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Anisotropic plasmons, excitons, and electron energy loss spectroscopy of phosphorene
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In this article, we explore the anisotropic electron energy loss spectrum (EELS) in monolayer phosphorene
based on ab initio time-dependent density-functional-theory calculations. Similarly to black phosphorus, the
EELS of undoped monolayer phosphorene is characterized by anisotropic excitonic peaks for energies in the
vicinity of the band gap and by interband plasmon peaks for higher energies. On doping, an additional intraband
plasmon peak also appears for energies within the band gap. Similarly to other two-dimensional systems, the
intraband plasmon peak disperses as ωpl ∝ √

q in both the zigzag and armchair directions in the long-wavelength
limit and deviates for larger wave vectors. The anisotropy of the long-wavelength plasmon intraband dispersion
is found to be inversely proportional to the square root of the ratio of the effective masses: ωpl(qŷ)/ωpl(qx̂) =√

mx/my .
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I. INTRODUCTION

Within the family of two-dimensional (2D) materials
[1–12], phosphorene (few layers of black phosphorus)—
a direct band-gap semiconductor with a puckered atomic
structure—has a highly anisotropic band structure [6,7,13].
It has a massive Dirac-like energy dispersion along the
armchair and a parabolic Schrödinger-like energy dispersion
along the zigzag direction [14–17]. This results in highly
anisotropic single-particle electronic [14], thermal [18],
many-particle excitonic [19], and plasmonic properties [20].
The plasmon dispersion has been recently calculated based
on low-energy continuum Hamiltonian, and it is found to be
highly anisotropic [20,21] with different doping dependence
in different directions, depending on the number of layers.

From an experimental viewpoint, momentum-resolved
electron energy loss spectroscopy [22] (EELS) directly probes
the loss function of a material, which in turn is simply the
inverse of the imaginary part of the dynamical interacting di-
electric constant of a material: ELoss(q,ω) = −Im[1/εM (q,ω)].
It has been used extensively in a variety of materials, such as
graphene [23–30], transition metal dichalcogenides [31,32],
and bulk black phosphorus [33], to explore the single-particle
and collective excitations such as excitons and plasmons.
In terms of computational methods, calculations based on
effective low-energy continuum [34,35] as well as the tight-
binding Hamiltonian [36–38] are very insightful, but they fail
to capture many of the experimental aspects of the EELS
spectrum accurately; in particular the low-energy intraband
plasmons at large wave vectors and the high-energy interband
plasmons involving transitions across various energy bands.
For example, in doped graphene, the low-energy [34,39,40]
and tight-binding approach [36] fail to capture the plasmon
anisotropy at finite wave vectors in the �-K and the �-M
directions, which has been observed experimentally [26,27].
However, the loss function and corresponding plasmon disper-
sion relation is generally well described by density-functional-
theory-based ab initio calculations [30,32,41–46]. In the case
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of phosphorene, the low-energy intraband plasmon spectrum
has been studied using the continuum approximation [20,21].
Further, the effects of strain [37] and disorder [38] on the
plasmon spectrum have been incorporated using a tight-
binding approach, but to the best of our knowledge, there is no
ab initio–based study of the anisotropic plasmon dispersion
(both low as well as high energy) and the high-energy EELS
spectrum of monolayer phosphorene. Motivated by this, we
present an ab initio density-functional-theory- (DFT) based
study of the anisotropic EELS spectrum, which includes
low-energy intraband plasmons at finite doping, excitons, and
interband plasmons in monolayer phosphorene.

We find that the crystal anisotropy of bulk black phosphorus
is preserved down to its single layer, leading to a highly
anisotropic electronic band structure, which results in a
direction-dependent EELS. In the case of finite doping, we
find an intraband plasmon mode which lies well below the
band gap of phosphorene. Interestingly, it has a

√
q dispersion

for small wave vector in each of the two principal directions
(parallel to the armchair and the zigzag edge of monolayer
phosphorene), which signifies the two-dimensional nature of
the plasmon mode. We also find a highly dispersive mode
in the EELS, which appears at slightly higher energy than
the band gap of phosphorene; it is identified as the exciton
peak. Interestingly, while the exciton peak appears in the
armchair direction, it is completely absent along the zigzag
edge. The other high-energy peaks correspond to different
interband transitions, with a very distinct peak appearing for
energies close to 5 eV. We also observe a general trend that
with increasing momentum transfer, all the resonant features
(excitations) of the EELS spectrum are blue shifted and they
gradually lose their strength.

