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Super-micron-scale atomistic simulation for electronic transport with atomic vibration:
Unified approach from quantum to classical transport
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We develop a powerful simulation method that can treat electronic transport in a super-micron-scale open
system with atomic vibration at finite temperature. As an application of the developed method to realistic
materials, we simulate electronic transport in metallic single-walled carbon nanotubes from nanometer scale to
micrometer scale at room temperature. Based on the simulation results, we successfully identify two different
crossovers, namely, ballistic to diffusive crossover and coherent to incoherent crossover, simultaneously and with
equal footing, from which the mean free path and the phase coherence length can be extracted clearly. Moreover,
we clarify the scaling behavior of the electrical resistance and the electronic current in the crossover regime.
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I. INTRODUCTION

Electronic transport properties depend on the system size
especially for low-dimensional systems. When the system
length L is much shorter (longer) than the mean free path
Lm, transport occurs in a ballistic (diffusive) manner. For
ballistic transport, the electrical resistance R is independent
of L and is quantized with a universal value of h/(2e2M),
where h is the Planck constant, e is the elementary charge,
and M is an integer [1–3]. On the other hand, for diffusive
transport, R is proportional to L, as described by Ohm’s law.
There is another way to characterize the transport behavior.
When L is much shorter than the phase coherence length
Lφ , the transport exhibits quantum interference effects, such
as the Aharonov-Bohm effect [4] and Anderson localization
[5]. Conversely, when L � Lφ , the particle nature dominates,
where interference effects do not occur. Thus far, transport
properties have been studied based on different transport
theories depending on the transport regime. Therefore, it
is less clear how we treat and understand the intermediate
regime between different transport regimes from the ballistic
(coherent) transport to the diffusive (incoherent) transport.

Understanding the transport properties in the intermediate
regime is very challenging from both scientific and engineering
viewpoints. For example, a single-walled carbon nanotube
(SWNT) is an ideal realistic material for investigating various
aspects of electronic transport in a one-dimensional system,
including the intermediate regime, because the length of an
SWNT ranges from the nanometer scale to the microm-
eter scale. There are some numerical simulation methods
for investigating the transport properties, for example, the
nonequilibrium Green’s function (NEGF) method [6–8], the
Wigner Monte Carlo method [9–11], and the single-electron
density matrix method [12]. However, such methods are
practically difficult to calculate electronic transport properties
for realistic system size although they are applicable to these
phenomena in principle. Another practicable method available
for such a purpose is the order-N calculation method developed
by combining the wave packet diffusion (WPD) method

with the molecular dynamics (MD) simulation, which can
make the transport calculation for a huge system possible using
the Kubo-Greenwood formula [13–15]. One drawback of the
WPD method is that it cannot treat nonequilibrium transport at
finite voltages among multiple reservoirs because this method
is based on linear response theory with a single reservoir.
Another drawback is that local physical quantities, such as
the spatial distribution of electronic current, are difficult to
be obtained in a straightforward manner. The time-dependent
Schrödinger equation method for an open system [16–18]
(hereinafter called open TDSE method) is the effective one
that overcomes the above-mentioned drawbacks. In the present
study, we thus develop a powerful simulation method by
combining the open TDSE method with the MD simulation,
which can seamlessly treat all transport regimes including
intermediate regime, and elucidate the electronic transport of
such a crossover regime in a large-scale open system.

II. MODEL AND SIMULATION METHOD

In the present study, we develop a powerful simulation
method on super-micron-scale atomistic simulation for elec-
tronic transport with thermal atomic vibration by combining
the open TDSE method [17,18] with the MD simulation.
The open TDSE method can treat a system having over one
million atoms within order-N simulation with a Hamiltonian
represented by the localized basis such as the atomic orbital
basis and the real space basis, can be applied to an open system,
and can obtain local quantities of the wave function that give
the spatial distribution of various physical quantities. The
Hamiltonian is determined depending on the motions of atoms
controlled by the MD simulation. As a result, the developed
method can simulate the electronic transport in a large-scale
open system with atomic vibration due to all lattice vibration
modes, including the anharmonicity of the potential variation,
without any additional numerical cost. Moreover, the method
provides an intuitive understanding of the electrical resistance
R similar to the Landauer-Büttiker/NEGF formalism. Using
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FIG. 1. Simulation model consists of three regions: the central
region, the left lead, and the right lead. The central region is composed
of a scattering region with atomic vibration and two buffer layers
without vibration, each of which is composed of two unit cells. The
central region is sandwiched between the two semi-infinite leads
without atomic vibration.

this simulation method, we compute R for an individual
armchair metallic SWNT within the wide band limit scheme.

