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The formalism of the reduced density matrix is pursued in both length and velocity gauges of the perturbation
to the crystal Hamiltonian. The covariant derivative is introduced as a convenient representation of the position
operator. This allow us to write compact expressions for the reduced density matrix in any order of the perturbation
which simplifies the calculations of nonlinear optical responses; as an example, we compute the first- and
third-order contributions of the monolayer graphene. Expressions obtained in both gauges share the same formal
structure, allowing a comparison of the effects of truncation to a finite set of bands. This truncation breaks the
equivalence between the two approaches: its proper implementation can be done directly in the expressions
derived in the length gauge, but requires a revision of the equations of motion of the reduced density matrix in
the velocity gauge.
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I. INTRODUCTION

The calculation of nonlinear optical (NLO) coefficients in
crystals has seen a renewed impetus, spurred by the strong
nonlinear properties of layered materials such as graphene
[1–8].

Perturbative calculations of NLO coefficients in bulk
semiconductors, with a full quantum treatment of matter,
date back to early 1990’s, and have not been entirely trouble
free [9,10]. In the long-wavelength limit, in which the spatial
dependence of the radiation electric field is neglected, there
are two representations of the radiation field: by a time-
dependent vector potential A(t), with the electric field given
by E(t) = −∂A/∂t ; by the electric dipole scalar potential
V (r) = eE(t) · r. The advantage of the first method, known as
the velocity gauge, is that the perturbation introduces no extra
spatial dependence to the crystal Hamiltonian, thus preserving
the crystal’s translational symmetry. This leads to a decoupling
of the system’s response in momentum space: it becomes a sum
of independent contributions of each k value in the Brillouin
zone. Early attempts to calculate NLO coefficients using this
approach were, however, plagued by unphysical contributions,
diverging at low frequencies [9]. Several authors addressed this
issue by separating the treatment of interband and intraband
contributions, using time-dependent basis sets [10,11]. Later,
Aversa and Sipe [12] revisited the problem, emphasizing
the gauge freedom that allows you to choose either form
of the coupling to the radiation field. They recognized that
the unphysical divergences mentioned above actually have
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coefficients that are exactly zero, expressing sum rules that
they derived explicitly in first-order response, and claimed to
hold in all orders. Because these sum rules are easily violated
in approximations, they end up advocating using the scalar
potential method, also referred to as the length gauge, in actual
calculations.

Similar problems were found in earlier calculations of NLO
response of atoms [13]. As far back as 1951, Lamb [14]
recommended as more convenient the scalar potential gauge in
perturbative calculations of the hydrogen atom fine structure,
and, for a while, the view that the two choices of gauge lead
to different results was widely held [13].

The obvious advantage of the scalar potential gauge is that
it is written in terms of a gauge-invariant entity, the electric
field, even though it expresses a specific choice of gauge for
the electromagnetic field. But, because the scalar potential
contains the position variable r, the perturbation is no longer
diagonal in Bloch momentum space, and couples different
k values. Furthermore, the position operator is highly singular
in momentum space, and its matrix elements can only be
properly defined in the infinite crystal limit.

This choice of representation was used on the recent
reduced density matrix (RDM) calculations of the nonlinear
optical response of graphene [4,6,8]. In Ref. [4], the derivative
term in the RDM equations of motion was removed by means
of a k-space translation, thus decoupling them in crystal
momentum space; this is not without cost, as the system’s
response is now expressed in terms of both the A and the
E fields. In their subsequent work [6], the authors retained
this derivative term as well as introduced relaxation terms
to the RDM equations of motion. A different approach was
proposed by Mikhailov [8], who avoided the problem of the
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singular intraband term of the position operator by using a
finite wavelength perturbation that satisfies periodic boundary
conditions

V (r) = −e(Vqe
iq·r + V ∗

q e−iq·r), (1)

and taking the limit q → 0 at the end of the calculation.
In addition to the freedom in expressing the external electric

field, we consider the freedom of choice of the phase of the
Bloch functions, in each point in the Brillouin zone,

ψks → eiθs (k) ψks ,

since any expectation value is necessarily independent from
the choice of θs(k). This sets the transformation law of any
observable’s matrix elements to

Akk′ss ′ → e−i[θs (k)−θs′ (k′)] Akk′ss ′ .

Striving to make this property explicit leads to the concept
of the covariant derivative, which will be used to derive a
considerably simpler form of the RDM formalism in the length
gauge.

This paper is organized as follows. In Sec. II, we present an
overview of some concepts on gauge invariance and the key
ideas regarding the crystal Hamiltonian. We then introduce
the covariant derivative in momentum space, which captures
the phase freedom mentioned in the previous paragraph.
Section III is dedicated to the reduced density matrix. We shall
derive the RDM equations of motions and, more importantly,
the relation between these two objects. The rest of the section
is dedicated to the equivalence between observables in the two
formalisms. In Sec. IV, we write the solutions to the RDM
equations of motion. As a proof of concept, Sec. V is dedicated
to the study of graphene’s current response by means of the
scalar potential formalism [4,6,8]. This is followed by Sec. VI,
where we discuss the breakdown of the scalar potential/vector
potential equivalence, upon truncation of the expressions for
the current for a finite set of bands [15]. The last section is
dedicated to a summary of our results.

II. A GENERAL DESCRIPTION

The two possible representations of the uniform electric
field entail two different, but equivalent, ways to write the
many-body Hamiltonian. One can either add the dipole inter-
action to the single-particle Hamiltonian of the unperturbed
system H0,1

HE(t) =
∫

ddr �†(r)

[
H0

(
r,

∇
i

)
+ eE(t) · r

]
�(r), (2)

or use the minimum coupling procedure in H0,

HA(t) =
∫

ddr �†(r)

[
H0

(
r,

∇
i

+ e

h̄
A(t)

)]
�(r). (3)

The electron field �(r) and its Hermitian conjugate �†(r)
satisfy the usual anticommutation relations.

1The charge q has already been replaced by the charge of an electron
q = −e.

The many-body state vector in the vector potential approach
|ψ(t)〉 evolves in time according to the Hamiltonian HA(t):

ih̄
∂|ψ(t)〉

∂t
= HA(t)|ψ(t)〉. (4)

A second state vector |ψ̄(t)〉, obtained via a time-dependent
unitary transformation of |ψ(t)〉,

|ψ̄(t)〉 = U(t)|ψ(t)〉, (5)

has an equation of motion

ih̄
∂|ψ̄(t)〉

∂t
=

[
U(t)HA(t)U†(t) + ih̄

dU(t)

dt
U†(t)

]
|ψ̄(t)〉.

