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The correspondence between curved space-times and inhomogeneous dielectrics has been recently explored
as a powerful tool to understand and manipulate novel electromagnetic behaviors in complex media. Here, we
present a theoretical investigation on the optics of radially anisotropic material from a geometric viewpoint. Within
the framework of transformation optics, we show that the optical medium with radial anisotropy is equivalent
to a disclination geometry, which is a line topological defect carrying singular curvature. By introducing a
geometric parameter characterizing the global topology of the disclination space, we systematically analyze
the effective geometry and the topological charge associated with two typical radial anisotropies consisting of
concentric multilayers or symmetric slices in both elliptical and hyperbolical regions. It is shown that elliptical and
hyperbolic radial anisotropies give rise to optical Riemannian and pseudo-Riemannian geometries, respectively.
Moreover, we investigate the wave optics as well as the semiclassical ray dynamics of light in the metamaterials
at optical wavelengths from the perspective of coordinate transformation. It is found that the singularity acts
on the light with an attractive or repulsive inverse cube force, depending on the topological charge. Our theory
provides a simple and unified framework for light in optical media of various radial anisotropies and may shed
new light on the dynamics of classical and quantum waves in topological nontrivial space.
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I. INTRODUCTION

Radial anisotropy refers to the optical medium whose
constituent tensors ε and/or μ are diagonal in cylindrical or
spherical coordinates. Since its inception in the early 1970s,
radial anisotropy has been initially bound to the study of the
far-field response of spherical particles coated with oriented
molecule layers in bioengineering [1], anisotropic hollow
particles [2], and microdroplets of nematic liquid crystal [3,4].
Over the past few years, however, there has been a renewed in-
terest in analyzing and understanding the anomalous response
of electromagnetic waves in radially anisotropic media in the
research field of metamaterials. Benefiting from the conceptual
development of the effective medium theory as well as the
technical advances in micro- and nanofabrication, radially
anisotropic metamaterials ranging from microwave to visible
region have been experimentally implemented in cylindrically
or spherically subwavelength concentrically multilayered or
radially symmetric sliced structures. The electromagnetic
response of radially anisotropic material has attracted intensive
research interest for both fundamental and application reasons.
One of the most intriguing features of the radial anisotropy
stems from the fact that the dispersion relation of the radially
anisotropic material can be engineered to some unprecedented,
extreme forms by artificially tailoring the principal values
of the constituent tensors. In particular, the isofrequency
surface of transverse magnetic (TM) polarized waves becomes
hyperbolic if the principal components of the permittivity
or permeability tensor are of opposite signs [5,6]. The
hyperbolically radial anisotropy enables the conversion from
evanescent waves to propagating waves, thereby breaking the
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diffraction limit of classical optics for far-field superresolution
imaging [7–10]. Moreover, homogeneous and inhomogeneous
radial anisotropies have also found applications in various
areas such as electromagnetic cloaking [11–13], extraordinary
scattering [14–16], and anomalous absorption [17].

In the present work, within the framework of transforma-
tion optics [18–20], we present a geometric theory for the
electromagnetic response of cylindrically radial anisotropy
with both elliptical and hyperbolic responses. Transformation
optics, which roots on the formal invariance of Maxwell’s
equations under holonomic spatial coordinate transformation,
provides a powerful approach for novel electromagnetic
device design and deep understanding of the behaviors of
electromagnetic waves in homogeneous and inhomogeneous
media or subwavelength plasmonic nanostructures [21] with
the wave phenomena in curved space. Although there have
been a great deal of theoretical and experimental investiga-
tions, including physical applications [20–28] together with
theoretical extensions [29–36], most previous reports have
utilized continuous, integrable coordinate transformations,
which preserve the space topology upon the transformations.
Perhaps an exception is the work of Horsley [37], where a
two-dimensional (2D) index singularity was mimicked by a
sculpted surface of low contrast, isotropic material. So, it is
interesting to investigate the physical effects of novel coordi-
nate transformations with topological singularities in physical
space. In this work, we theoretically demonstrate that the opti-
cal medium, with either ordinary elliptically or hyperbolically
radial anisotropy, represents a class of topologically nontrivial
curved spaces, which are known as disclinations in con-
densed matter physics and cosmic strings cosmology [38–40].
Disclinations are one-dimensional topological defects car-
rying curvature singularity in the origin. Previously, we
have analyzed the topological nature of the transformed
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FIG. 1. (a) Schematic construction of a disclination space with
the angular coordinate transformation of a Volterra process: removing
a sector AOB from a flat space and gluing the remaining part
by sticking the boundaries OA and OB. (b, c) The metamaterial
realization of cylindrically radial anisotropies based on concentric
multilayers (b) and symmetric slices (c), which are continuous or
periodic, respectively.