The paper is organized as follows: In Sec. II, we discuss the
formulation for calculating the interacting density response
function and the corresponding EELS spectrum, along with
the computational details of our ab initio study to get the elec-
tronic band structure of phosphorene. Next, we describe the
calculated EELS spectrum in Sec. III, followed by a detailed
discussion focused on anisotropy of intraband plasmons in
Sec. IV. Finally, we summarize our findings in Sec. V.
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II. THEORY AND COMPUTATIONAL DETAILS

A. Dynamical dielectric and loss function

Our starting point is the noninteracting density-density
response function (χ0

GG′) for a periodic lattice, which is
obtained from the Adler-Wiser formula given by [47,48]

χ0
GG′(q,ω) = 1

�

BZ∑
k

∑
n,n′

fnk − fn′k+q

ω + εnk − εn′k+q + iη

×〈ψnk|e−i(q+G)·r|ψn′k+q〉�cell

×〈ψnk|ei(q+G′)·r′ |ψn′k+q〉�cell . (1)

The Kohn-Sham energy eigenvalues εnk, the wave function
ψnk, and the corresponding Fermi-Dirac occupation function
fnk for the nth band at wave vector k are obtained from
the ground-state calculations performed using the density
functional theory.

Within the framework of time-dependent density functional
theory (TDDFT) the interacting density-density response
function can be obtained by solving a Dyson-type equation.
Expanding in a plane-wave basis (valid for a periodic system),
the interacting response function can be expressed as

χGG′(q,ω) = χ0
GG′(q,ω)

+
∑

G1,G2

χ0
GG1

(q,ω)KG1G2 (q)χGG2 (q,ω), (2)

where G and q are the reciprocal lattice vector and the
wave vector, respectively, and KG1G2 is the (2D truncated for
monolayer phosphorene) Coulomb kernel as described in Ref.
[49]. The exchange-correlation part of the kernel is neglected
within the framework of the random phase approximation
(RPA). Using the χGG′ matrix, the microscopic dielectric
matrix is defined as

εGG′(q,ω) = [δGG′ + KGG′(q)χGG′]−1. (3)

The macroscopic dielectric function (εM ) is given by the first
diagonal element of the microscopic dielectric matrix obtained
after inverting the right-hand side of Eq. (3):

εM (q,ω) = [εGG′(q,ω)]G=G′=0. (4)

Note that in a homogeneous electron gas 1/εGG′ [right-hand
side of Eq. (3)] is a diagonal matrix and we have εM =
1 + K00(q)χ00. This is akin to taking a macroscopic average
over the unit cell response and neglecting local polarization
effects within the unit cell [48]. However, in a crystal, which
is inhomogeneous and polarizable on a microscopic scale,
the of-diagonal elements in Eq. (3) also contribute to the
G = 0,G′ = 0 element of εGG′ , thus including the so-called
local field effects.

The dynamical loss function, which is directly related to
the EELS, is calculated as

ELoss(q,ω) = −Im
[
ε−1
M (q,ω)

]
. (5)

Plasmons (collective density excitations) are characterized by
the zeros of the real part of the macroscopic dielectric function
(the denominator of the density-density response function
within RPA).

B. Computational details

Electronic band-structure calculations are performed using
density functional theory, as implemented in the GPAW
package [50–52]. The kinetic energy cutoff for the plane-wave
basis set is taken to be 500 eV. Initially, all the atomic positions
are relaxed (within GGA) until the forces on each atom are
less than 0.001 eV/Å. Next, we calculate the single-particle
states [to be used as input for evaluating the response function
in Eq. (1)] using the Gritsenko–van Leeuwen–van Lenthe–
Baerends—solid-correlation potential (GLLB-SC) which has
been found to improve the band gap in case of semiconductors
[53]. While a k-point grid of 16 × 22 × 6 (16 × 22 × 1) is
used for the Brillouin zone integrations of the bulk (monolayer)
structure, for the electronic band-structure calculation, a much
denser k-point grid of 32 × 44 × 14 (64 × 88 × 1) is
used for calculating the q dependence of the EELS, giving

a momentum resolution of ∼0.043 Å
−1

and ∼0.0215 Å
−1

,
respectively, for the bulk and the monolayer phosphorene. In
the case of the latter, we use a vacuum layer of 20 Å in the
direction perpendicular to the phosphorene plane to suppress
any interaction between two replica images in the vertical
direction.