If the unitary transformation is chosen as

U(t) = exp

[
i
e

h̄

∫
ddr A(t) · r ρ(r)

]
, (6)

where ρ(r) := �†(r)�(r) is the density operator, it is straight-
forward to show that

U(t) HA(t)U†(t) + ih̄
dU(t)

dt
U†(t) = HE(t), (7)

implying that |ψ̄(t)〉 is the state vector in scalar potential gauge.
Observables in the two gauges are also related by a unitary

transformation OE := U(t) OA(t)U†(t). The exception is the
Hamiltonian; because the unitary transformation U(t) is time
dependent, the time evolution operator in the length gauge
HE(t) is not simply U(t) HA(t)U†(t), but has an additional
term involving the time derivative of U(t) [Eq. (7)]. The exis-
tence of this transformation between the two descriptions of the
radiation field establishes their complete equivalence [12,13].

Next, we recall some important results of electron
eigenstates in an unperturbed crystal. The single-particle
Schrödinger equation is [16]

Hψks(r) = εksψks(r), (8)

with

H = h̄2

2m

(∇
i

)2

+ V (r), (9)

and V (r) = V (r + R), for R any Bravais lattice vector.
According to Bloch’s theorem, the eigenfunctions have the
form of a plane wave times a periodic function

ψks(r) = eik·ruks(r), (10)

allowing the eigenvalue problem to be expressed in terms of
the k-dependent Hamiltonian H(k) := e−ik·r H eik·r:

H(k) uks(r) =
[

h̄2

2m

(∇
i

+ k
)2

+ V (r)

]
uks(r)

= εksuks(r). (11)

The function uks(r) is a periodic function in the real-space unit
cell

uks(r) = uks(r + R). (12)

Each k point in the first Brillouin zone (FBZ) defines a
Hamiltonian operator H(k) that acts on functions whose
domain is the real-space unit cell, and that satisfies the
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boundary condition of Eq. (12). The eigenfunctions of
Hk, {|uks〉, s = 0,1, . . . }, are a basis of such functions. We
can assume this basis to be orthonormal with an inner product
defined as the integral over the real-space unit cell (volume vc)

〈uks |uks ′ 〉 = 1

vc

∫
uc

ddr u∗
ks(r)uks ′ (r) = δss ′ . (13)

Different values of k have different bases, for they are
eigenfunctions of different Hamiltonians. Here, the Bloch
wave vector is a continuous parameter, even in the finite
volume crystal, as the eigenvalues in Eq. (11) are well defined
for every k in the FBZ. The k-value selection by periodic
boundary conditions only involves the plane wave factor of
the Bloch function, and has no bearing on the periodic part
uks(r) [16]. As such, derivatives with respect to k of uks(r) are
always well defined whereas derivatives of plane wave factors
require the infinite volume limit. We shall work in this limit
from the start, due to the difficulties of properly defining the
position operator r in a finite system with periodic boundary
conditions.

In the 	 → ∞ limit (	, the volume of the crystal), the
momentum sums are replaced by d-dimensional integrals over
the FBZ. The many-body crystalline Hamiltonian then reads
as

H0 =
∑

s

∫
ddk

(2π )d
εksc

†
kscks , (14)

for c
†
ks , cks the creation and destruction operators of Bloch

states,

c
†
ks =

∫
ddr ψks(r) �†(r). (15)

The Bloch state orthogonality relation, the anticommutation
relations, and the lattice sum rule are suitably modified:

〈ψks |ψk′s ′ 〉 = (2π )dδss ′δ(k − k′), (16)

{cks ,c
†
k′s ′ } = (2π )dδss ′δ(k − k′), (17)

∑
R

ei(k−k′)·R = (2π )3

vC

δ(k − k′), (18)

so that the operator c
†
kscks is a density in momentum space and

not a dimensionless number operator as in the finite volume
case.

In the scalar potential approach, the perturbation is written
in terms of the position operator r. Its matrix elements are ill
defined in the finite volume system, but can be computed for
	 → ∞. In that limit they read as [17]

rkk′,ss ′ = δss ′ (2π )d (−i)∇k′δ(k′ − k) + (2π )dδ(k′ − k) ξk′ss ′ ,

(19)

where the Berry connection ξkss ′ is defined as a scalar product
in the real-space unit cell, independent of the crystal’s volume,

ξkss ′ := i〈uks |∇kuks ′ 〉 (20)

= i

vC

∫
uc

ddr u∗
ks(r)∇kuks ′ (r). (21)

The somewhat awkward-looking expression of Eq. (19) can
be cast in a more transparent form if we bear in mind that, for
a continuous non-normalizable basis, the matrix elements of
an operator are a kernel of an integral transform. In the Bloch
representation, a general single-particle state is represented as

�(r) =
∑

s

∫
ddk

(2π )d
�s(k)ψks(r)

for �s(k) = 〈ψks |�〉. The wave function for the state r|�〉 is

〈ψks |r|�〉 =
∑
s ′

∫
ddk′

(2π )d
rkk′,ss ′�s ′ (k′)

= i
∑
s ′

(δss ′∇k − iξkss ′ )�s ′(k),

where, to reach the final expression, we have integrated
by parts. The integration is over the FBZ, and, given the
periodicity of any function of k, φ(k) = φ(k + G), there are
no surface terms. This prompts us to define the covariant
derivative operator [6]

Dkss ′ := δss ′∇k − iξkss ′ , (22)

such that

〈ψks |r|�〉 =
∑
s ′

iDkss ′�s ′(k), (23)

i.e., the position operator is iDkss ′ in the Bloch representa-
tion [18]. The designation of covariant refers to its behavior
under a local gauge transformation in momentum space,

uks → eiθs (k) uks , (24)

for which

Dkss ′ → D̃kss ′ := e−iθs (k)Dkss ′eiθs′ (k)

= e−i[θs (k)−θs′ (k)]Dkss ′ .

The gradient term of the phase θs ′ (k) is canceled by the
transformation of the Berry connection; this is in complete
parallel to the definition of covariant derivative in gauge
theories in real space.