A. Model

In this subsection, we provide the simulation model con-
sidered in the present study. As shown in Fig. 1, the simulation
model consists of three regions: the central region (C), the left
lead (L), and the right lead (R). The central region is composed
of a scattering region including a finite-length SWNT with
atomic vibration and two buffer layers, each of which includes
two unit cells without atomic vibration. The buffer layers are
set to calculate the current jε,n(t), as described later. The
central region is sandwiched in between the left and the right
leads, which are, respectively, composed of a semi-infinite
SWNT without atomic vibration and assumed to connect to an
electron reservoir that is always in thermal equilibrium. The
Hamiltonian operator Ĥ (t) for the above-described system is
obtained as

Ĥ (t) = Ĥ CC(t) +
∑

γ=L,R

(Ĥ γ γ + Ĥ Cγ ), (1)

where Ĥ CC(t) is the time-dependent Hamiltonian in the central
region, Ĥ γ γ is the time-independent Hamiltonian in the lead
γ (γ = L,R), and Ĥ Cγ is the coupling Hamiltonian between
the central region and the lead γ . In the present study, we use
the π -orbital orthogonal tight-binding Hamiltonian. Ĥ CC(t)
is obtained as

Ĥ CC(t) = −
∑
〈i,j〉

γij (t) |i〉 〈j | −
∑

i

εi |i〉 〈i| , (2)

where 〈i,j 〉 implies that the sum is taken only between nearest
neighbor ith and j th carbon atoms, γij (t) is the corresponding
hopping integral, and εi is the on-site energy on the ith carbon.
γij (t) is obtained by the Harrison rule [22],

γij (t) = γ0
| �R0,i − �R0,j |2

| �Ri(t) − �Rj (t)|2 , (3)

where γ0 = 2.7 eV, �R0,i is the position of the ith carbon in
the optimized geometry, and �Ri(t) is one at time t . �Ri(t) is
obtained from the classical MD simulation within the NTV
ensemble [19] using the velocity scaling scheme [20,21],
where thermal equilibrium is assumed. However, the atoms in

the two buffer layers are fixed at the optimal positions because
they do not vibrate. Therefore, Ĥ Cγ and the hopping integral
in the two buffer layers of Ĥ CC(t) do not depend on time. In
the present study, we set εi to be 0 eV.

B. Simulation method

In this subsection, we explain the simulation method for the
simulation model shown in Fig. 1. According to the Landauer-
Büttiker formalism for steady-state transport, the electrical
conductance in the low bias limit is expressed as

G(εF) = G0

∫ ∞

−∞
ζ (ε)

(
−∂f (ε − εF)

∂ε

)
dε, (4)

where εF is the Fermi energy, G0 ≡ 2e2/h is the quantum
conductance, f (ε − εF) is the Fermi distribution function, and
ζ (ε) is the effective transmission function including the phase-
breaking effect due to the electron-phonon scattering [3] in the
scattering region. The effective transmission function ζ (ε) can
be expressed from its definition as

ζ (ε) ≡
∑

n

j out
ε,n

j in
ε,n

. (5)

Here, j in
ε,n is the time-independent dimensionless current

injected from the left lead with a certain energy ε and a band
index n, j out

ε,n is the steady-state current defined as

j out
ε,n = lim

t→∞
1

t − t0

∫ t

t0

jε,n(t ′)dt ′, (6)

and t0 is a certain time in a steady state. In Eq. (6), jε,n(t),
defined by Eq. (16) below, is the time-dependent dimensionless
current flowing from the layer R1 to the layer R2 with ε and
n (see Fig. 1 from the definitions of R1 and R2). When j out