EELS calculations are performed using the generalized
RPA. The generalized RPA uses the local field factors to
add the impact of the exchange and correlation effects to
the Hartree field [54]. Because of its long-range nature, the
Coulomb potential of one layer can interact with its periodic
replicas, which is avoided by taking a 2D truncated Coulomb
kernel, following Ref. [49]. We consider up to 50 empty bands
to correctly describe all the electronic excitations. For the
local field corrections, a cut-off energy of 50 eV is used for

FIG. 1. (a) Geometric structure of phosphorene monolayer: top
and side views with the shaded region indicating the unit cell. (b) The
electronic band structure of phosphorene monolayer along the high
symmetry axes, calculated using the GLLB-SC functional. (c) The
comparison of the effective low-energy Hamiltonian in Eq. (6) (green
dashed line) and Eq. (8) (blue dashed line), with the DFT band
structure (red line) in the vicinity of the � point. (d) The corresponding
density of states.
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the G and G′ vectors, which corresponds to 259 (135) plane
waves for monolayer phosphorene (bulk black phosphorus).
The broadening parameter in Eq. (3) is taken to be η = 0.05 eV.
Doping or the change in carrier concentration is achieved by
shifting the position of the Fermi energy (Ef ).

C. Electronic band structure of phosphorene

Phosphorene has a layered structure with each phosphorus
atom covalently bonded with three adjacent atoms, forming a
sp3 hybridized puckered honeycomb structure [see Fig. 1(a)].
As shown in the figure, mutually perpendicular armchair
and zigzag directions are aligned along the x and y axes,
respectively. The lattice parameters of the bulk unit cell are
found to be a = 4.56 Å (armchair), b = 3.31 Å (zigzag), and
c = 11.30 Å, which are in good agreement with the values
reported in the literature [6]. As shown in Fig. 1(a), �-X
and �-Y are the high symmetry directions in the reciprocal
lattice, which are aligned along the armchair and zigzag axes,
respectively. Based on previous reports of large anisotropy
of calculated and measured electronic and optical properties
along these particular directions, in this paper we calculate
and compare the EELS spectrum and the intraband low-energy
plasmon dispersion along �-X and �-Y , respectively.

As reported in the literature, monolayer phosphorene is
found to be a direct band-gap semiconductor, the magnitude
of the gap being 1.51 eV (0.91 eV), calculated using the HSE06
(GGA-PBE) functional [14,55,56]. The GLLB-SC-computed
electronic band structure has a direct band gap of 1.13 eV and
it is shown in Fig. 1, along with the corresponding density
of states (DOS). The conduction band minima (CBM) and
the valance band maxima (VBM) are located at the � point.
Interestingly, the electron dispersion is anisotropic and “semi-
Dirac”-like around this point [see Fig. 1(b)], having a massive
Dirac character along the �-X direction and parabolic with a
large effective mass along the �-Y direction [57]. This highly
anisotropic low-energy dispersion of phosphorene is the origin
of the direction-dependent transport and optical properties of
phosphorene.

Pristine phosphorene, being a relatively large band-gap
semiconductor, has vanishingly small thermally excited charge
carriers even at room temperature and, consequently, intraband
plasmons are absent. In order to explore intraband plasmons,
we consider phosphorene doped via electrostatic doping
(controlled by a varying gate voltage). For electrostatic doping,
the bands near the CBM (and thus the DOS) remain unaffected
but the Fermi energy shifts to the conduction band, giving rise
to doped (electronic) charge carriers, whose number density
can be tuned by controlling the gate voltage.

The effective low-energy Hamiltonian and band struc-
ture of monolayer phosphorene has been derived using the
k · p method [15] as well as the tight-binding approach
[16,17,60,61], both of which yield a qualitatively similar
picture [57]. For this manuscript, we work with the bare
minimum effective low-energy Hamiltonian of phosphorene,
retaining only the lowest-order terms in the wave vectors [62],

H = (
uk2

y + 

)
σx + vf kxσy, (6)

where σi’s are the Pauli matrices. The anisotropic energy
spectrum is thus given by

Es(k) = s

√
v2

f k2
x + (

uk2
y + 


)2
, (7)

where s = +1 (s = −1) corresponds to the conduction
(valance) band. Fitting Eq. (7) to our GLLB-SC dispersion
in the vicinity of the � point [see Fig. 1(c)] yields 
 = 0.56
eV, u = 3.55 eV Å2, and vf = 4.75 eV Å. Note that Eq. (7) can
further be approximated as an anisotropic parabolic dispersion

