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Radiative corrections to quantum sticking on graphene
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We study the sticking rate of atomic hydrogen to suspended graphene using four different methods that include
contributions from processes with multiphonon emission. We compare the numerical results of the sticking rate
obtained by: (i) the loop expansion of the atom self-energy; (ii) the noncrossing approximation (NCA); (iii) the
independent boson model approximation (IBMA); and (iv) a leading-order soft-phonon resummation method
(SPR). The loop expansion reveals an infrared problem, analogous to the infamous infrared problem in QED.
The two-loop contribution to the sticking rate gives a result that tends to diverge for large membranes. The latter
three methods remedy this infrared problem and give results that are finite in the limit of an infinite membrane.
We find that for micromembranes (sizes ranging 100 nm to 10 xm), the latter three methods give results that are
in good agreement with each other and yield sticking rates that are mildly suppressed relative to the lowest-order
golden rule rate. Lastly, we find that the SPR sticking rate decreases slowly to zero with increasing membrane
size, while both the NCA and IBMA rates tend to a nonzero constant in this limit. Thus, approximations to the
sticking rate can be sensitive to the effects of soft-phonon emission for large membranes.
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I. INTRODUCTION

There is renewed interest in the quantum mechanics of
ultracold atoms near surfaces; work is underway to develop
new quantum technologies such as chip-scale atomic clocks,
quantum computers, and high-precision nanoscale sensors.
Understanding the dynamics of ultracold atoms near surfaces
may give insights into optimizing the performance of these
quantum devices.

There are additional practical considerations that motivate
the study of ultracold atoms near surfaces; namely, the ultra-
cold regime offers some advantages for controlling chemical
processes. Reaction pathways might be selected by controlling
the quantum state of the reactants. Thus, a quantum theory
of ultracold adsorption would be desirable for understanding
heterogeneous catalysis at ultralow temperatures.

Although theoretical studies of ultracold surface adsorption
began nearly 80 years ago, recent results on the adsorption
or sticking of cold atomic hydrogen on a newly discovered
two-dimensional (2D) material, suspended graphene, have
been controversial [1,2]. A numerical study of inelastic scat-
tering from suspended graphene [3] concluded that compared
to sticking on graphite, sticking should be enhanced on
two-dimensional graphene. The authors argued that sticking
proceeds by the creation a single graphene phonon. In contrast
to three-dimensional graphite, the vibrations of suspended
graphene are essentially completely polarized normal to its
surface. Thus, the atom-phonon interaction is stronger for
graphene than for graphite.

A more recent study [4] considered sticking to graphene by
evolving an incident wave packet with the time-dependent
Hartree equation. Their phonon bath is modeled by 25
harmonic oscillators, sampling a vibrational bandwidth of
900 cm~!. Their vibrational recurrence time of the order of
1 ps corresponds to a membrane size of less than 10 nm. As
a consequence, the effects of soft-phonon emission are not
included in their numerical study.

Yet another theoretical study argued [5] that the frequency
dependence of the atom-phonon interaction is also different for
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graphene than for graphite. An enhanced atom-phonon interac-
tion at low frequencies resulting from the low dimensionality
leads to a reduction of the sticking via a phonon orthogonality
catastrophe. An atom bound to the surface is accompanied
by a deformation that involves a large number of low-energy
phonons. Such a state has an exponentially small overlap with
graphene’s vibrational ground state [6,7] when the atom is
in the gas phase. As a result, the sticking matrix element for
a one-phonon process is exponentially reduced and tends to
vanish as the size of the graphene target becomes large.

In this paper, we consider the effects of multiphonon
sticking processes using diagrammatic perturbation theory.
We show that while the sticking rate in lowest order in
the atom-phonon coupling is finite, the next term in the
perturbation expansion tends to diverge as the size of the
graphene target becomes large. This infrared divergence is
rooted in the low-frequency dependence of the atom-phonon
coupling for flexural phonons. Thus, the one-phonon result can
be a poor approximation to the total sticking rate. This compels
us to consider multiphonon contributions to the sticking rate.

To investigate the effects of the multiphonon emission
on the adsorption rates, we consider three nonperturbative
methods: (i) the independent boson model approximation
(IBMA); (ii) the noncrossing approximation (NCA); and (iii) a
leading-order soft phonon resummation method (SPR). In the
IBMA [8], we replace in the diagrammatic expansion of the
atom self-energy the Green’s function for the bound atom by
the exact IBM Green’s function. This approximation, equiva-
lent to an infinite sum of diagrams containing the bound-state
atom-phonon vertices, includes multiphonon contributions to
the atom self-energy.

In our second method, we use the noncrossing approx-
imation (NCA) to calculate the atom self-energy. This is
equivalent to an infinite sum of rainbow diagrams and also
includes multiphonon contributions to the self-energy. We
iterate numerically the NCA nonlinear integral equation for
the atom self-energy until self-consistency is achieved. We
find that both approximations yield finite adsorption rates in
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the limit of large graphene targets, and these adsorption rates
are reduced relative to the first-order golden rule estimate.