ε,n

and j in
ε,n are always constant to j out

εF,n and j in
εF,n around εF, which

is valid for a metallic SWNT at room temperature due to the
linear dispersion, Eq. (4) becomes

G(εF) = G0ζ (εF). (7)

To obtain jεF,n(t), we solve the Schrödinger equation for an
open system with the tight-binding Hamiltonian. Within the
central region, the time evolution of the wave function vector
��C

±,εF,n(t) with εF and n is described by

ih̄
∂ ��C

±,εF,n(t)

∂t
= H CC(t) ��C

±,εF,n(t) + �Sγ
±,εF,n(t) + �D±,εF,n(t),

(8)

where h̄ ≡ h/2π is the Dirac constant, H CC(t) is the Hamil-
tonian matrix with the atomic orbital basis, and the subscript
of +(−) indicates the right-going (left-going) state. �Sγ

±,εF,n(t)
represents influx of electrons from the lead γ , and is given by

�Sγ
±,εF,n(t) = H Cγ

�φγ
±,εF,n√

vn

exp
(
−i

εF

h̄
t
)
. (9)

Here, �φγ
±,εF,n is the wave function vector in the isolated lead

γ normalized by the number of atoms in a unit cell, and vn is
the group velocity of �φγ

±,εF,n toward the central region, which
is introduced to make jεF,n(t) dimensionless [3]. �D±,εF,n(t)
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represents outflux of electrons from the central region into the
two leads. �D±,εF,n(t) is given by

�D±,εF,n(t) = (	L(εF) + 	R(εF)) ��C
±,εF,n(t), (10)

using the retarded self-energy 	γ (εF) due to the lead γ

within the wide band limit scheme. Details of derivation of
Eqs. (8)–(10) are provided in Appendix A. Here, the point
is that �φγ

±,εF,n and 	γ (εF) can be calculated using the mode
matching method enabling one to treat the realistic structure
like an SWNT [23,24].

As an initial state required in the time-evolution simulation
based on Eq. (8), we choose the wave function in a steady
state for the time-independent optimized system [25]. In this
simulation, Eq. (8) is discretized based on the finite difference
scheme:

Ū (t) ��C
±,εF,n(t + 
t) = U (t) ��C

±,εF,n(t) + �s γ
±,εF,n(t), (11)

where 
t is the time spacing. Ū (t) and U (t) are, respectively,
given as

Ū (t) = I + i
t

2h̄
Heff(t + 
t), (12)

and

U (t) = I − i
t

2h̄
Heff(t). (13)

Here, I is the unit matrix, and the effective Hamiltonian matrix
Heff(t) is defined as

Heff(t) ≡ H CC(t) + 	L(εF) + 	R(εF). (14)

�s γ
±,εF,n(t) is represented by

�s γ
±,εF,n(t) = − i
t

2h̄

(�Sγ
±,εF,n(t) + �Sγ

±,εF,n(t + 
t)
)
. (15)

In the absence of the influx and the outflux terms, Eq. (11)
reduces to Cayley’s form for wave packet propagation in a
closed system [26], meaning that Eq. (11) is Cayley’s form
generalized for an open system.

From ��C
+,εF,n(t), we can calculate the dimensionless current

jεF,n(t) using the following relationship:

jεF,n(t) = 2a

h̄
Im

[( ��R2+,εF,n(t)
)†

H R2,R1 ��R1+,εF,n(t)
]
, (16)

where a is the length of a unit cell, ��R1(2)
+,εF,n(t) is the

wave function vector in the layer R1(R2), and H R1,R2 is the
Hamiltonian matrix connecting R1 and R2.