space and the propagation of light inside the transformation
medium of disclination in the elliptical region [41]. In
this work, we further demonstrate that metamaterials with
cylindrically radial anisotropy are geometrically equivalent
with the curved spaces of disclinations, and we investigate
the effective geometry for various metamaterial realizations
of both elliptical and hyperbolic responses. Our motivation
comes from the relationship between the radially anisotropic
metamaterials and their stratified counterparts with uniaxial
Cartesian anisotropy. In general, there are two types of
Cartesian anisotropies with principal values ε‖ and ε⊥ [5,6],
which consist of either periodically stacked flat multilayers
or arrays of parallel nanowires. Geometrically, the radially
anisotropic counterparts based on the effective medium of
periodically concentric multilayers or symmetric slices with
εr and εθ can be created by a combined cut and glue process
from the uniaxial Cartesian anisotropy. For instance, removing
a sector with a deficit angle �θ = 2πα, (0 < α < 1) from a
stratified parallel multilayered medium, as shown in Fig. 1(a),
and gluing the remaining part by sticking the two dashed
boundaries together leads to the radially anisotropic structure
of concentrically multilayered shells shown in Fig. 1(b).
Similarly, Fig. 1(c) illustrates the construction of another
type of radial anisotropy consisting of radially symmetric
slices from a parallel nanowire array structure. Note that
the proposed angular transformation does not depend on
the z coordinate. Consequently, εz can take any constant
value, and the metamaterial can be either homogeneous or
periodic [23,42] along the z direction, as can be seen in the
right panels of Figs. 1(b) and 1(c). The above construction is
reminiscent of the classical Volterra’s cut and glue process in
elastic or crystalline solids where applying the cut and glue
process to a continuum leads to a line topological defect such
as dislocation or disclination, which breaks the translational or
rotational spatial symmetry [38,39]. As a result, a straight light

ray in the flat space is bent under the coordinate transformation
[see the purple lines in Fig. 1(a)]. As previously pointed out
in [41], the Volterra construction of disclination defines a
linear coordinate transformation in angular coordinates from
a trivial flat space to a topological nontrivial curved space
by removing or inserting a sector from the initial space,
resulting in an effective conelike space for the electromagnetic
waves. Here, we show that the ratio between the principal
anisotropic parameters εr and εθ defines a geometric parameter
α, which determines the spatial geometry and controls the
dynamics of the light rays and the electromagnetic waves in the
radially anisotropic medium. Moreover, the value of α for the
metamaterial can be either real or imaginary, depending on the
geometry and the working frequency for dispersive materials.
The geometric interpretation of the radial anisotropy provides
a unified description of light propagation in an ordinary or
hyperbolically radial anisotropic medium, revealing the deep
connection between transformation optics and a topologically
nontrivial optical medium. The proposed scheme will not only
provide a geometric interpretation of the optics of elliptically
and hyperbolically radial anisotropies, but it will also allow
applications beyond conventional transformation optics.

II. GEOMETRY OF THE RADIAL ANISOTROPY

The radial anisotropy is characterized by a diagonal permit-
tivity or permeability tensor in cylindrical or spherical coordi-
nates. Here, we only focus on the cylindrically anisotropic
permittivity with principal values εr and εθ for simplicity
and because it can be readily realized with subwavelength
dielectric or metallic inclusions [6,7]. The other component of
the permittivity, εz, can take any constant value. Without loss
of generality, we introduce a geometric parameter α from the
ratio between the principal parts:

α2 = εr

εθ

. (1)

Here, we neglect the imaginary part of the permittivity in all
the geometric analyses, since the metric tensors in Riemannian
and pseudo-Riemannian geometry are assumed to be real. It is
evident that α2 is positive for a medium with an ordinary
elliptically dielectric response (εr and εθ > 0), while it is
negative when the medium has a hyperbolic response where
either εr or εθ is negative. Note that α is imaginary for the
hyperbolic case, which corresponds to the constituent medium
for the hyperlens.

For simplicity, we assume that all the εr , εθ , and α values are
independent from the cylindrical coordinates (r,θ,z). Under
this assumption, the radially anisotropic medium can be
described in curved geometry with the following line element:

ds2 = dr2 + α2r2dθ2 + β2dz2, (2)

where β is a real constant, the only nonzero components of the
metric tensor are grr = 1, gzz = β2, and gθθ = α2r2, and the
other components vanish identically. For α > 0, above metric
has a simple intuitive interpretation of the disclination in solids
or the spatial part of space outside of the cosmic strings. To
understand the geometry of the radial anisotropy, we compare
the interval in Eq. (2) with the line element in flat space:
ds2 = dr2 + r2dθ2 + dz2. It is easily to find that the interval
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in Eq. (2) can be obtained by the following transformation on
the angular coordinate:

r ′ = r, θ ′ = αθ, z′ = βz. (3)

Keeping the product ε × μzz invariant to satisfy the non-
magnetic condition, the transformed permittivity in Cartesian
coordinates corresponding to Eq. (3) takes the following form,

ε=

⎛
⎜⎝

sin2θ + α2cos2θ sin θ cos θ (α2 − 1) 0

sin θ cos θ (α2 − 1) sin2θ + α2cos2θ 0

0 0 α2
/
β2

⎞
⎟⎠εi .

