs(q̄)δαβ + fa(q̄)σ (3)

αβ

]
. (F6)

Here, the functions fs/a(q̄) can be expressed in terms of the auxiliary functions ψ (n,�)(z) defined by

ψ (n,�)(z) ≡
∫ 1

0
dxx1+n+�

∫ π

−π

dθ

2π

cos(�θ )

z − x cos(θ )
. (F7)

Explicit expressions for these functions are provided in Table I.
Putting everything together, we finally obtain

fs(q̄) = q̄ψ (0,0)

(
q̄

2

)
− 2ψ (0,1)

(
q̄

2

)
+ 2

q̄
ψ (2,0)

(
q̄

2

)
= 1 + q̄2

6
− 1

3|q̄|
(

q̄2

2
+ 1

)
�(q̄ − 2)

√
q̄2 − 4 (F8)

and

fa(q̄) = q̄ψ (0,0)

(
q̄

2

)
− 2ψ (0,1)

(
q̄

2

)
+ 2

q̄
ψ (0,2)

(
q̄

2

)
= q̄2

3
− 1

3|q̄| (q̄2 − 1)�(q̄ − 2)
√

q̄2 − 4. (F9)

The quantities fx/y(q) defined in Eqs. (105) and (106) are related to fs and fa by fx/y(q) = [fs(q/kF) ± fa(q/kF)]/2.
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