We present our calculation results for the electronic
transport properties in an individual armchair SWNT, char-
acterized by the chiral index (m,m) with 4m carbon atoms
in a unit cell [27,28]. In the present study, we use a
pristine SWNT, i.e., without any vacancies or defects,
as a model system to focus on the effect of electron-
phonon scattering. We treat the phonons by the classical
MD simulation, where the occupation for phonons with high
energy is overestimated in general. However, in the low
bias limit at room temperature as considered in the present
study, the electron-phonon scattering is mainly dominated by
acoustic phonons [29,30], meaning that the occupation of high
frequency phonons is not an influential factor and thus the use
of the classical MD simulation can be effectively justified. We
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FIG. 2. Time t dependence of the cumulative average j εF
(t) at

300 K for a (5,5)-SWNT from 0 to 200 ps. j εF
(t) arrives at a steady

current as t → ∞ for every L.

use the optimized Tersoff potential [31] for C-C bonds, which
reproduces the phonon dispersion of an SWNT very well, in
the constant temperature MD simulation, where 
t = 0.1 fs
is the time spacing in Eq. (11), and εF = 0 eV in Eq. (16). The
initial state at t = 0 is the steady state that the current flows
without atomic vibration [25]. We start the atomic vibration
from t = 0.

III. RESULTS AND DISCUSSION

A. Time-dependent current

In this subsection, we discuss the time-dependent current.
Figure 2 shows the time t dependence of the cumulative
average defined as

jεF
(t) ≡ 1

t

∑
n

∫ t

0
jεF,n(t ′)dt ′, (17)

for a (5,5)-SWNT with a system length L of 50 to 2501 nm
(200 to 10 000 unit cells) from 0 to 200 ps. As shown in
Fig. 2, jεF

(t) decreases rapidly as t varies from 0 to 10 ps, and
finally becomes constant for specific values of L, indicating the
establishment of a certain steady state. The constant value of
jεF

(t) becomes smaller as L increases because electrons suffer
from the electron-phonon scattering more significantly. Note
that while these converged current values are evaluated for
electrons injected from the left lead, ones for electrons injected
from the right lead exhibit similar behavior. We regard jεF,n(t)
from 160 to 200 ps as the steady-state current and calculate
R = G−1 based on Eq. (7).

B. Electrical resistance and mean free path

Figure 3 shows the system length L dependence of R of an
armchair SWNT for four different diameters dt at 300 K with
lengths ranging from 2.5 to 3000 nm (10–12 000 unit cells).
This figure clearly shows that the transport regime seamlessly
changes from ballistic to diffusive transport. In the limit
L/Lm → 0, R reaches half the quantum resistance (R0/2)
because the number of conduction channels is 2 regardless of
L, where Lm is the mean free path. On the other hand, in the
limit L/Lm → ∞, R is proportional to L. In the following,
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FIG. 3. System length L dependence of the electrical resistance
R of an armchair SWNT at 300 K. The error bars originate from the
standard error of jεF,n(t) from 160 to 200 ps per 1 ps. The dotted line
represents R = (R0/2)L/Lm in the diffusive limit at L/Lm → ∞,
where Lm is the mean free path, and the dash-dotted line represents
R = R0/2 in the ballistic limit at L/Lm → 0. The inset shows that
the diameter dt dependence of Lm at 300 K as Lm = 366.6dt . The
error bars originate from those of R.

let us discuss the transport properties in the diffusive and the
ballistic regimes in detail. The L dependence of R in the
diffusive regime is described by

R = R0

M

L

Lm
(L/Lm � 1), (18)

where R0 = G−1
0 is the quantum resistance and M is the

number of conduction channels [3] (M = 2 for an armchair
SWNT at εF). Comparing Eq. (18) with the simulation results
shown in Fig. 3, we can estimate Lm for an SWNT with
diameters dt as shown in Appendix B. Knowing the value
of Lm, we can identify the following two distinct transport
regimes. For L/Lm � 1, R shows Ohm’s law as described
by Eq. (18) (the dotted line in Fig. 3). On the other hand,
for L/Lm � 1, R is equivalent to R0/2 (the dash-dotted
line in Fig. 3) characterizing the ballistic transport. We then
consider the intermediate regime around L/Lm ∼ 1 between
the ballistic and the diffusive transport regimes, referred to as
the quasiballistic transport regime. Interestingly, even in the
quasiballistic regime, R with various dt can be expressed by a
single curve with respect to L/Lm. Thus, we found that R for an
armchair SWNT in the entire regime from ballistic to diffusive
transport regimes follows the scaling law R = f (L/Lm).