FIG. 2. ELoss(q,ω) = −Im[ε−1
M (q,ω)] (in arbitrary units) of doped

bulk black phosphorus along (a) �-X (armchair) and (b) �-Y

(zigzag) directions as a function of energy for q = 0.043 Å
−1

. The
corresponding insets show the low energy behavior. The low energy
peaks for E ∼ 0.2 eV correspond to the intraband plasmon modes
of doped black phosphorus. Other high-energy peaks correspond to
anisotropic excitons (0.35 eV < E < 2 eV) and interband plasmonic
excitations (E > 2 eV), both of which are identical for the doped as
well as the undoped material. The dashed vertical lines in panels
(a) and (b) represent the experimentally observed interband plasmon
peak at 19.3 eV in Ref. [58]. The dashed vertical line in the inset
of (a) marks the experimentally observed exciton peak (at 0.44 eV)
in Ref. [59]. We have chosen Ef = 95 meV (measured from the
conduction band bottom) for both the panels.
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given by

Ec(k) = Ec + h̄2k2
x

2mx

+ h̄2k2
y

2my

, (8)

where Ec = 
. The values of the anisotropic effective masses
for the conduction band are given by mx ≡ h̄2
/v2

f = 0.20me

and my ≡ h̄2/(2u) = 1.1me, with me being the electrons rest
mass, consistent with earlier studies [14]. Equations (6) and (7)
will be used to obtain the low-energy and low-momentum
transfer plasmon dispersion of monolayer phosphorene ana-
lytically for comparison with our ab initio results.

III. ELECTRON ENERGY LOSS SPECTRUM

Having discussed the ab initio and the low-energy elec-
tronic band structure, we now proceed to calculate the EELS
spectrum of phosphorene. We first test the methodology by
calculating the EELS spectrum of bulk black phosphorus and
comparing the same with reported data [33,58]. The computed
EELS spectrum of bulk black phosphorus is shown in Fig. 2. As
expected, the anisotropic nature of the electronic band structure
of bulk phosphorus is manifested in the EELS data. The
high-energy interband plasmon peak, present in the vicinity
of 20 eV in both the �-X and the �-Y direction, is in good
agreement with the recently published experimental EELS
results for bulk black phosphorus [58]. The low-energy part of
the spectrum, representing intraband plasmons and excitons,
are shown in the inset of Fig. 2, and a marked anisotropy
along the two principal direction is observed. In particular,
the low-energy exciton peak in black phosphorus [see the
continuous spectrum for energies >0.4 eV in the inset of Fig.
2(a)] is only present in the �-X (armchair) direction, which
is consistent with recently reported measurements [33]. Also,
the intraband plasmons in the armchair direction (�-X) have
a higher intensity as opposed to those in the zigzag (�-Y )
direction.

After benchmarking the methodology by successfully
reproducing the characteristic features of EELS of bulk black
phosphorus, we now focus on monolayer phosphorene. Due
to obvious reasons related to its electronic band structure
[see Fig. 1(b)], the EELS of monolayer phosphorene is also
found to be highly anisotropic. This can clearly be observed
in Figs. 3(a) and 3(b), where the calculated spectrum of a
single layer of doped (by taking Ef = 50 meV, measured
from the CBM) phosphorene is plotted for momentum transfer
(q) along the �-X (armchair) and �-Y (zigzag) directions,
respectively. Note that while the lowest-energy peak due to
the intraband plasmons are observed only in the case of finite
doping, others appearing at higher energy have intrinsic origin
related to excitons and interband plasmons and they are present
in undoped phosphorene as well. Specific features of the EELS
are discussed in detail in the following subsections.

A. Intraband plasmons

As shown in Fig. 3 and Fig. 4, the first peak appears
for energies less than 0.25 eV. The energy corresponding
to the peak is well below the band gap of the pristine
monolayer phosphorene and, in addition, this peak is absent
in case of undoped phosphorene. Thus we interpret this

FIG. 3. EELS (in arbitrary units) of monolayer phosphorene
along the (a) �-X (armchair) and (b) �-Y (zigzag) directions for
different values of momentum transfer as a function of q and energy
(measured from the bottom of the conduction band). The low-energy
peaks (E < 1 eV) correspond to the intraband plasmons which appear
only for the doped case. Other high-energy peaks and features
corresponding to the excitons and interband plasmonic excitations
are identical for the doped and undoped cases.