In the vector potential approach, the perturbation is written
in terms of the velocity matrix elements vkk′ss ′ := pkk′ss ′/me,
which are diagonal in k space, and expressible as matrix
elements in the basis of periodic functions

vkk′ss ′ = (2π )dδ(k − k′) vkss ′ , (25)

vkss ′ = h̄

me

〈uks |(−i∇ + k)|uks ′ 〉. (26)

Since the velocity operator is quite generally (ih̄)−1[r,H ], it
is not surprising to find that

vkss ′ = 1

h̄
[Dk,H(k)]ss ′ (27)

= 1

h̄
[δss ′∇kεks − i(εks ′ − εks)ξkss ′ ]. (28)

This turns out to be the expression of a more general result,
which will prove useful later and which we now discuss.
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Any matrix in the space generated by the basis
{|uks〉, s = 1,2, . . . }, parametrized by k, defines an operator
in band space by

O(k) =
∑
ss ′

|uks〉Okss ′ 〈uks ′ |, (29)

Okss ′ = 〈uks |O(k)|uks ′ 〉. (30)

Two examples of this are the Hamiltonian H(k) := εksδss ′ and
the velocity operator. Consider the matrix elements of the k
derivative of O(k):

[∇kO(k)]ss ′ := 〈uks |∇kO(k)|uks ′ 〉 = ∇k〈uks |O(k)|uks ′ 〉
− 〈∇kuks |O(k)|uks ′ 〉 − 〈uks |O(k)|∇kuks ′ 〉.

(31)

The first term on the right-hand side is simply the k gradient of
the matrix element ∇kOkss ′ . The other two can be expressed
in terms of the Berry connection, by application of the
completeness relations

∑
r |ukr〉〈ukr | = 1̂,

〈∇kuks |O(k)|uks ′ 〉 = i
∑

r

ξksrOkrs ′ , (32)

〈uks |O(k)|∇kuks ′ 〉 = −i
∑

r

Oksrξkrs ′ . (33)

The matrix element (31) then reads as a commutator with the
covariant derivative

[∇kO(k)]ss ′ = ∇kOkss ′ − i[ξk,O(k)]ss ′ (34)

= [Dk,O(k)]ss ′ , (35)

which can be alternatively represented in operator form

∇kO(k) = [Dk,O(k)]. (36)

The relation between observables in the velocity and length
gauges can be cast in this language. First, we note that

〈ψks |OA

(∇
i

)
|ψk′s ′ 〉 = 〈ψks |OE

(∇
i

+ e

h̄
A(t)

)
|ψk′s ′ 〉.

(37)

Using the form of the Bloch functions [Eq. (10)], this integral
over all space can reduced to one over a unit cell, summed
over all of them, giving

(2π )3δ(k − k′)〈uks |OA(k)|uks ′ 〉 (38)

= (2π )3δ(k − k′)〈uks |OE
(

k + e

h̄
A(t)

)
|uks ′ 〉 (39)

or

OA(k) = OE
(

k + e

h̄
A(t)

)
. (40)

The relationship between operators in the two descriptions
can also be expressed in terms of these objects defined in the
same k point. To do so, we expand the right-hand side of that

equation in powers of A(t). It follows from Eq. (36) that

OA(k,t) = OE
(

k + e

h̄
A(t),t

)

=
+∞∑
n=0

1

n!

( e

h̄

)n

Aα1 (t) . . . Aαn(t)

× [
D

α1
k ,

[
. . . ,

[
D

αn

k ,OE(k,t)
]
. . .

]]
, (41)

where a sum over the repeated Cartesian indexes αj is
left implied. To conclude this brief account of the use of
the covariant derivative, we point out that the canonical
commutation relation

[r̂α,p̂β] = ih̄δαβ 1̂ (42)

is expressed in the Bloch basis as[
Dα

k ,Vβ(k)
]
ss ′ = h̄

me

δαβδss ′ (43)

since r̂α = iDα and p̂α = meVα . Equation (43) can also be
explicitly derived from the form of the Dk and vk matrices.

We can now write the general many-body Hamiltonians (2)
and (3) in the Bloch description

HE(t) =
∑
ss ′

∫
ddk

(2π )d
c
†
ks[δss ′εks + ieE(t) · Dkss ′ ]cks ′ , (44)

HA(t) =
∑
ss ′

∫
ddk

(2π )d
c
†
ks

×
[
δss ′

(
εks + e2A2(t)

2me

)
+ eA(t) · vkss ′

]
cks ′

(45)

as well as their respective current operators

JE(t) = −e
∑
ss ′

∫
ddk

(2π )d
c
†
ksvkss ′cks ′ , (46)

JA(t) = −e
∑
ss ′

∫
ddk

(2π )d
c
†
ks

[
vkss ′ + δss ′

e

me

A(t)

]
cks ′ .

(47)

The expression of the current in the velocity gauge is a
consequence of Eqs. (40) and (43). Any component of
velocity in operator form satisfies the general relation between
k-diagonal observables in both gauges

Vα,A(k) = Vα,E
(

k + e

h̄
A

)
.

An expansion of the right-hand side in powers of A produces
only two terms of orders A(0) and A(1). The remaining terms
involve two or more derivatives with respect to k, which,
following Eq. (36), can be expressed in terms of commutators
of the covariant derivative and [Dβ

k ,Vα,E(k)]. As the latter is
proportional to the identity operator (43), the commutators are
exactly zero and the higher-order terms vanish:

Vα,A(k) = Vα,E(k) + e

h̄
Aβ

[
D

β

k ,Vα,E(k)
]

(48)

= Vα,E(k) + e

m
Aα 1̂. (49)
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In matrix form this is

v
α,A
kss ′ = vα

kss ′ + δss ′
e

me

Aα(t),

where vkss ′ is the velocity matrix in the length gauge.

III. REDUCED DENSITY MATRIX

The reduced density matrix (RDM) is a matrix in band
space, defined by the average of momentum-conserving inter-
band transitions (s �= s ′) and the intraband (s = s ′) transitions2

ρα
kss ′ (t) = 〈c†ks ′cks〉α. (50)

The superscript α now denotes the gauge in which this object
is computed, α = A,E. The average of any operator Â is the
trace

〈Â〉α = tr[ραÂ], (51)

where ρα , the full many-body density matrix, is

ρα =
∑

n

pn

∣∣ψα
n

〉〈
ψα

n

∣∣, (52)

and {|ψα
n 〉} is a complete set of state vectors. In the Schrödinger

picture, the time evolution of ρα(t) is governed by the time
evolution of the state vectors |ψn(t)〉:

ih̄
∂
∣∣ψα

n (t)
〉

∂t
= Hα(t)

∣∣ψα
n (t)

〉
. (53)

The equation of motion of the RDM takes the form

ih̄
∂ρα

kss ′ (t)

∂t
= tr

[
ih̄

∂ρα(t)

∂t
c
†
ks ′cks

]

= tr[[Hα(t),ρα(t)]c†ks ′cks]

= 〈[c†ks ′cks ,Hα(t)]〉α. (54)

The gauge freedom to express the uniform electric field is
thereby carried into the calculation of the system’s dynamics,
which can be described either in terms of ρE

kss ′ (t) or ρA
kss ′ (t).