The inset in Fig. 3 shows the dt dependence of Lm for (3,3),
(5,5), (8,8), and (10,10)-SWNTs at 300 K, which shows that
Lm increases linearly with dt , where Lm = 366.6dt . This dt

dependence of R has been discussed by other theoretical and
numerical methods [15,33]. Such behavior originates from
the fact that the relaxation time derived from Fermi’s golden
rule is proportional to dt , because the density of states in
the final states backscattered by acoustic phonons from an
initial state is inversely proportional to dt [32–34]. Based on
these relationships between dt and Lm and between L/Lm

and R, we can estimate R even in the intermediate regime of
arbitrary dt .
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nent JεF (ωF) for an armchair SWNT at 300 K. JεF (ωF) behaves
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dependence of Lφ at 300 K as Lφ = 352.1dt .

C. Decoherence and phase relaxation length

We then estimate the phase coherence length Lφ that deter-
mines the crossover from coherent to incoherent transport. To
estimate Lφ , we extract the coherent component of the current
from the total electronic current in the following manner.
Applying a Fourier transform to the wave function,

��R1(2)
+,εF,n(t ′) =

√
t − t0

2π

∫ ∞

−∞
exp(−iωt ′) ��R1(2)

+,εF,n(ω)dω.

(19)

Equation (6) for εF can be rewritten as

j out
εF,n =

∫ ∞

−∞
JεF,n(ω)dω, (20)

JεF,n(ω) ≡ 2a

h̄
Im

[( ��R2+,εF,n(ω)
)†

H R2,R1 ��R1+,εF,n(ω)
]
, (21)

where ω is the angular frequency. We now focus on the
component of JεF (ωF) defined as

JεF (ωF) ≡
∑

n

JεF,n(ωF), (22)

with ωF = εF/h̄. JεF (ωF) is the coherent component preserving
εF of an incident electron from the left lead to the central region.
Figure 4 shows L dependence of JεF (ωF) flowing through an
armchair SWNT for four different diameters at 300 K with
lengths ranging from 2.5 to 3000 nm. We can see that JεF (ωF)
decreases exponentially with increasing L.

Next, we explain how to extract Lφ from JεF (ωF). In the
presence of atomic vibration, the current amplitude for the
coherent component is known to decay as exp (−t/τφ) with
time t , where τφ is the phase-relaxation time [3]. Electrons
with εF propagate ballistically, preserving the Fermi velocity
vF through a distance shorter than Lm = vFτm, where τm is the
momentum relaxation time. Thus, when τφ < τm, Lφ can be
written as Lφ = vFτφ . Consequently, the current amplitude for
the coherent component decreases by a factor of exp (−L/Lφ)
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when Lφ < Lm. In fact, we can fit the simulation data using a
universal function,

JεF (ωF) = M exp

(
− L

Lφ

)
, (23)

where M is the number of conduction channels. Using Eq. (23),
we can estimate Lφ as shown in Appendix C. This means that
the assumption of Lφ < Lm is indeed satisfied. This originated
with the suppression of backscattering, which is a specific
feature of an SWNT [33]. Note that this method to extract Lφ

can be also applied beyond the wide band limit scheme.
The inset of Fig. 4 shows the dt dependence of Lφ for

(3,3), (5,5), (8,8), and (10,10)-SWNTs at 300 K. Similar to
the argument of Lm, we can see that Lφ increases linearly
with dt as Lφ = 352.1dt . In the following, we explain the
origin of Lφ ∝ dt . From the insets of Figs. 3 and 4, we found
that Lφ < Lm and, consequently, verified that Lφ = vFτφ . On
the other hand, τ−1

m and τ−1
φ can be written as τ−1

m = αmτ−1
c

and τ−1
φ = αφτ−1

c , respectively, where τc is the time for
an individual collision, and αm (αφ) is the effective factor
for momentum (phase) relaxation [3]. We thus obtain the
relationship Lφ/Lm = αm/αφ ≡ α, where α is constant with
respect to dt , and our simulation yields α = 0.958 as shown
in Fig. 5. From this result and Lm ∝ dt as discussed in the
argument about Lm, we obtain the relationship of Lφ ∝ dt .