(4)

If we only consider that the incident wave is TM polarized,
the permittivity in Eq. (4) can be diagonalized in cylindrical
coordinates to

εθ = εi, εr = α2εi . (5)

At the same time, the z component εz can take any constant
value by assuming a nontrivial background material or
simply tailoring β. Therefore, the radial anisotropy can be
interpreted as the curved geometry of the disclination with
coordinate transformation. It is worth noting that the proposed
transformation in Eq. (3) is the angular analogue of the sector
compression along the Cartesian coordinate in [43].

As pointed out previously, the radial anisotropy can be
obtained from the coordinate transformation described by the
cut and glue process on a homogeneous medium. The Volterra
construction indicates the nontrivial topological nature of the
radial anisotropy. From the symmetry analysis, the origin is a
singular point that lacks a well-defined coordinate transforma-
tion for the angular coordinate, which is also a major difference
compared to the sector compression in Cartesian coordinates.
Let us elucidate this point by examining the total change of
the angle θ associated with a closed loop in the original space
and its image in the physical space. We consider a closed loop
encircling the origin in the xy plane. In the original space, a
point moves along the loop for one round and returns to the
starting point with 2π angle difference, regardless of how the
actual trajectory is distorted. Under the coordinate transforma-
tion of Eq. (3), the image of the loop in physical space fails to
be closed, and the actual angle difference is 2π (1 − α). This
angle is also independent from the actual path, and so it can be
viewed as a topological invariant characterizing the topological
nature of the geometry. There is a straightforward geometric
interpretation for the radial anisotropy: 0 < α < 1 corresponds
to the removal of a wedge with the deficit angle �θ = 2πα

from the originally flat space, while α > 1 corresponds to
the insertion of a wedge into the original space. As is shown
in Ref. [41], disclination geometry with α �= 1 describes a
curvature singular space where the Riemann curvature tensor
is zero everywhere except at the origin, which is given by

R12
12 = 2π

1 − α

α
δ(2)(r), (6)

where δ(2)(r) is the 2D Dirac δ function defined in the xy

plane. An immediate consequence of Eq. (6) is that the singular
curvature can be either positive or negative depending on the
value of α: The curvature is positive if α is a positive real
number 0 < α < 1, while it is negative for the case α > 1,

and the curvature becomes zero for α = 1. In fact, the above
observation allows us to define a topological invariant by 1 −
α, where the sign indicates a positive or negative topological
charge. However, this definition is invalid for imaginary α. In
Sec. IV, we will define a general topological invariant based
on the semiclassical effective potential acting on the light ray.

In the above geometric analysis, we have theoretically
demonstrated the correspondence between radial anisotropy
with purely real or purely imaginary α and (pseudo)-
Riemannian geometry in relativity physics. In general, any
optical material should include loss or gain to fulfill the
causality principle. Therefore, α defined by Eq. (1) can be
complex valued if loss or gain is taken into consideration. How-
ever, the space-time geometry must be real. In the language
of transformation optics, this means we always work with
real coordinates. Since we are interested in the geometrical
aspect of radial anisotropy, we consider only the real part
of the permittivity in this work. If the coordinate transfor-
mation is generalized to complex coordinates [31,44,45], the
transformed material parameters become complex functions
of the space coordinates. However, this approach does not
describe the effective geometry of the radial anisotropy, since
the absorption of radially anisotropic material has nothing to
do with the coordinate transformation. Also, whether there is
an optical interpretation of complex space-time, which was
first proposed by Einstein in 1945 to include an antisymmetric
imaginary tensor into the metric Gμν = gμν + ibμν for the
classical unified field theory [46], is still an open problem.

The singular nature of the curvature indicates that the
space of radial anisotropy is locally flat except at the origin.
This can be verified from the interpretation of the coordinate
transformation based on the Volterra process. Applying the cut
and glue process to a paper leads to a 2D cone embedded in
three-dimensional flat space with the apex as a singularity. By
dropping the last term in the metric in Eq. (2), we can recover
the line element of the cone ds2 = sin−2φdr2 + r2dθ2. Here,
φ denotes the half angle of the cone, which links the z

coordinate with the radial coordinate r in the spherical polar
coordinates (r,θ,z) according to r = z tan φ. This construction
can be confirmed by observing that the deficit angle associated
with a cone is given by 2π (1 − sin φ), and so we can identify
that α = sin φ. The equivalence of the metric tensors means
the physics in a cylindrically radial anisotropic material is
topologically identical to the behavior on the conical surface.