Computing the commutators on the right-hand side of
Eq. (54), using the Hamiltonians (44) and (45), we obtain
closed equations of motion for the RDM,3[

ih̄
∂

∂t
− εkss ′

]
ρE

kss ′ (t) = ieE(t) · [D,ρE(t)]kss ′ , (55)[
ih̄

∂

∂t
− εkss ′

]
ρA

kss ′ (t) = eA(t) · [v,ρA(t)]kss ′ . (56)

Here, we have defined εkss ′ := εks − εks ′ . The equation for the
scalar potential RDM is found in Refs. [4,6,12], but not, as
here, cast in terms of the covariant derivative. The presence
of the derivative with respect to k in Eq. (55) couples the
response at different values of k, whereas its counterpart for
the vector potential gauge, Eq. (56), is completely decoupled in

2Note the switch in the band indexes of the RDM.
3In order to simplify notation, we will drop the crystal momentum

label from the objects inside the commutators and write it alongside
the band indexes.

crystal momentum k and can thus be solved independently for
each point of the FBZ. Averages of single-particle observables,
diagonal in momentum space, such as the currents (46)
and (47), can be obtained from the RDM’s as traces over band
space

〈JE(t)〉 = −e

∫
ddk

(2π )d
Tr[VE(k)ρE(k,t)], (57)

〈JA(t)〉 = −e

∫
ddk

(2π )d
Tr

[(
VE(k) + e

me

A(t)1̂

)
ρA(k,t)

]
,

(58)

for 1̂ the identity in band space. Given that these two alternative
formulations are related by a unitary transformation, Eqs. (57)
and (58) have to yield the same results, although this is far
from obvious at this point. To relate these two objects, we
must first establish the relation between RDMs.

The full many-body density matrix ρA,

ρA =
∑

n

pn

∣∣ψA
n (t)

〉〈
ψA

n (t)
∣∣, (59)

can be expressed in the state vectors of its counterpart
description by means of a unitary transformation [Eq. (5)]

ρA = U†(t) ρE U(t). (60)

The vector potential RDM is therefore expressible as averages
with ρE , of suitably modified operators

ρA
kss ′ (t) = tr[ρAc

†
ks ′cks] = tr[U†(t) ρE U(t)c†ks ′cks]

= tr[ρE U(t)c†ks ′cksU†(t)] = tr[ρE c̃
†
ks ′ c̃ks]. (61)

The new creation operator c̃
†
ks ′ is obtained from c

†
ks ′ by the

same unitary transformation

c̃
†
ks ′ = U(t) c

†
ks ′ U†(t) =

∫
ddr �ks ′ (r) �†(r) (62)

and creates an electron with wave function

�ks ′(r) := eier·A(t)/h̄ψks ′ (r) = eir·[k+eA(t)/h̄]uks ′ (r). (63)

While this is clearly a Bloch state with wave vector q = k +
eA(t)/h̄, it is not ψk+eA(t)/h̄ s ′ , but can be expanded as a linear
combination of the shifted Bloch states

|�ks ′ 〉 =
∑
r ′

∫
ddq

(2π )d
|ψq r ′ 〉〈ψqr ′ |�ks ′ 〉

=
∑
r ′

|ψk+eA(t)/h̄ r ′ 〉〈uk+eA(t)/h̄ r ′ |uks ′ 〉. (64)

This allows us to relate c̃
†
ks ′ and c̃ks ′ to the original creation

and destruction operators

c̃
†
ks ′ =

∑
r ′

〈uk+eA(t)/h̄r ′ |uks ′ 〉 c
†
k+eA(t)/h̄ r ′ , (65)

and express the right-hand side of Eq. (61) in terms of the
shifted Bloch operators. Since

tr[ρEc
†
k+eA(t)/h̄ r ′ck+eA(t)/h̄ r ] = 〈c†k+eA(t)/h̄ r ′ck+eA(t)/h̄ r〉E

= ρE
k+eA(t)/h̄ rr ′ (t), (66)
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using this and Eq. (65) in Eq. (61) we obtain the relation
between ρA

ss ′ (k,t) and ρE
ss ′ (k,t) as

ρA
kss ′ (t) =

∑
rr ′

〈uks |uk+eA(t)/h̄ r ′ 〉ρE
k+eA(t)/h̄ rr ′ (t)

×〈uk+eA(t)/h̄ r |uks ′ 〉. (67)

Following our definition of operators in band space [Eq. (29)],
this equality can be cast in operator form4

ρ̂A(k,t) = ρ̂E
(

k + e

h̄
A(t),t

)
. (68)

The simplicity of this relation between the density matrices
in the velocity and length gauges, which amounts to a
simple shift in the value of k, is only true in the operator
representation; as can be seen in Eq. (67), the matrix elements
of these two operators between states of a single basis
{|uks〉, s = 0,1, . . . }with the same k, do not satisfy this simple
relation.

We can now show that the expectation values of ob-
servables in the two descriptions are exactly the same.
Consider

〈OA(t)〉 =
∫

ddk
(2π )d

Tr[OA(k)ρA(k,t)]. (69)

Both the RDM and the observable operators are equal to their
scalar potential counterparts when their argument is adequately
translated [Eqs. (40) and (68)]:

〈OA(t)〉 =
∫

ddk
(2π )d

Tr
[
OE

(
k + e

h̄
A

)
ρE

(
k + e

h̄
A

)]
. (70)

This shifts the FBZ by a constant, which is irrelevant as the
integrand is periodic. This means that

〈OA(t)〉 =
∫

ddk
(2π )d

Tr[OE(k)ρE(k,t)] = 〈OE(t)〉. (71)

The sum rules in Ref. [12] can be traced back to this
equivalence (see Appendix A).