IV. SUMMARY

In summary, we developed a powerful simulation method
that can treat electronic transport in a super-micron-scale
open system with atomic vibration at finite temperature, and
investigated the system length dependence of the electrical
resistance of an armchair metallic SWNT from a few nanome-
ters to a few micrometers. Our results seamlessly described the
crossover behavior of the electronic transport both from the
ballistic regime to the diffusive regime and from the coherent
regime to the incoherent regime. Based on these results, we

obtained the mean free path and the phase coherence length,
both of which exhibited a linear dependence on the diameter
of a metallic SWNT. The scaling behavior of the electronic
transport was also discussed. These results are not only crucial
to understanding the entire regime of electronic transport,
but also useful for simulating future electronic devices of an
SWNT, the lengths of which are within the crossover regime.
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APPENDIX A: DERIVATION OF THE TIME-DEPENDENT
SCHRÖDINGER EQUATION FOR AN OPEN SYSTEM

In the following, we derive the time-dependent Schrödinger
equation for an open system as shown in Eq. (8). The
Hamiltonian matrix with the atomic orbital basis for the system
shown in Fig. 1 is decomposed into nine block matrices as

H (t) =

⎛
⎜⎝

H LL H LC 0

H CL H CC(t) H CR

0 H RC H RR

⎞
⎟⎠, (A1)

where Hαα and Hαβ (α,β = L, C, R and α �= β) are, respec-
tively, a diagonal and an off-diagonal part of the Hamiltonian
matrix. In this simulation, we define the diagonal block in
Eq. (A1),

H (t) =

⎛
⎜⎝

H LL 0 0

0 H CC(t) 0

0 0 H RR

⎞
⎟⎠, (A2)

as the unperturbed Hamiltonian matrix, and define the off-
diagonal block in Eq. (A1),

H ′ =

⎛
⎜⎝

0 H LC 0

H CL 0 H CR

0 H RC 0

⎞
⎟⎠, (A3)

as the perturbed Hamiltonian matrix.
Here, we introduce the Lippmann-Schwinger equation for

the system shown in Fig. 1, which is given as

��(t) = �ψ(t) +
∫ ∞

−∞
G(t,t ′)H ′ �ψ(t ′)dt ′, (A4)

where G(t,t ′) is the matrix representation of the retarded
Green’s function. ��(t) and �ψ(t), respectively, denote the
vector describing the states for the whole system and the
unperturbed states.

The Green’s function matrix can be decomposed as well as
the Hamiltonian matrix shown in Eq. (A1) as

G(t,t ′) =

⎛
⎜⎝

GLL(t,t ′) GLC(t,t ′) GLR(t,t ′)
GCL(t,t ′) GCC(t,t ′) GCR(t,t ′)
GRL(t,t ′) GRC(t,t ′) GRR(t,t ′)

⎞
⎟⎠, (A5)
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where the superscript has the same meaning as Eq. (A1). ��(t)
and �ψ(t) can be also represented as

��(t) =

⎛
⎜⎝

��L(t)
��C(t)
��R(t)

⎞
⎟⎠, (A6)

�ψ(t) =

⎛
⎜⎝

�ψL(t)
�ψC(t)
�ψR(t)

⎞
⎟⎠. (A7)

��α(t) and �ψα(t) (α = L, C, R), respectively, consist of the
perturbed and unperturbed wave functions positioned in the
region α. By substituting Eqs. (A3), (A5), (A6), and (A7)
into the Lippmann-Schwinger equation (A4), we obtain the
equation,