The radial anisotropy has two types of metamaterial
realizations based on concentric multilayers or radial slices,
respectively. The corresponding permittivity for a concentric
multilayered metamaterial is given by

εθ = ηε1 + (1 − η)ε2, εr = ε1ε2

ηε2 + (1 − η)ε1
, (7)

where we define the filling factor of material 1 from η =
d1/(d1 + d2), where d1 and d2 are the thicknesses of the
materials with dielectric constants ε1 and ε2, respectively.
Combining Eq. (7) with Eq. (1), we obtain the following
expression

α−2 = 1 + η(1 − η)

(√
ε1

ε2
−

√
ε2

ε1

)2

. (8)
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FIG. 2. (a) α2 versus filling factor for two metamaterials consisting of Si/air concentric multilayers (blue) and radially symmetric slices
(red), respectively. Here, we neglect the dispersion of Si, and the permittivity of Si is set to be 11.56 (at 1550 nm). (b, c) Frequency dependence
of α2 on the filling factor for Ag/MgF2 concentric multilayers (b) and radial slices (c). In (b), the value of α2 is restricted from −20 to 20.

Since the second term in the right-hand side is nonnegative
for a nonabsorbing dielectric medium, the conical parameter
α satisfies

0 � α � 1 (9)

for any positive ε1, ε2, and ratio d1/d2. Here, the equality α = 1
holds for the homogeneous limit ε1 = ε2 or η = 1. This result
can be verified with a specific example of the Si/air system.
As shown in Fig. 2(a), αSi/air is less than 1 and larger than 0.54
for any filling factor. For simplicity, we have neglected the
dispersion of Si and chosen the permittivity of Si to be 11.56,
i.e., at 1550 nm. For the multilayered metamaterial structure,
the minimum value of α can be further decreased if we replace
Si with a larger index material.

For the radially sliced medium, the principal values of
permittivity are given by

εθ = (1 + η)ε1ε2 + (1 − η)ε2
2

(1 + η)ε2 + (1 − η)ε1
, εr = ηε1 + (1 − η)ε2,

(10)
with ε1 and ε2 denoting the permittivity of the wire and the
background medium, respectively. In this case, we have εr �
εθ for any ordinary dielectric with positive permittivity, and it
corresponds to the insertion of a sector with

α > 1. (11)

This can also be verified from the red curve in Fig. 2(a),
where a maximal α value of 1.4 is found when the filling factor
of Si approaches 0.7. From the above analysis, we find that
the two kinds of metamaterial realizations of radial anisotropy
correspond to the disclinations by removing or inserting a
wedge of constant deficit angle from or into a flat space,
respectively.

It has been shown that metamaterials based on ordinary
dielectrics with positive indices can realize real disclination
parameters depending on the specific geometry. We now turn
to the geometry of radial anisotropy with an imaginary α

by introducing strong dispersive materials. It is known that
α becomes imaginary in some special regions of η and λ

when plasmonic metals are included in the metamaterials,
indicating a hyperbolic dispersion. For this case, there is
no intuitive geometric picture, such as ordinary disclination
described above, because the spatial metric is no longer
definitely positive when α2 is negative. Actually, the coordinate

with a negative metric component behaves as a timelike
coordinate that turns the effective geometry of the radially
anisotropic medium from Riemannian space to a pseudo-
Riemannian space. This metric signature transition has been
reported in the study of hyper metamaterials [47]. Based on
the Minkowski-type metric of the hyperbolic metamaterials,
analogue relativistic physics can be realized in an optical
laboratory [47,48]. Here, we are interested in the dependence
of α2 on the geometric and electromagnetic parameters of the
metamaterials in the optical frequencies. Figures 2(b) and 2(c)
present the frequency dependence of α2 on the filling factor
for the concentric multilayered structure and the radial wire
structures, respectively. In the calculations, we have chosen the
constituent materials as Ag and MgF2, respectively. For bulk
Ag, the permittivity is taken from the experimental data [49].
The permittivity of MgF2, is taken as 1.9. For both geometries,
there exist clear regions separating positive and negative α2.
In the multilayered structure [see Fig. 2(b)], the deeply blue
region denotes the transition from −∞ to +∞ for α2 for a
filling factor smaller than 0.5 because of εθ → 0. The dashed
white line for filling factor larger than 0.5 denotes α2 = 0 due
to εr → 0, and larger values of |α2| can only be found in the
deep color region. It can be found that α2 is less than −1 in the
larger area below the transition region, while it is larger than
1 in the regions above the transition region. Extreme values
are found close to the transition region. For the radial sliced
medium shown in Fig. 2(c), the dashed white lines denote
α2 = 0, which separates the elliptical anisotropy region in the
higher frequencies from the hyperbolic anisotropy region in
the lower frequencies. It is very interesting to note that the
absolute value of α2 is less than 1 in most of the region (η,λ),
and the maximum value −α2 = 7.3 can be realized in a narrow
area in the infrared region. These results indicate that we can,
in principle, realize arbitrary α in a multilayered structure by
varying the filling factor and operating frequency, despite the
inevitable absorption and the precise control over the thickness
of each layer.