as the peak originating from the intraband plasmon modes.
With increasing momentum transfer, the intensity of intraband
plasmons decreases and the peak position shifts to a higher
energy in both the �-X and �-Y directions (see Fig. 3 and
Fig. 4). A similar type of blue shift is observed as the doping
is increased. As with bulk black phsophorous, the intensity of
the intraband peak is lower for momentum transfer along the
�-Y direction compared to the �-X direction, which has the
maximum intensity among all the EELS peaks at q → 0 [see
Fig. 3]. The anisotropy of intraband plasmon modes and their
momentum and doping dependence are discussed in detail in
Sec. IV. Note that the finite width of the intraband plasmon
mode in Figs. 3 and 4 indicates the existence of some damping
mechanism even for small q. This is a consequence of retaining
a finite η = 0.05 eV in our calculations for the polarization
function—see Eq. (1).
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FIG. 4. Low-energy part of the EELS spectrum of monolayer
phosphorene for momentum transfer along the (a) �-X and (b) �-Y
directions. The solid lines denote the doped case with Ef = 50 meV,
and the dashed line corresponds to the pristine undoped material.
The dashed vertical line in panel (a) represents the experimentally
observed exciton peak (at 1.73 eV) in Ref. [59]. The lowest-energy
peak (E < 1 eV) arises from the intraband charge density excitation
(plasmon) which is present only in the doped case. The slightly higher
energy (E ∼ 1 eV) peak which is present only for the momentum
transfer along the �-X direction corresponds to the exciton (electron-
hole bound pair). Both the modes are highly dispersive in nature
and they gradually loose their strength with increasing momentum
transfer. Note that, in panel (b), the dashed lines corresponding to the
undoped case, are identically equal to zero due to the absence of the
exciton peak.

B. Low-energy excitons

The next peak in the EELS is observed in the vicinity
of 1.3 eV, which is gradually shifted towards the higher
energy, accompanied by intensity reduction with increasing
q. This peak is much more dispersive compared to the
intraband plasmon peaks and extends approximately up to
3 eV (see Fig. 3 and Fig. 4). Since the peak energy coincides
approximately with the energy gap of monolayer phosphorene
and it exists in undoped phosphorene as well and it is almost
independent of doping, we identify this as the lowest-energy
excitonic peak. As shown in Fig. 3 and Fig. 4, the excitonic

peak is highly anisotropic in nature, as it appears only in the
case of momentum transfer along the �-X direction while
being completely absent along the �-Y . We believe that the
strongly anisotropic optical response reported for monolayer
black phosphorene, which is transparent to the incident light
in the energy range of 1.1–2.5 eV, but only if it is polarized
along the zigzag direction and opaque if the light is polarized in
the armchair direction [19,33], originates from the anisotropy
of the lowest-energy electron-hole pair excitation observed in
this work. Note that, since the crystal anisotropy observed
in monolayer persists for multilayer, as well as bulk black
phosphorus, a similar kind of anisotropic excitonic response
is expected at higher thickness as well.

C. Interband high-energy plasmons

As we move towards higher energy, the next prominent
EELS peak appears in the vicinity of 5 eV, and, similarly to
the low energy peaks, its intensity reduces accompanied by a
blue shift with increasing momentum transfer. Though it is also
anisotropic in nature, this peak has a higher intensity along the
zigzag direction as compared to the armchair direction—unlike
the case of intraband plasmons. As expected, this high-energy
peak is nearly independent of doping, as it corresponds to very
high energy interband transitions.

Comparing the EELS intensity of various peaks as a
function of q, it is clear that in general the EELS intensity
is maximum for direct transitions with q → 0 and decays
with increasing q. However, the low-energy intraband plasmon
peak decays more rapidly with increasing q (on account of
damping by multiple electron-hole excitations) as compared
to the high-energy peaks associated with interband transitions.
For example, in case of q ‖ � − X, the intraband plasmon
peak is the most intense among all the EELS peaks for

(q = 0.021 Å
−1

), which almost vanishes at higher q, leaving
the interband transition peak around 10–14 eV to be the most
prominent one. Due to its anisotropic nature, the scenario
differs in the case of q ‖ � − Y , where the interband transition

peak around 5 eV has the highest intensity (at q = 0.021 Å
−1

)
among all the EELS peaks and it broadens significantly and
shifts to around 10–14 eV at higher value of q.