��α(t) = �ψα(t) +
∑

γ=L,R

∫ ∞

−∞
GαC(t,t1)H Cγ �ψγ (t1)dt1

+
∑

γ=L,R

∫ ∞

−∞
Gαγ (t,t1)Hγ C �ψC(t1)dt1, (A8)

where γ means the lead region (γ = L,R).
The Green’s function matrix for the whole system satisfies

the equation,

ih̄
∂G(t,t ′)

∂t
− H (t)G(t,t ′) = Iδ(t − t ′), (A9)

where δ(t − t ′) is the Dirac’s delta function and I is the identity
matrix. Using Eqs. (A1) and (A5), the LC- and RC-block
components of Eq. (A9) are given as

ih̄
∂Gγ C(t,t ′)

∂t
− Hγγ Gγ C(t,t ′) − Hγ CGCC(t,t ′) = 0.

(A10)

To integrate the differential equation of Eq. (A10), we
introduce the unperturbed retarded Green’s function matrix
gγγ (t,t ′), which satisfies the equation,

−ih̄
∂gγγ (t,t ′)

∂t
− gγγ (t,t ′)Hγγ (t ′) = I γ γ δ(t − t ′). (A11)

The integration of Eq. (A10) gives the expression of Gγ C(t,t ′)
in terms of the unperturbed Green’s function,

Gγ C(t,t ′) =
∫ ∞

−∞
gγγ (t,t1)Hγ CGCC(t1,t

′)dt1. (A12)

Here, note that the block component of Gγ C(t,t ′) is expressed
only by GCC(t,t ′) among the perturbed Green’s function block
matrices.

By substituting the equation of Eq. (A12) into Eq. (A9), we
obtain the equation,

ih̄
∂GCC(t,t ′)

∂t
− H CC(t)GCC(t,t ′)

−
∫ ∞

−∞
(	L(t,t1) + 	R(t,t1))GCC(t1,t

′)dt1

= ICCδ(t − t ′). (A13)

The self-energy 	γ (t,t ′) due to the lead γ is defined by the
equation,

	γ (t,t ′) ≡ H Cγ gγ γ (t,t ′)Hγ C. (A14)

Next, for applying the open system equation of Eq. (A13)
to quantum transport phenomena, we impose the additional
condition for the unperturbed state �ψ(t). The theoretical
description of the nonequilibrium state in a mesoscopic system
demands the scattering states coming from the lead L and the
lead R, which, respectively, correspond to a right-going state
and a left-going state. In this time, the unperturbed state is
labeled by the incident energy ε and the band index n. In this
simulation, for the right-going states from the lead L, the wave
functions shown in Eqs. (A6) and (A7) are replaced by

��+,ε,n(t) =

⎛
⎜⎝

��L
+,ε,n(t)

��C
+,ε,n(t)

��R
+,ε,n(t)

⎞
⎟⎠, (A15)

�ψ+,ε,n(t) =

⎛
⎜⎝

�ψL
+,ε,n(t)

0

0

⎞
⎟⎠, (A16)

where the subscript of + indicates the right-going state. The
substitution of Eqs. (A15) and (A16) into Eq. (A8) leads to

ih̄
∂ ��C

+,ε,n(t)

∂t
− H CC(t) ��C

+,ε,n(t)

=
∫ ∞

−∞
(	L(t,t1)+	R(t,t1)) ��C

+,ε,n(t1)dt1+ H CL �ψL
+,ε,n(t).

(A17)

In the same way for the left-going state from the lead R, we
establish the perturbed and unperturbed wave functions as

��−,ε,n(t) =

⎛
⎜⎝

��L
−,ε,n(t)

��C
−,ε,n(t)

��R
−,ε,n(t)

⎞
⎟⎠, (A18)

�ψ−,ε,n(t) =

⎛
⎜⎝

0

0
�ψR

−,ε,n(t)

⎞
⎟⎠, (A19)

and replace Eq. (A8) by

ih̄
∂ ��C

−,ε,n(t)

∂t
− H CC(t) ��C

−,ε,n(t)

=
∫ ∞

−∞
(	L(t,t1)+	R(t,t1)) ��C

−,ε,n(t1)dt1+H CR �ψR
−,ε,n(t).