III. WAVE OPTICS IN RADIALLY ANISOTROPIC SPACE

In this section, we consider the wave optics for harmonic
waves in the 2D xy plane of a radially anisotropic medium.
For TM polarized incidence, the governing equation in curved
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space is given by [50](
1√
g

∂α(
√

ggαβ∂β) + k2
0

)
Hz = 0, (12)

where g = det(gαβ), ∇2 ≡ 1√
g
∂α(

√
ggαβ∂β) is the Laplacian

operator in Riemannian space, and k0 = ω/c is the wave
vector in a vacuum. For the radially anisotropic medium with
2D metric gαβ = diag(1,α2r2), the contravariant metric takes
the form gαβ = diag(1,α−2r−2). With this, the wave equation
takes the following form(

1

r

∂

∂r
r

∂

∂r
+ ∂

∂θ

1

α2r2

∂

∂θ
+ k2

0

)
Hz = 0. (13)

Assuming the geometric parameter α is independent from r

and considering the solution of the form Hz ∝ ψ(r) exp(imθ ),
we arrive at the following Bessel equation(

r2 ∂2

∂r2
+ r

∂

∂r
+

(
k2

0r
2 − m2

α2

))
ψ(r) = 0. (14)

Here, ψ(r) is the radial part of the magnetic field Hz, m is the
angular momentum mode number of the cylindrical waves.
Equation (14) is just the well-known wave equation for radial
anisotropy despite an overall factor εθ inside the brackets. The
solutions of the above equation are Bessel functions:

ψ(r) = c1Jm/α(k0r) + c2Ym/α(k0r), if α2 > 0,

ψ(r) = c3Im/α(k0r) + c4Km/α(k0r), if α2 < 0, (15)

where (Jm/α(k0r),Ym/α(k0r)) and (Im/α(k0r),Km/α(k0r)) are the
ordinary and modified Bessel functions of the first and second
kind, respectively. These solutions turn into the ordinary
Bessel function solutions in a flat space where α = 1. The
geometric picture of radial anisotropy not only gives an
alternative approach in deriving the wave Eq. (14), but it also
provides a geometric interpretation of the resolution limit of
the cylindrical (super)lens made from a radially anisotropic
medium. To be specific, we follow the analysis of the optical
hyperlens presented in [5]. A conventional lens is subject
to Abbe’s diffraction limit due to the uncertainty principle,
and it cannot reconstruct the image of an object with feature
size below λ/2 [51]. To overcome the diffraction limit, it
needs to convey information carried by a large wave vector
component to the far field. As shown in [5], the solutions
Hz ∝ ψ(r) exp(imθ ) with various m values can be considered
as distinct channels of various angular momentums. It is
known that the higher order ordinary Bessel function decays
exponentially at the origin, leading to vanishing coupling
between the higher angular momentum channels and the object
inside the radius of the caustic

Rc ∝ mλ.

From the geometric viewpoint, the nontrivial radial
anisotropy with α �= 1 leads to a factor on the order of
the Bessel function from m to m/α. This nontrivial factor
can be directly understood from the scale transformation
on the angular coordinate of the coordinate transformation.
Specifically, the caustic radius Rc decreases if α > 1 for
a given angular momentum mode m, while Rc increases
if 0 < α < 1, which can be found for various α = 0.7, 1,

FIG. 3. Ordinary Bessel functions Jm/α(k0r) of order m/α for m =
10 and α = 0.7 (blue), α = 1 (orange), and α = 1.3 (green). The
blue line indicates the modified Bessel function of the second kind
Km/α(k0r) of order m/α with m = 10 and α = 2.2, which corresponds
to solutions in hyperbolically radial anisotropy.

and 1.3 as shown in Fig. 3. As a result, a larger α leads
to a stronger coupling between the higher order angular
momentum mode and the object. Consequently, a concentric
layered structure based on ordinary dielectrics decreases the
resolution limit because its conical parameter less than 1.
On the contrary, the resolution limit will increase for sliced
structures. For hyperbolically radial anisotropy, the parameter
becomes imaginary α = i|α|. As a result, the solution changes
from the ordinary Bessel function, which diverges at the
origin, and leads to a strong coupling between the information
channels of higher angular momentum with the object, thereby
giving rise to the far field superlensing effect.