Note that, other than the intraband plasmons, the rest of the
peaks corresponding to the interband transitions are likely to be
affected due to the band-gap underestimation (approximately
40%) of GLLB-SC-based electronic band-structure calcula-
tions. For example, while the GW band gap is reported to be
1.84 eV [14,56] for monolayer black phosphorus, the GLLB-
SC based band gap is found to be 1.13 eV in our calculation.
Thus, the EELS peaks corresponding to interband transitions
are expected to be blue shifted in an actual experiment.
However, the GLLB-SC band-gap estimation of 0.35 eV for
bulk black phosphorus is very close to its experimentally
reported value of 0.31–0.35 eV [56]. Thus it turns out that for
bulk black phosphorus, an EELS peak of ∼20 eV (as shown
in Fig. 2) based on GLLB-SC calculations is consistent with
the 19.3-eV peak observed in recent experiments [58]. The
band gap, the exciton peak, and the corresponding interband
plasmon energy have been probed in different works, and the
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TABLE I. The energy scale of the various experimentally reported
features for bulk and monolayer black phosphorus: the band gap
(Eg), exciton peak (Eexciton), and the interband plasmon (Einter) (for
q = 0 case) based on photoluminance (PL), transmission electron
microscopy (TEM), and scanning TEM (STEM) experiments.

Material Eg (eV) Method Eexciton (eV) Einter (eV) Ref.

Bulk 0.35 PL 0.35 – [59]
Bulk – TEM 0.44 – [33]
Bulk – STEM – 19.3 [58]
Bulk 0.35 DFT ∼0.5 ∼20.0 This work
1L 1.73 PL 1.73 – [59]
1L 1.32 PL 1.32 – [63]
1L 1.45 PL 1.45 – [6]
1L 1.13 DFT ∼1.4 ∼5.0 This work

experimental results are summarized in Table I, along with our
GLLB-SC-based estimated values.

IV. ANISOTROPIC INTRABAND PLASMONS

Having described the prominent features of the EELS
spectrum of monolayer phosphorene, we now focus on the
anisotropic nature of the low-energy intraband plasmons
and investigate their q and doping (Ef ) dependence. The
low-energy loss function along the �-X and �-Y directions
is shown in Figs. 4(a) and 4(b), respectively. As discussed
earlier, the first low-energy peak which appears for energies
significantly below the band gap of phosphorene and only
present in the case of finite doping corresponds to intraband
plasmons or collective charge density excitations. As shown in
Fig. 4, the intraband plasmon peak has higher intensity along
the �-X direction as compared to the �-Y direction, similarly
to the case of bulk phosphorus. Interestingly, the intensity
decay and blue shift of the intraband plasmon peak is more
rapid in the �-X direction compared to the �-Y direction.

The momentum dependence of the intraband plasmon peak
is further analyzed at different doping (by varying the Fermi
energy) in Fig. 5. As shown in the figure, for relatively small
momentum transfers, the dispersion follows the universal
long wavelength

√
q behavior which is ubiquitous in two-

dimensional systems [35]. For higher values of the momentum
transfer q, a clear deviation from the

√
q behavior is observed.

As shown in Fig. 5, increasing the doping extends the range
of validity of

√
q behavior. For example, at Ef = 50 meV

the
√

q fit along the �-X direction holds up to q = 0.1 Å
−1

,

which extends up to q = 0.15 Å
−1

with increased doping
(Ef = 90 meV). Similar behavior of the plasmon dispersion
is also seen along the �-Y direction, albeit the spectral weight
of the corresponding plasmon peak is smaller in the �-Y
direction.

In a very clean system, the prominent damping channel
for the plasmon mode is expected to be Landau damping:
The plasmon mode decays into the single-particle continuum
of the conduction band, whose boundary is marked by the
maxima of E

sp
c (q) = E(� + q) − E(�) for Ef close to the

conduction band bottom—see the shaded area in Fig. 5.
Outside this region the plasmon is (ideally) supposed to be

FIG. 5. Intraband plasmon dispersion of monolayer phosphorene
along the (a) �-X and (b) �-Y directions at different doping. The
corresponding solid lines denote the “universal” long-wavelength

√
q

dependence of the plasmon dispersion in two dimensions, which
is valid for small q values only. The shaded region in both the
panels denotes the single-particle continuum (electron-hole excitation
spectrum) of the conduction band which is marked by the maxima
of Esp

c (q) = Ec(� + q) − Ec(�) for Ef (= 0.05 eV) close to the
conduction band bottom.

completely undamped. However, in actual calculations the
plasmon damping is introduced via the finite value of η [see
Eq. (1)] in the calculation of the polarization function. This
is a qualitative way of accounting for very small disorder in
the system. Additionally, the plasmon damping also arises
due to multi-particle excitations, which in our calculations are
included via the local field corrections.