In the third method, we include the interaction of the
phonons with the bound atom in the unperturbed Hamiltonian,
while the remaining atom-phonon interaction is treated pertur-
batively. We sum over all emitted phonon states the dominant
contributions to the sticking rate in the large membrane regime
[9]. We obtain a result that is in good agreement with NCA
and IBMA results for micromembranes; however, for SPR, the
sticking rate tends to zero as the size of the membrane becomes
large. The NCA and IBMA rates tend to a nonzero constant in
this large membrane limit.

We have organized this paper in the following way. In
Sec. II, we introduce our model Hamiltonian and describe
the self-energy expansion resulting from Feynman-Dyson per-
turbation theory. The atom self-energy captures the effects of
interaction with the flexural phonons. We perform a systematic
series expansion of the self-energy and show that to the lowest
order in coupling, the transition rate is equal to that obtained
by Fermi’s golden rule; however, the higher-order terms in
the perturbative expansion suffer from divergences in the
infrared limit leading us to the conclusion that approximations
obtained by truncating the perturbation expansion are invalid
for suitably large membranes in this model.

Our nonperturbative methods are introduced in Sec. III.
These methods are tantamount to summations over particular
classes of diagrams. These schemes take into consideration
the strong coupling to low-energy phonons and eliminate the
infrared singularities. In Sec. IV, we compare the results of
these approximations with the SPR result [9] that utilizes a
coherent basis for the final phonon states. We then discuss
the effect of soft-phonon emission in cold atom adsorption to
graphene and other 2D materials.

II. PERTURBATIVE EXPANSION OF THE SELF-ENERGY

We introduce the model Hamiltonian and discuss the
relation between the atom self-energy and the sticking rate. We
obtain each term in the perturbation series utilizing Feynman
rules for the model, and we examine the conditions for
convergence of the series.

We begin with the Hamiltonian of the model that represents
the interaction of a cold atom moving at normal incidence
with a 2D elastic membrane. The previously derived [5]
Hamiltonian is written as H = H, + Hp;, + Hp; + Hy; where
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Hyi = —gu(cib +blc) > (a, +a)) 3)
q

Hy = —gipb'b Y (@, + a). €
q

Here, ¢ (c,t) annihilates (creates) an atom in the entrance
channel |k) with energy Ey; b (b') annihilates (creates) an atom
in the bound state |b) with energy —E}, in the static potential;
ay (a;) annihilates (creates) a flexural phonon with energy
wy; gk 1s the strength of a phonon-assisted atom transition
between the continuum |k) and bound state |b); gp, is the
coupling strength of the bound atom to the phonons [5,8,9].

We now consider the atom-phonon interactions as perturba-
tions with H; = H,; + Hy,;. For the Hamiltonian in Eq. (1), the
unperturbed Green’s functions for the atom in the continuum
|k) and the bound state |b) are given as

GO(E) = ————, )
E—Ei+in
1
Gy(E) = ————, 6
o (E) E+E,+in ©
while the phonon propagator is
2
D(g.0) = 54— 50" %)

w? — wg +in

The atom self-energies 2 (E) and Xp,(E) are obtained
from application of the Feynman rules for this model [8]
(see Fig. 1). The sticking rate I" then follows [8] from the
atom self-energy X;;. Thus,

= =2Z(E)ImZ (Ey), ®)

where Z is the renormalization factor given by

B aReZ(E)\ 1"
Z(E)_[1—<—8E )} ©)

In the following sections, we obtain analytic expressions for
the one-loop and two-loop self-energies.

A. One-loop self-energy

H, = Excjey — Epb'h M , . : s
We begin our calculations for the perturbation series with
Hy,, = Z a)qa;aq ) the d(?rivation of the one-loop atom self-energy E,((}g (E)
P (see Fig. 1).
S - o -
Gy = G =
Gkb 9kb
GR(E -w)
° D = g =@ Gkp = ®

FIG. 1. Feynman diagram for the one-loop atom self-energy E,({}() (left). Symbolic elements used in the construction of diagrams are pictured

(on right).
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FIG. 2. Feynman diagrams for the two-loop terms for Xj:
(a) nested (or rainbow), (b) overlap, and (c) loop-after-loop.

With our Feynman rules [8], we find an analytical expres-
sion corresponding to Fig. 1

) o (7 do ©
Y (E) =igg, ED(w)be(E — w)

= Skb . p—= 0. (10
Z E+E,—w;+in

(We work in natural units where 77 = 1.)