It is interesting to note that the azimuth transformation
supplemented with suitable radial coordinate transformation
can be used for designing a subwavelength cavity which
traps electromagnetic fields inside a subwavelength-bounded
region [52,53]. As pointed out above, the azimuth transforma-
tion relates the radial part of the solutions in vacuum and in
transformed space with a factor α−1 for the order of the Bessel
functions. Mathematically, the factor can be moved to the
angular part, i.e.,exp(imθ ) → exp(imθ/α) while keeping the
radial part argument invariant. In this regard, the azimuth mode
in the transformation region is different from the mode in the
neighboring vacuum region. Consequently, a single azimuth
mode in the subwavelength cavity in general can be used to
excite multiple azimuth modes in the vacuum region and vice
versa [53].

IV. RAY DYNAMICS IN RADIALLY ANISOTROPIC SPACE

In the present section, we analyze the ray dynamics of a
narrow light beam in a medium with cylindrical anisotropy
in the framework of transformation optics. For simplicity,
we only consider the equation of motion in a 2D xy plane,
since the supposed translational invariance in the z axis
introduces no new effects for light propagation. To fulfill the
geometric optics approximation, it is assumed that the effect
of curvature is small compared to the incident wavelength, i.e.,
the characterized dimension of the metamaterial structure is
much smaller than λ. It should be pointed out that this condition
does not hold for large radius. We first derive the geodesic
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equation in curved space from the straight-line trajectory
in a homogeneous medium with the help of coordinate
transformation. A light ray in a homogeneous medium or a
flat space follows the straight-line equation, which is defined
by the parameter equation

ẍa = 0, (16)

where “.” stands for ∂/∂t . Under a coordinate transformation:
xa → xα(xa) (a,α = 1,2,3), Eq. (16) can be easily trans-
formed to physical space by employing the chain rule:

ẍγ + �
γ

αβẋαẋβ = 0, (17)

where �
γ

αβ = ∂xγ

∂xa
∂2xa

∂xα∂xβ . Rewrite �
γ

αβ = eγ · ∂β eα with eγ =
�

γ
a ea , and we can find that �γ

αβ turns to be the usual Christoffel
symbol of the second kind in Riemannian physical space:
�

γ

αβ = 1/2gγ δ(∂αgβδ + ∂βgαδ − ∂δgαβ) [50], if the physical
space is torsionless or the coordinate transformation is in-
tegrable, i.e., ∂α�a

β − ∂β�a
α = 0. Here, ea = (i, j ,k) denote

the basic vectors in the original Cartesian system satisfying
ea · eb = δab. It should be pointed out that although we are
working with Cartesian coordinates in arriving at Eq. (17),
the geodesic equation holds for any holonomic curvilinear
system. This means the equation of motion is the geodesic
equation in curved space as well as in flat space with curvilinear
coordinates [50]. For the disclination metric, the nonzero
Christoffel symbols are �r

θθ = −α2r and �θ
rθ = �θ

θr = r−1.
From the nonzero components of �

γ

αβ , we obtain the coupled
equations of motion in polar coordinate:

r̈ − α2rθ̇2 = 0, θ̈ + 2ṙ θ̇ = 0. (18)

These equations indicate that the motion of a light beam
due to radial anisotropy is similar to the orbital motion of a
classical charged particle in a central Coulomb potential. In
addition, the first integrals from angular momentum and total
energy conservation for these two equations are

α2r2θ̇ = L,
ṙ2

2
+ L2

2α2r2
= E, (19)

where the integral constants L and E are the angular momen-
tum and energy of the system [54], respectively.

Before analyzing the ray dynamics in detail, we pay
attention to the first integral of energy conservation. From the
radial kinetic energy in Eq. (19), the photon can be regarded
as a charged particle, while the effective potential is an inverse
square function of the radius V ′(r) = L2/2α2r2. To gain deep
physical insights on the features of the light ray, we separate
the rotational energy from the potential according to

V ′(r) = L2

2r2
+ V (r), (20)

where L2/2r2 is the rotational energy of the point particle
appearing in polar coordinates [48], and the real potential V (r)
is thus given by

V (r) = 1 − α2

α2

L2

2r2
. (21)

Obviously, the potential can be attractive or repulsive,
depending on the value of α2. If α2 < 0, the potential is
negative, and so it represents an attractive potential for the test

FIG. 4. Dependence of the topological charge on the parameter
α2, where the green dot indicates zero topological charge Q when
α = 1. Different colors in the curves indicate attractive (red, purple)
or repulsive (orange) potentials.