(A20)

The subscript of − indicates the left-going state.
Here, �ψL

+,ε,n(t) and �ψR
−,ε,n(t) are, respectively, replaced

by ( �φL
+,ε,n/

√
vn) exp(−iεt/h̄) and ( �φR

−,ε,n/
√

vn) exp(−iεt/h̄).
Moreover, by defining

�Sγ
±,ε,n(t) ≡ H Cγ

�φγ
±,ε,n√
vn

exp

(
−i

ε

h̄
t

)
, (A21)
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FIG. 6. System length L dependence of the electrical resistance
R for an SWNT with various diameters at 300 K. The error bars
originate from the standard error of jεF,n(t) from 160 to 200 ps in
the steady state per 1 ps. The dotted lines represent the resistance
R = (R0/2)L/Lm in the diffusive limit L � Lm, and the dash-dotted
line represents the resistance R = R0/2 in the ballistic limit Lm � L.

and

�D±,ε,n(t) ≡
∫ ∞

−∞
(	L(t,t1) + 	R(t,t1)) ��C

±,ε,n(t1)dt1, (A22)

Eqs. (A17) and (A20) become

ih̄
∂ ��C

±,ε,n(t)

∂t
= H CC(t) ��C

±,ε,n(t) + �Sγ
±,ε,n(t) + �D±,ε,n(t).

(A23)

Eq. (A23) corresponds to Eq. (8).
In the case of the low bias voltage applied to the leads,

the wide band limit (WBL) scheme is expected to be valid,
and drastically reduces the computational cost. A Fourier
transform of the self-energy due to the lead γ in time domain
is defined as

	γ (t,t1) = 1

2πh̄

∫ ∞

−∞
	γ (ε) exp

(
− i

ε

h̄
(t − t1)

)
dε, (A24)

where 	γ (ε) is defined by

	γ (ε) = H Cγ gγ γ (ε)Hγ C. (A25)

gγγ (ε) is the unperturbed Green’s function in energy domain.
In the WBL scheme, we impose the approximation as

	γ (ε) ≈ 	γ (εF). (A26)

By this approximation, Eq. (A24) becomes

	γ (t,t1) ≈ 	γ (εF)δ(t − t1). (A27)

By substituting Eq. (A27) into Eq. (A22), we obtain the
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FIG. 7. System length L dependence of the coherent component
JεF (ωF) for an armchair SWNT with various diameters dt at 300 K.
The dotted lines, 1 − L/Lφ , show the asymptotic behavior of JεF (ωF)
for L → 0.

equation,

�D±,ε,n(t) ≈ (	L(εF) + 	R(εF)) ��C
±,ε,n(t). (A28)

APPENDIX B: HOW TO EXTRACT THE MEAN
FREE PATH

In this section, we explain the extraction of the mean free
path Lm. Figure 6 shows the system length L dependence of
the electrical resistance R for an armchair SWNT at 300 K. In
the diffusive regime, the L dependence of R is described by

R = R0

M

L

Lm
, (B1)

where R0 is the quantum resistance defined by h/2e2, and
M is the number of conduction channels (M = 2 for an
armchair SWNT at the Fermi energy εF). From Eq. (B1),
Lm are extracted as the intersection point of the dotted lines
R = (R0/2)L/Lm and the dash-dotted line R = R0/2 in Fig. 6.

APPENDIX C: HOW TO EXTRACT THE PHASE
COHERENCE LENGTH

In this section, we explain the extraction of the phase
coherence length Lφ . Figure 7 shows the system length L

dependence of the coherent component JεF (ωF) for an armchair
SWNT at 300 K. The relation between JεF (ωF) and L is
given by

JεF (ωF) = M exp

(
− L

Lφ

)
, (C1)

where Lφ is the phase coherence length [3] and M is the
number of conduction channels (M = 2 for an armchair
SWNT at the Fermi energy εF). From Eq. (C1), Lφ are
extracted as the intersection point of the dotted lines 1 − L/Lφ

and the line JεF (ωF) = 0 in Fig. 7.
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