IV. SOLUTIONS TO THE RDM EQUATIONS OF MOTION

A system’s current response (in either scalar or vector po-
tential formalism) is obtained from the solution to its respective
RDM equation of motion. To write these solutions explicitly,
we must employ the general procedure from nonlinear physics:
break the RDM into contributions of different powers on
the external field ρ = ρ(0) + ρ(1) + (· · · ) and then proceed to
iteratively solve the equations of motion for each order. For

ρ(n), these read as[
ih̄

∂

∂t
− εkss ′

]
ρ

(n),E
kss ′ (t) = ieE(t) · [D,ρ(n−1),E(t)]kss ′ , (72)[

ih̄
∂

∂t
− εkss ′

]
ρ

(n),A
kss ′ (t) = eA(t) · [v,ρ(n−1),A(t)]kss ′ . (73)

In expressing the time-dependent objects in terms of their
Fourier decomposition, we assume adiabatic switching of the
perturbation (η → 0+):

ρ
(n),α
kss ′ (t) =

∫
dω

2π
e−i(ω+iη)t ρ

(n),α
kss ′ (ω), (74)

E(t) =
∫

dω

2π
e−i(ω+iη)t E(ω), (75)

A(t) =
∫

dω

2π
e−i(ω+iη)t A(ω). (76)

The time derivative in the equations of motion is replaced by a
frequency factor that is collected into an energy denominator

dkss ′ (ω) := 1

h̄ω − εkss ′
. (77)

From this point on, the frequency argument of these energy
denominators is understood to have an infinitesimal imaginary
part. Using the Hadamard product of two matrices

(A ◦ B)ss ′ := Ass ′ Bss ′ , (78)

we write recursion relations for the RDM solutions

ρ
(n),E
kss ′ (ω) = ie

∫
dω1

2π
Eα1 (ω1)(d(ω)

◦ [Dα1 ,ρ(n−1),E(ω − ω1)])kss ′ , (79)

ρ
(n),A
kss ′ (ω) = e

∫
dω1

2π
Aα1 (ω1)(d(ω)

◦ [vα1 ,ρ(n−1),A(ω − ω1)])kss ′ . (80)

The successive application of these expressions brings the nth-
order solution ρ

(n)
kss ′ (ω) to the form of nested commutators of the

zeroth-order one ρ
(0)
kss ′ , which is the Fermi-Dirac distribution

function times the unit matrix in band space ρ
(0)
kss ′ = fksδss ′ .

With one last bit of notation

ω[m] :=
m∑

i=1

ωi, (81)

we write ρ
(n)
kss ′ in each formalism as

ρ
(n),E
kss ′ (ω) = (ie)n

[
n−1∏
i=1

∫
dωi

2π
Eαi (ωi)

]
Eαn (ω − ω[n−1]) (d(ω) ◦ [Dα1 , d(ω − ω1) ◦ [. . . ,d(ω − ω[n−1]) ◦ [Dαn,ρ(0)] . . .]])kss ′ ,

(82)

ρ
(n),A
kss ′ (ω) = en

[
n−1∏
i=1

∫
dωi

2π
Aαi (ωi)

]
Aαn (ω − ω[n−1]) (d(ω) ◦ [vα1 , d(ω − ω1) ◦ [. . . ,d(ω − ω[n−1]) ◦ [vαn,ρ(0)] . . .]])kss ′ . (83)

4The hats will be henceforth dropped.
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The use of the nested commutator and the factor d(ω) allow
for a compact form of these solutions (albeit hiding their
considerable complexity). These solutions are entirely written
in terms of three objects (and their derivatives, in the case
of ρE): the band energies εks ; the Berry connection ξkss ′ ;
and the structure of filled/empty bands fks . In principle,
by determining these, one determines a system’s nonlinear
response, provided that one can compute the FBZ integrals
in Eqs. (57) and (58). In Sec. VI, we use these expressions
to discuss whether it is possible to truncate the sums over
bands, implicit in these matrix products, to a reduced set.
But, before, we study the first two nontrivial orders of the
monolayer graphene response to a uniform electric field to
illustrate that these reproduce the results of Refs. [4,6,8].

V. LINEAR AND THIRD-ORDER RESPONSE IN THE
MONOLAYER GRAPHENE

Monolayer graphene is (usually) described by a tight-
binding model that considers only nearest-neighbor hop-
ping [19] and for which the expressions for the two bands
εks and the periodic functions uks can be explicitly computed.
This allows one to derive some useful properties.

First, a double band-index sum, such as the ones in 〈JE〉 and
〈JA〉, over an antisymmetric object θss ′ = −θs ′s , can be reduced
to a single sum, where s̄ reads as the band opposite to s:∑

s ′s

θss ′ →
∑

s

θss̄ . (84)

Second, the Berry connection for the monolayer is described
by an intraband and an interband term. With adequate
choice of gauge [Eq. (24)], the following properties can be
obtained [4,6,8]:

ξα
kss = ξα

ks̄ s̄ , (85)

ξα
kss̄ = ξα

ks̄s . (86)

In addition, we can choose these to be even under k → −k.

A. Linear order response

The first-order term of the RDM is

ρ
(1)
kss ′ (ω) = ie Eα(ω) (d(ω) ◦ [Dα,ρ(0)])kss ′ (87)

= ie Eα(ω)

{
δss ′

1

h̄ω
∇α

kfks − i
ξα

kss ′ (fks ′ − fks)

h̄ω − εkss ′

}
.

(88)

Writing the current (57) in terms of its Fourier components,
we obtain two contributions [4,6,8]

〈J (1),β (ω)〉 = Eα(ω)
∫

ddk
(2π )d

[
�

(1),βα

k,intra(ω) + �
(1),βα

k,inter(ω)
]
.

(89)

The intraband contribution is a generalized Drude term

�
(1),βα

k,intra(ω) = i
e2

h̄2

1

ω

∑
s

(∇β

kεks

)(∇α
kεks

)(− ∂fks

∂εks

)
(90)

and the interband contribution �
αβ,(1)
inter (k,ω), which involves

the Berry connection

�
(1),βα

k,inter(ω) = −e2
∑

s

v
β

k,ss̄ ξ α
k,s̄s

fks − fks̄

h̄ω − εks̄s

. (91)

B. Third-order response

Because graphene has inversion symmetry, its second-
order response is zero (see Appendix B). The first nonlinear
contribution to the current is thus the third-order one, which
is to be computed here. From the general RDM solution (82),
we obtain, for n = 3,

ρ
(3)
kss ′ (ω) = (ie)3

∫
dω1

2π

∫
dω2

2π
Eα1 (ω1) Eα2 (ω2)Eα3 (ω − ω[2]) (d(ω) ◦ [Dα1 , d(ω − ω1) ◦ [Dα2 ,d(ω − ω[2]) ◦ [Dα3 ,ρ(0)]]])kss ′ .