Starting from the anisotropic parabolic approximation of
the band structure of monolayer phosphorene, given by Eq. (8),
the low-energy plasmon dispersion within the RPA (for the
Coulomb potential Vq = 2πe2/εq) has been obtained in Ref.
[21]. It is explicitly given by

ωpl(q) = α0(Ef − Ec)1/2

[
cos2 θq + mx

my

sin2 θq

]1/2√
q, (9)
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(a)

(b)

FIG. 6. Variation of the intraband plasmon energy with the
electron doping specified by 
Ef = Ef − Ec along the (a) �-X
and (b) �-Y directions for different momentum transfer vectors. The
doping dependence is of the plasmon dispersion for small q seems to
be proportional to

√
Ef − Ec, consistent with Eq. (9).

where θq = tan−1 (qy/qx), α2
0 = 2πe2g2d/(mxε), and g2d =√

mxmy/(πh̄2) is the two-dimensional density of states for
an anisotropic parabolic band system. Equation (9) directly
yields the following: (1)

√
q dependence of the plasmon

dispersion in all directions for small wave vectors, (2)√
Ef − Ec dependence of the low-energy (and low-wave-

vector) plasmon dispersion on the Fermi energy, and (3)
the long-wavelength anisotropy of the plasmon dispersion
ωpl(qx̂)/ωpl(qŷ) = √

my/mx , independent of the doping in
the system.

The doping dependence of the intraband plasmon disper-
sion is shown in Fig. 6, and it clearly shows a reasonable match
of the plasmon dispersion with the expected ωpl ∝ √

Ef − Ec

dependence of the Fermi energy for small q. The plasmon
frequency anisotropy ratio is shown in Fig. 7 and it also seems
to be more or less consistent with the ωpl(qx̂)/ωpl(qŷ) =√

my/mx behavior. A more thorough calculation of the
long-wavelength plasmon dispersion using the semi-Dirac
continuum Hamiltonian for phosphorene [see Eq. (6)], is
presented in the Appendix, and it also yields qualitatively
similar results. However, the anisotropy ratio now explicitly

ω
p
l(
qx̂

)/
ω

p
l(
qŷ

)
ω

p
l(
qx̂

)/
ω

p
l(
qŷ

)

FIG. 7. Variation of the plasmon anisotropy ratio,
ωpl(qx̂)/ωpl(qŷ), with (a) the wave vector q for different Ef

values and (b) the Fermi energy for different q. The horizontal
straight (orange) line denotes the ωpl(qx̂)/ωpl(qŷ) = √

my/mx line
which is completely independent of the doping, based on plasmon
dispersion calculated from the anisotropic parabolic dispersion in
Eq. (9). The dashed horizontal line (violet) denotes Eq. (A10),
which arises from the massive semi-Dirac plasmon dispersion, and
it depends on the Fermi energy.

depends on the Fermi energy—see Eq. (A10). However, we
note that this Ef dependence of the anisotropic ratio of the
plasmon frequency is small, as shown in Fig. 7(b).

V. SUMMARY AND CONCLUSIONS

In this article we present a thorough study of the anisotropic
EELS spectrum of monolayer phosphorene using the TDDFT
framework. We find that the anisotropy of the underlying
phosphorene crystal leads to the anisotropy in the band
structure and, consequently, in the EELS spectrum as well—
similarly to the case of bulk black phosphorus. For finite
doping in the system, the lowest energy peak in the EELS
corresponds to the intraband plasmon mode (charge density
excitations) in the sub-electron-volt range. At slightly higher
energy than the band gap, there is a highly dispersive low-
energy exciton mode, which is almost independent of the
doping and it is absent for the momentum transfer along
the �-Y direction. At even higher energies and completely
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independent of the doping, there are various plasmon modes
arising from the interband transitions with a very distinct peak
appearing at ≈5 eV for monolayer phosphorene (as per GLLB
calculations). With an increasing number of phosphorene
layers (or thickness) this mode is likely to shift to higher
energies, eventually merging into a 20-eV peak observed in the
bulk black phosphorus. We explore the low-energy anisotropic
intraband plasmons in detail and compare their behavior to
analytical expression of the corresponding plasmon dispersion
arising from the effective low-energy dispersion using RPA.
The anisotropic intraband plasmon modes are found to be
highly dispersive in nature, with the large-wavelength limit
following the ωpl ∝ √

q behavior in all directions, which is a
universal characteristic of plasmons in two dimensions. With
increasing doping, the long-wavelength plasmon dispersion
is found to scale with the Fermi energy as ωpl ∝ √

Ef − Ec.
The anisotropy of the long-wavelength plasmon dispersion is
found to be inversely proportional to the ratio of square root
of the effective masses: ωpl(qŷ)/ωpl(qx̂) = √

mx/my .
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APPENDIX: LOW-ENERGY PLASMON
DISPERSION OF PHOSPHORENE