photon. At the same time, the metric gives rise to a pseudo-
Riemannian geometry. We can identify that the effective
geometry of the anisotropic medium is similar to a pseudocone:
If 0 < α2 < 1, the potential is still attractive; however, the
metric tensor describes the geometry of a hyperbolic cone
that corresponds to a negative curvature singularity. If α2 > 1,
the potential is repulsive, which corresponds to an ordinary
conic geometry. It can also be found that the beam follows a
spiral-like trajectory despite the strongly anisotropic scattering
due to the failure of the effective medium model at larger
radius for sectored geometry. Consequently, we can define the
following topological charge

Q = 1 − α2

α2
. (22)

The above definition is a direct generalization of the
topological charge defined in Ref. [41]. From the potential
V(r), we find that a medium with topological charge Q acts
on the light similar to the motion of a charged particle in a
Coulomb potential. Obviously, the definition in Eq. (22) can
be applied for either real or imaginary α. The dependence of Q

on the geometric parameter α2 is depicted in Fig. 4. It is found
that the topological charge is positive only if 0 < α2 < 1; it is
negative when α > 1 or α is imaginary. By analogue with the
motion of the point particle in the classical Kepler problem,
the semiclassical dynamics of the photon in a positive charge
system are totally different than the motion in the potential
with negative topological charge.

Because the real potential is a power-law function of radial
distance of order −2, V (r) ∝ r−2, the concentric force F (r) ∝
r−3, which is different than an inverse square force such as
gravity or electrostatic force. Physically, only the power-law
attractive force with order n > −3 is capable of stable circular
orbits [54]. As a result, the radial anisotropy does not support
stable closed orbits for light rays. In principle, the motion
equation can be solved from the conservation laws. However,
the equation of motion for the light ray studied here can
be directly obtained from the coordinate transformation from
the rays in the original space without solving the differential
equations. In polar coordinates, the straight-line equation takes
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FIG. 5. Ray tracing for photon in a space with different conical
parameters: (a–c) α = 1.1, 1.3,and 3; (d–f) α = 0.8, 0.6,and 0.4.

the following form

r cos(θ − θ0) = r0, (23)

where r0 = L/
√

2E. With the coordinate transformation in
Eq. (3) with nontrivial α, we can obtain the motion equation
by making the substitution θ → αθ as we have done for the
wave dynamics. Explicitly, the geodesics in physical space are
given by

αr cos(α[θ − θ0]) = r0, if α2 > 0,

|α|r cosh(|α|[θ − θ0]) = r0, if α2 < 0. (24)

Here, we have made the substitution cos αθ → cosh |α|θ for
imaginary α and yield the corresponding geodesic equation.
Equation (24) with cosh describes the spirallike trajectory for
light in a hyperbolically radial anisotropic medium, which
has been previously reported [6], while the trajectories in
elliptically radial media are open orbitals. Here, we emphasize
that the spiral motion has the same geometric origin as the
case of ordinary radial anisotropy.

From the above nonradial geodesic equations, we can solve
the trajectories of light rays in a radially anisotropic medium.

Because the spiral motion has been studied in the context of
a perfect lens [8], here we only focus on the case of positive
α. According to the analysis in Sec. II, a positive α has an
intuitive geometric meaning: α > 1 corresponds to inserting
a wedge, while 0 < α < 1 results from removing a wedge
from flat space. In this geometric scenario, a straight line,
which represents the light ray in the original flat space, is
bent away from the singularity when a wedge is inserted,
indicating a repulsive potential. In contrast, the straight line
is bent inwards to the singularity when a wedge is removed,
indicating an attractive potential. This geometric analysis is
consistent with the classification of topological charges where
Q has opposite signs for 0 < α < 1 and α > 1. To verify the
intuitive analysis, we present the trajectories of light rays in
media with different positive α. The solutions are numerically
solved with the particle tracing module of the commercial finite
element method solver Comsol. As predicted, the ray can be
repelled or attracted by the origin, following a series of orbits
depending on the incident direction and the different arguments
in the cos or cosh functions. Figures 5(a)–5(c) show the ray
dynamics for a medium with α = 1.1, 1.3, and 3, respectively.
It is found that the light ray is repelled by the singularity, and
the deflection angle increases with α. In addition, an important
feature for α > 1 is that, by the geometric construction, there
exist two asymptotes that are equal to one half of the deficit
angle. Parallel light rays coming from the left would never
enter the region bounded by the asymptotes. For 0 < α < 1,
the light ray is attracted by the radial anisotropy because of the
removal of a wedge from the flat space, which can be seen in
Figs. 5(d)–5(f), where α is 0.8, 0.6, and 0.4, respectively. It is
interesting to notice that the light ray can make a turn around
the defect for small α while the orbit is still open.