(92)

Expanding this by means of Eq. (34) produces a plethora of terms which we organize, following Mikhailov, by the number of
intraband (derivatives) and interband (Berry connections) factors. These can be manipulated independently and give contributions
to the current, that can be labeled by i = 1,2,3, the number of intraband factors.

The field factors and the FBZ integrations are the same in all these contributions, and so

〈J (3),β (ω)〉 = e4
∫

dω1

2π

∫
dω2

2π
Eα1 (ω1) Eα2 (ω2) Eα3 (ω − ω[2])

∫
ddk

(2π )d

3∑
i=0

�
(3),βα1α2α3
k,i (ω,ω1,ω2). (93)

The �3 contribution is the single term in Eq. (92) with three k derivatives, while �2 gathers three terms with two k derivatives,
to which we can apply the property (84). Contributions �1 and �0 require additional manipulations, presented in Appendix C.
Consistently with our notation εkss̄ := εks − εks̄ , we abbreviate the factor fks − fks̄ as fkss̄ . The expressions for the �i are

�
(3),βα1α2α3
3 = i

h̄ω

1

h̄(ω − ω1)

1

h̄(ω − ω[2])

∑
s

v
β

kss∇α1
k ∇α2

k ∇α3
k fks , (94)

�
(3),βα1α2α3
2 =

∑
s

v
β

ks̄s

1

h̄ω − εkss̄

{
1

h̄(ω − ω1)

1

h̄(ω − ω[2])
ξ

α1
kss̄ ∇α2

k ∇α3
k fks̄s + 1

h̄(ω − ω[2])
∇α1

k

(
ξ

α2
kss̄∇α3

k fks̄s

h̄(ω − ω1) − εkss̄

)
(95)

+∇α1
k

[
1

h̄(ω − ω1) − εkss̄

∇α2
k

(
ξ

α3
kss̄ fks̄s

h̄(ω − ω[2]) − εkss̄

)]}
, (96)
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�
(3),βα1α2α3
1 = i

h̄ω

∑
s

v
β

kss

{
1

h̄(ω − ω1)
∇α1

k

[
ξ

α2
kss̄ξ

α3
ks̄s fkss̄

(
1

h̄(ω − ω[2]) − εks̄s

+ 1

h̄(ω − ω[2]) − εks̄s

)]

+ ξ
α1
kss̄

h̄(ω − ω1) − εks̄s

∇α2
k

[
ξ

α3
ks̄sfkss̄

(
1

h̄(ω − ω[2]) − εks̄s

+ 1

h̄(ω − ω[2]) − εkss̄

)]

+ 1

h̄(ω − ω[2])
ξ

α1
kss̄ξ

α2
ks̄s

(
1

h̄(ω − ω1) − εks̄s

+ 1

h̄(ω − ω1) − εkss̄

)
∇α3

k fkss̄

}
, (97)

�
(3),βα1α2α3
0 = 2

h̄(ω − ω1)

∑
s

1

h̄ω − εkss̄

v
β

ks̄s ξ
α1
kss̄ ξ

α2
ks̄s ξ

α3
kss̄ fks̄s

(
1

h̄(ω − ω[2]) − εkss̄

+ 1

h̄(ω − ω[2]) − εks̄s

)
. (98)

Apart from differences in the Cartesian and frequency indexes,
which can always be relabeled, these are the expressions found
in [4,6,8], in the limit where �(i), �(e), the phenomenological
scattering rates, are set to zero.

VI. EFFECTIVE HAMILTONIANS

As we have seen in the previous sections, the current
response in the Schrödinger problem can be computed by two
different but equivalent procedures. Although this is concep-
tually important, one is ultimately interested in computing the
current in materials described by effective Hamiltonians, that
account only for a finite number of bands.

We will now show that, by truncating the band space, the
scalar and vector potential currents are no longer the same; the
latter contains relevant contributions from bands that are left
out of the effective Hamiltonian.

In Fig. 1, we present a conceptual picture of a spectrum
which has a cluster of bands close to the Fermi level, which
we deem relevant, well separated in energy by the bands below
(filled) and above (empty). We denote the energy scale in the
subspace E0 of relevant bands by δ and the energy separation
to other bands by � 
 δ; we assume the frequency of the
external field ω to be of the order ω ∼ δ/h̄. The question we
wish to answer is whether the bands outside E0 can be ignored
in the calculation of the current.

Energy denominators d(ω), involving bands inside E0,

dkss ′ (ω) = 1

h̄ω − εkss ′
, εkss ′ ∼ δ

ε0

Δ

Δ

δ

FIG. 1. A conceptual picture of an effective Hamiltonian that
describes the bands in subspace E0. The Fermi level lies somewhere
in that subspace. For bands inside E0, the energy difference is of order
δ, while the energy difference between bands in different subspaces
is of order � 
 δ.

will be larger than those involving transition to and from bands
in E0 and those outside

dkss ′ (ω) = 1

h̄ω − εkss ′
, εkss ′ ∼ �.

In the nth-order contribution to the current in the scalar
potential gauge, each term is a trace of a product n + 1 matrices
in band space:∑

s ′s

v
β

ks ′sdkss ′ (ω)[Dα1 , d(ω − ω1) ◦ [. . . [Dαn,ρ(0)] . . .]]kss ′ .

(99)

One such term is the fully intraband one, in which we pick
only the diagonal part of each covariant derivative operator
[see an example in Eq. (94)]. This term is nonzero only for
the band that contains the Fermi level; it has no contributions
from bands outside E0.

All interband contributions contain at least one difference
of occupation factors, thus allowing us to discard any terms
that involve only filled or only empty bands. What remains are
contributions of three types: (a) terms that involve transition
between filled and empty bands, both outside E0; (b) terms that
involve transition between bands in E0 and bands outside E0;
(c) interband terms among the bands in E0.