Here we calculate the low-energy plasmon dispersion for a
massive semi-Dirac system in two dimensions, described by
Eq. (6). The polarization (density-density response) function
is given by

�(�q,ω) = g

(2π )d

∫
ddk

∑
ss ′=±

f ss ′
(k,q)nF(Ek,s)

×
(

1

h̄ω+ + Ek,s − Ek′,s ′
− 1

h̄ω+ − Ek,s + Ek′,s ′

)
,

(A1)

where ω+ = ω + iη, Ek,s = s
√

v2
f k2

x + (uk2
y + 
)2, k′ = k +

q, f ss ′
(k,q) is the overlap function of spinors, and nF (Ek,s)

is the Fermi function. Expanding the polarization function
defined in Eq. (A1), to q2

x and q2
y at zero temperature, leads to

�(q → 0,ω) = g

4π2

∫ α

−α

dky

∫ β

−β

dkx

×
[
I1(kx,ky)

v2
f q2

x

h̄2ω2
+ I2(kx,ky)

uq2
y

h̄2ω2

]
,

(A2)

where α = √
(Ef − 
)/u, β = v−1

f

√
E2

f − (
 + uk2
y)2,

and I1,2(kx,ky) are complex functions defined as

follows:

I1 =
(

 + uk2

y

)2

[(

 + uk2

y

)2 + k2
xv

2
f

]3/2 , (A3)

I2 = 2
[(


 + uk2
y

)3 + v2
f k2

x

(

 + 3uk2

y

)]
[(


 + uk2
y

)2 + k2
xv

2
f

]3/2 . (A4)

Performing the integral in Eq. (A2), we obtain

�(q → 0,ω) = g

4π2h̄2ω2

{
v2

f q2
xReζ1(Ef ) + uq2

y

×[Reζ2(Ef ) + Reζ3(Ef )]
}
, (A5)

where we have defined

ζ1(Ef ) = − 8i

3vf Ef

√
Ef − 


u
[
G0(ν) + Ef G1(ν)],

ζ2(Ef ) = − 32i

15vf Ef

√
Ef − 


u

[(

2 + 3E2

f

)
G0(ν),

+ (
 − 3Ef )Ef G1(ν)
]

ζ3(Ef ) = 16iEf

vf

√
Ef − 


u
[G0(ν) − G1(ν)]. (A6)

Equation (A6) in turn uses the following notation:

ν =
√

Ef − 


Ef + 

, φ = iarcsinh(ν),

G0(ν) = E

[
φ, − 1

ν2

]
, G1(ν) = F

[
φ, − 1

ν2

]
, (A7)

where E[φ, − 1
ν2 ] and F [φ, − 1

ν2 ] are incomplete
elliptic integrals of the first and second kind,
respectively.

0◦

45◦

90◦

135◦

180◦

225◦

270◦

315◦

0.01
0.03

0.05

FIG. 8. Polar plot of the long wavelength plasmon dispersion [in
units of

√
2e2/(h̄2ε)] of monolayer phosphorene. The red line is based

on Eq. (9), and the red line is based on Eq. (A9). The radial and the
azimuthal coordinates are the plasmon frequency, and the direction
of the wave vector, where 0◦ (180◦) and 90◦ (270◦) indicate armchair
(�-X) and the zigzag (�-Y ) direction, respectively. The momentum

is set to be q = 0.02 Å
−1

and Ef = 0.07 eV.
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Within RPA, the plasmons modes are given by the zeros of
the longitudinal dielectric functions,

ε(q,ω) = 1 − vq�(q,ω) = 0, (A8)

where vq is the Fourier transform of the Coulomb potential.
Substituting Eq. (A5) into Eq. (A8) immediately yields the
long-wavelength plasmon dispersion to be

ωpl = β0
√

q
{
v2

f cos2 θqReζ1(Ef ) + u sin2 θq

× [Reζ2(Ef ) + Reζ3(Ef )]
}1/2

, (A9)

where we have used the two-dimensional form of Vq =
2πe2/(εq) and defined β2

0 = ge2/(2πh̄2ε). Figure 8 shows
the angular dependence of the long-wavelength plasmon
frequency, specified by Eq. (A9), and it matches reason-
ably well with the long-wavelength expression given in
Eq. (9).

The ratio of the anisotropic plasmon dispersion in x

and y direction for same value of the wave vector (in the
long-wavelength regime) is given by

ωpl(qx̂)

ωpl(qŷ)
=

√
v2

f Reζ1(Ef )

u[Reζ2(Ef ) + Reζ3(Ef )]
. (A10)
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