To further validate the theoretical analysis, we performed
full-wave electromagnetic simulations using the RF module of
Comsol. In Figs. 6(a)–6(c), we present the propagation of a TM
polarized Gaussian beam in concentric multilayered structures
of dielectrics with varied α. In the calculation, the incident

FIG. 6. Full-wave simulated |H |2 distribution of a light beam in concentric multilayered structures (a–e) and symmetric sliced structures
(f–j), both with varied α. The structure parameters in (a–c) are d1:d2 = 1:5,1:2, and 1:1, and the values of permittivity are ε1 = 1 and ε2 = 11.56.
The corresponding α is 0.6537, 0.564, and 0.5414, respectively. In (d), α = 2.4i, d1:d2 = 1:1, ε1 = 0.9, and ε2 = −0.4. In (e), α = 1.333i,
d1:d2 = 1:1, ε1 = 1.6, and ε2 = −0.4. (f–h) The structure parameters of the symmetric slices are: θ1:θ2 = 3:1,1:1, and 1:3, and the values
of permittivity are ε1 = 1 and ε2 = 11.56. The corresponding α is 1.1789, 1.1538, and 1.0874, respectively. In (i), α = 1.975i, θ1:θ2 = 1:1,
ε1 = 1, and ε2 = −2.5. In (j), α = 4.15i, θ1:θ2 = 1:1, ε1 = 1.4, and ε2 = −4.
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wavelength is chosen to be 1600 nm, the lattice spacing along
the radial direction d1 + d2 is 160 nm, and the thickness ratios
for materials 1 and 2 are d1:d2 = 1:5,1:2, and 1:1, respectively.
Here, we only consider a moderate aspect ratio that can be
realistically implemented with nanofabrication methods. The
two constituent materials are chosen to be air and Si, and the
corresponding geometric parameter α is 0.6537, 0.564, and
0.5414, respectively. It is shown that the beam is attracted
by the singularity as the motion of a massive point particle
in a central gravitational field. The observed attraction is
in agreement with Volterra’s construction of the cone with
α < 1 by removing a wedge from a flat space. As the filling
factor increases, the curvature radius of the trajectory becomes
larger. Here, a smaller α indicates a sharper disclination, hence
bending light stronger. For comparison, we present the light
propagation in Si/air symmetric sliced metamaterial structures
with different angle ratios 1:3, 1:1, and 3:1 in Figs. 6(f)–6(h).
The corresponding α is 1.179, 1.154, and 1.1, respectively. It is
found that the reflection angle decreases with the filling factor
as expected. Contrary to the open orbits in the elliptical region
shown in Figs. 6(a)–6(c) and 6(f)–6(h), the trajectories follow
Poinsot spirals inside the hyperbolically radial anisotropic
media for imaginary α. Figures 6(d) and 6(e) show the
propagation of a light beam by radially anisotropic media
consisting of alternative concentric multilayers of the same
thickness. Here, the permittivity of material 2 is ε2 = −0.4,
while that of material 1 is ε1 = 0.9 and ε1 = 1.6, respectively.
It is found that the beam is attracted to cross the origin
with a spirallike trajectory. Similarly, the scattering of light
beams in the hyperbolically sliced metamaterials with the same
angle is shown in Figs. 6(i) and 6(j). Here, the permittivity
of material 1 is chosen as ε1 = 0.4, while ε2 = −2.5 and
ε2 = −4, respectively. It should be pointed out that it is not
a good approximation to regard the beam as a light ray of
zero size when the beam is close to the origin because of the

following reasons: First, the anisotropy varies strongly near
the origin, which gives rise to an anisotropic response for the
different regions of the beam. Second, the beam can overlap
the origin due to the beam’s finite width, by which the light
can re-emit from the origin as shown in Fig. 6(d).

V. CONCLUSIONS

In summary, we have presented a geometrical interpretation
for the optical response of radially anisotropic materials from
the viewpoint of transformation optics. It is shown that the
radial anisotropy resembles the curved geometry of the line
topological defect known as disclination, with the origin
behaving as a topological singularity. We have systematically
investigated the effective geometry for radially anisotropic
metamaterials consisting of concentric multilayers and sym-
metric slices. Depending on the parameter selection, the
radial anisotropy can be equivalent to Riemannian geometry
or pseudo-Riemannian geometry. The associated topological
charge determines the optical properties from wave optics as
well as ray dynamics and provides an alternative explanation
for the radially anisotropic lens and beam steering with radial
anisotropy. Our theory not only gives a geometric view for
radial anisotropy, but also an approach to control electromag-
netic waves with topological nontrivial configurations beyond
the well-known vortices from computer-generated holograms,
and it is excepted that the same scheme can also be applied to
the other classical and quantum systems.
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