In Eq. (99), if s ′ belongs to a filled band outside E0, and s to
a empty band, also outside E0 (or vice versa), εkss ′ ∼ � 
 h̄ω

and

v
β

ks ′sdkss ′ (ω) ∼ i

h̄

εkss ′ξ
β

ks ′s

h̄ω − εkss ′
= − i

h̄
ξ

β

ks ′s ;

the matrix that follows this term in Eq. (99) must include
at least an energy denominator ∼O(1/�) because the last
band index is the same as the first, s ′. If s ′ and s both refer
to a filled band (or an empty one) outside E0 the interband
terms between filled and empty bands must have at least two
such energy denominators. In other words, terms of type (a)
have a least an energy denominator of order ∼O(1/�). An
identical argument can be made for transitions between bands
inside and and outside E0, i.e., for transitions of type (b).
We conclude that, in the limit of � 
 δ, the dominant terms
come from bands in E0 [terms of type (c)] and truncation to
this subspace is a valid approximation.

The same argument does not carry to the corresponding
contribution to the current in the velocity gauge:∑

s ′s

v
β

ks ′sdkss ′ (ω)[vα1 , d(ω − ω1) ◦ [. . . [vαn,ρ(0)] . . .]]kss ′ .

(100)
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In this case, every energy denominator is associated with
a velocity matrix element. In any transition involving ener-
gies εrr ′ ∼ O(�), the drr ′ (ω) ∼ O(1/�), as before, but the
corresponding velocity matrix element has an off-diagonal
contribution v

β

kr ′r ∼ ξ
β

krr ′O(�), and such terms give relevant
contributions no matter how large � is. In other words, bands
away from the Fermi surface contribute just as much as those
in E0 for the expression of the current in the velocity gauge.

VII. SUMMARY AND CONCLUSIONS

The concept of covariant derivative in k space has been
shown here to be of considerable value in the calculation
of the nonlinear current response. It is a very convenient
representation of the position operator [Eq. (23)]; it clarifies
the structure of the velocity matrix [Eq. (27)]; it allows a
complete parallel development of the structure of the reduced
density matrices (RDM) in the length (scalar potential) and
velocity (vector potential) gauges [Eqs. (55) and (56)] and it
provides compact expressions for the perturbative solutions of
the equations of motion of the RDM [Eqs. (82) and (83)]. It
also allowed us to see how the equivalence between objects in
the two gauges breaks down when the band space is truncated.

Furthermore, that the approximation is legitimate in the
length gauge, but fails in the velocity one, is made clear by
considering the truncation of the covariant derivative and the
velocity operators to a restricted set of bands. The commutator
of these two quantities, Eq. (43), which is constant for the case
of the infinite bands of the Schrödinger Hamiltonian, no longer
holds for a truncated subset of these. In fact, the statement that
the commutator is constant is equivalent to the Hamiltonian
being linear or quadratic in k (the former is the case of the Dirac
Hamiltonian, where the commutator gives zero). As a result,
Eq. (48) is no longer valid for a general effective Hamiltonian
and there is no equality between currents in the two gauges, at
least as they are written in Eqs. (46) and (47). In order to use
the velocity gauge in actual calculations, one must start from
the beginning with the effective Hamiltonian and perform the
minimum coupling then. Naturally, this means modifying both
the equation of motion of the RDM [Eq. (56)] and the current
operator in the velocity gauge. This will be the subject of a
future paper.
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APPENDIX A: AVERSA AND SIPE SUM RULES

In Ref. [12], Aversa and Sipe sketch how problems might
arise in the velocity gauge as it involves additional terms (with

respect to the length gauge) that are zero only when they are
treated exactly. They show this explicitly in the linear response.

In our formalism this can be seen in full generality, starting
from Eqs. (41) and (70). Expanding in powers of A(t), we can
write 〈OA(k,t)〉 in terms of 〈OE(k,t)〉 and contributions that
depend explicitly on A(t), that is, the n � 1 terms of the sum

〈OA(k,t)〉 = 〈OE(k,t)〉

+ e

h̄
Aα1 (t)

∫
ddk

(2π )d
Tr[Dα1 ,OE(k,t)ρE(k,t)]

+ (· · · ). (A1)

The equivalence of the two gauges requires that everything
other than 〈OE(k,t)〉 in the right-hand side to be zero. Each
contribution contains a factor which, for arbitrary order n,
reads as ∫

ddk
(2π )d

Tr[Dα1 ,G(k,t)], (A2)

for G(k,t) is some matrix in band space,

G(k,t) := [Dα2 , . . . ,[Dαn,[OE(k,t)ρE(k,t)] . . .]].

The two terms in the expression (A2) amount to

∑
s

∫
ddk

(2π )d
∇kGss(k,t) − i

∫
ddk

(2π )d
Tr[ξα,G(k,t)] = 0.

The first term integrates to zero due to the periodicity of G(k,t)
in reciprocal space. As for the second one, the trace of any
commutator of two matrices is zero, which follows from the
cyclic invariance of the trace.

The cancellation of all terms in the sum on the right-hand
side of Eq. (A1) constitutes the sum rules referred to by Aversa
and Sipe. They are an order-by-order formulation of the result
that in an integral over the FBZ of a function with the period
of the reciprocal lattice, the argument of the integrand can be
shifted without changing the integral.

Nevertheless, it is clear from this formulation that these
extra terms exist only if, starting from the velocity gauge, we
try to reduce our expressions to the ones in the length gauge.

APPENDIX B: CURRENT RESPONSE IN A
CENTROSYMMETRIC MATERIAL

For a centrosymmetric crystal, the spatial inversion operator
P commutes with the crystal Hamiltonian H,

[P,H] = 0, (B1)

and the solutions to the k-dependent Hamiltonian uks(−r) and
u−ks(r) are related by a phase factor

uks(−r) = eiμks u−ks(r). (B2)

If we take r → −r in the integral that defines the Berry
connection (21), we can determine how it behaves when we
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exchange the sign of the crystal momentum

ξkss ′ = i

vC

∫
uc

ddr u∗
ks(−r)∇kuks ′ (−r)

= −ei(μks′ −μks )[ξ−kss ′ + ∇kμks ′δss ′ ] (B3)

and

ξ−kss ′ = −ei(μks−μks’)[ξkss ′ + ∇kμks ′δss ′ ]. (B4)

This determines the transformation law for the covariant
derivative:

D−kss ′ = −ei(μks−μks’)[Dkss ′ + iδss ′∇kμks ′ ]. (B5)

We can now determine how the k-dependent factor of ρ(1),

�
(1),α1
kss ′ (ω) = dkss ′ (ω)[Dα1 ,ρ(0)]kss ′ , (B6)

transforms upon k → −k, by recalling that fks and dkss ′ (ω)
are even since they depend only on the band energies

�
(1),α1
−kss ′ (ω) = d−kss ′ (ω)[Dα1,ρ(0)]−kss ′

= dkss ′ (ω)
(
D

α1
−kss ′ fks ′ − fks D

α1
−kss ′

)
= −ei(μks−μks’) dkss ′ (ω) [Dα1 ,ρ(0)]kss ′

= −ei(μks−μks’)�
(1),α1
kss ′ (ω). (B7)

This can be extended to the higher-order contributions of the
RDM, in particular to the second-order one, easily extracted
from Eq. (82):

�
(2),α1α2
kss ′ (ω,ω1) = dkss ′ (ω)[Dα1 ,�(1),α2 (ω − ω1)]kss ′ . (B8)

It follows from Eqs. (B5) and (B7) that

�
(2),α1α2
−kss ′ (ω,ω1) = ei(μks−μks’)�

(2),α1α2
kss ′ (ω,ω1). (B9)

This object picks up the same k-space phase factors, but unlike
its first-order counterpart, the sign does not change. Combining
this with the transformation law for the velocity matrix element

vks ′s → v−ks ′s = −ei(μks′ −μks )vks ′s , (B10)

we see that the integrand in the FBZ integral
v

β

ks ′s�
(2),α1α2
kss ′ (ω,ω1) is an odd function of k, the second-order

current vanishes.
This argument also carries for an arbitrary order n. The

k parity of v
β

ks ′s�
(n),α1(...)αn

kss ′ is determined by its number of
covariant derivatives in �

(n),α1(...)αn

kss ′ . For n even, the integrand is
odd under k → −k, so even order contributions to the current
vanish in a centrosymmetric material.

APPENDIX C: DERIVING THE EXPRESSIONS
(97) AND (98)

Consider �1, the collection of terms with only one
intraband factor, where we have used the two-band character
of the monolayer graphene [Eq. (84)]:

�
(3),βα1α2α3
1 = i

∑
r s ′s

v
β

ks ′s

{
1

h̄ω − εkss ′
∇α1

k

[
1

h̄(ω − ω1) − εkss ′

(
δrs̄ ′

ξ
α2

kss̄ ′ξ
α3

ks̄ ′s ′fks ′ s̄ ′

h̄(ω − ω[2]) − εks̄ ′s ′
− δrs̄

ξ
α3
kss̄ξ

α2
ks̄s ′fks̄s

h̄(ω − ω[2]) − εkss̄

)]

+ 1

h̄ω−εkss ′

[
δrs̄ ′

ξ
α1

kss̄ ′

h̄(ω−ω1) − εks̄ ′s ′
∇α2

k

(
ξ

α3

ks̄ ′s ′fks ′ s̄ ′

h̄(ω−ω[2]) − εks̄ ′s ′

)
− δrs̄

ξ
α1
ks̄s ′

h̄(ω − ω1) − εkss̄

∇α2
k

(
ξ

α3
kss̄fs̄s

h̄(ω − ω[2]) − εkss̄

)]

+ 1

h̄ω−εkss ′

(
δrs̄ ′

ξ
α1

kss̄ ′ξ
α2

ks̄ ′s ′

h̄(ω−ω1) − εks̄ ′s ′

∇α3
k fks ′ s̄ ′

h̄(ω−ω[2])
− δrs̄

ξ
α2
kss̄ξ

α3
ks̄s ′

h̄(ω − ω1) − εkss̄

∇α3
k fks̄s

h̄(ω − ω[2])

)}
. (C1)

For s ′ = s̄, the two terms in each line cancel out by application of the Berry connection properties (85) and (86). This fixes s ′ = s,
and the �1 contribution reads as

�
(3),βα1α2α3
1 = i

h̄ω

∑
s

v
β

kss

{
1

h̄(ω − ω1)
∇α1

k

[
ξ

α2
kss̄ξ

α3
ks̄s fkss̄

(
1

h̄(ω − ω[2]) − εks̄s

+ 1

h̄(ω − ω[2]) − εkss̄

)]

+ ξ
α1
kss̄

h̄(ω − ω1) − εks̄s

∇α2
k

[
ξ

α3
ks̄sfkss̄

(
1

h̄(ω − ω[2]) − εks̄s

+ 1

h̄(ω − ω[2]) − εkss̄

)]
(C2)

+ 1

h̄(ω − ω[2])
ξ

α1
kss̄ξ

α2
ks̄s

(
1

h̄(ω − ω1) − εks̄s

+ 1

h̄(ω − ω1) − εkss̄

)
∇α3

k fkss̄

}
. (C3)

The �0 portion of the current for the two band material reduces to

�
(3),βα1α2α3
0 =

∑
r ′r s ′s

v
β

ks ′s
1

h̄ω − εkss ′

{
1

h̄(ω − ω1) − εkrs ′

(
δr ′ s̄ ′

ξ
α1
ksr ξ

α2
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ξ
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ksr ξ
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α2
kr̄s ′fkr̄r

h̄(ω − ω[2]) − εkrr̄

)

− 1

h̄(ω − ω1) − εksr

(
δr ′ r̄

ξ
α2
ksr̄ ξ

α3
kr̄r ξ

α1
rs ′fkrr̄

h̄(ω − ω[2]) − εkr̄r

− δr ′ s̄
ξ

α3
kss̄ξ

α2
ks̄r ξ

α1
rs ′fks̄s

h̄(ω − ω[2]) − εkss̄

)}
. (C4)

Since the Berry connection is even under k → −k, the velocity matrix element in band space (28) is written as the sum of two
contributions of opposite parity: an odd intraband term and an even interband term. The integration over the FBZ carries all odd
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terms, and so the intraband part of vkss ′ can be ignored: this fixes s ′ = s̄, and

�
(3),βα1α2α3
0 =

∑
r s

v
β

ks̄s

1

h̄ω − εkss̄

{
1

h̄(ω − ω1) − εkrs̄

(
ξ
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α2
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α3
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)
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ξ
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α3
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h̄(ω − ω[2]) − εkss̄

)}
. (C5)

Setting r = s and using (85) and (86), the first two terms of this expression cancel out; the last two cancel when r = s̄.
Finally, �0 reduces to

�
(3),βα1α2α3
0 = 2

h̄(ω − ω1)
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1

h̄ω − εkss̄

v
β
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{
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}
. (C6)
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