From the Wigner-Eckart theorem, we conclude that we need
only consider axisymmetric vibrational modes for transitions
to bound states that are also axially symmetric [5,8]. We
evaluate the sum in Eq. (10) in the continuum limit and obtain

wp — E — Eb
E+Ep

—inghpold(wp — E — Ep) — 0(—E — Ep)],

(11)

T (E) = —g,poIn

where py is the (constant) density of axisymmetric vibrational
states and wp, is the Debye frequency for the membrane. Xy
has an imaginary part for —E;, < E < wp — Ej correspond-
ing to atom transitions out of the continuum state to the bound
state with the emission of a single phonon. Following Eq. (8),
we obtain the first-order adsorption rate:

Ty ~ 27 gp,Po (12)

for atom energies Ej such that E; + E;, < wp. Also, we take
Z =~ 1, which is valid for g,fb,oo <« E,. We conclude on the
basis of Eq. (12) that at the one-loop level, the transition rate
is finite, proportional to g7, and is independent of the bound
atom-phonon coupling gj.

The sticking rate can also be calculated using
Fermi’s golden rule, with lowest-order transition rate I’y

J
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TABLE I. The ¢ dependence of the two-loop contributions to
the atom self-energy Z,E?(E). We define ¢ = gx»&pp 0. The infrared
frequency cutoff € is inversely proportional to the membrane size
€ ~ vy/L, where v; is the transverse speed of sound and L is the
size of the membrane. The nested diagram has the most divergent
contribution to the atom self-energy.

Feynman Diagram Re E,g{) Im Z,ﬁ)
2
Nested —00 — &
o) 1 g2 1 wp 1 Ey 2ng2 1 wp
verlap Fb n E7b n - _?b n ?

2ng? In 22
Ep

Loop-after-loop %:‘] [( In %zb))z _ 7.[2] 2

given by

Fo=2m Y [(fIH:li)8(Ef — Ep) (13)

f
with the initial and final states given as |i) = |k)|0,) and | f) =
|b)[1,), respectively. The energies corresponding to the final
and the initial state are £y = —Ej, + w, and E; = E}. We then

calculate the transition matrix element as ( f|H;|i) = —gip.
Thus sticking rate 'y is
To =271 Y ge,8(—Ep + wg — Ep). (14)

q

which, in the quasicontinuum approximation, becomes
2
[y = 2w g,00. (15)

Therefore, we find that the one-loop result is equal to the
transition rate given by Fermi’s golden rule [Eq. (15)] for
gtpPo < Ep. We now examine the next term in the loop
expansion of the self-energy.

B. Two-loop self-energy

The Feynman diagrams for the two-loop terms of the atom
self-energy X, (FE) are given in Fig. 2. The nested diagram is
found to contain a power-law divergence from soft phonons;
however, for a finite-sized membrane, the vibrational spectrum
is cutoff at low frequencies. We introduce €, the lowest
vibrational frequency of the membrane, which scales as the
inverse size of the membrane. It serves as a natural regulator for
the infrared divergences. We now calculate the € dependence
of the Feynman amplitudes in Fig. 2. This cutoff dependence
is summarized in Table I.

The nested diagram contributes E,(i“) to the atom self-
energy

do do'
(2a) .2 2 2 ~(0) 0) ) ’
£20 = / / B ; ;g,d,gbb Gy (E — w)Gy(E — w — )G} (E — 0)D(q,w)D(q’,0')

2 2
8ib8bb

1

:;;(E—#Eb—wq%—in)z(E—i—Eb—wq—wq/—l—in)'

(16)

In the quasicontinuum approximation, we evaluate the double integral and find that the real part diverges as a result of the double
pole at w = E + E; and the imaginary part suffers from a linear divergence as w — 0.
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Similarly, one can derive analytical expressions for the overlap diagram

dodo
2w 2w

2b) _ 2
Y =i /

2 2
8kv8bb

DY i Gy (E — 0)GR(E — 0 — )Gy (E — o)D(g,0)D(q o))
qa q

1

_;;(E+Eb—a)q+ir7)(E+E;,—wq—a),,/+in)(E+E;,—a),,/+in)'

In the quasicontinuum approximation, this integral contains a
logarithmic divergence for both the real and imaginary parts
from low-frequency phonons (w — 0). In Table I, we specify
the € dependence from the most divergent terms contained in
the three two-loop diagrams.

While the loop-after-loop diagram is finite, we find that the
two-loop nested and overlap diagrams contain contributions
that tend to diverge with increasing membrane size. Hence,
the loop expansion becomes unreliable for suitably large
membranes. This is a phonon version of the infrared problem
in QED [9]. The breakdown of perturbation theory leads us
to consider alternative methods. We discuss the results of two
resummation methods that remedy this infrared problem for
large membranes.

III. RESUMMATION METHODS

In our previous work on the studies of adsorption of cold
atoms on high-temperature 2D elastic membranes [8], we
attempted to go beyond the truncated loop expansion by
considering a partial resummation technique in the spirit of
the well-known exact solution of the independent boson model
(IBM). Henceforth, we refer to this replacement of Gg;f in the
diagrammatic expansion with the exact IBM Green’s function
GIBM as the independent boson model approximation (IBMA).
This replacement has similarities to the Bloch-Nordsieck
scheme [10] used in hot QED and QCD plasmas [11,12].

In this work, in addition to the IBMA, we employ another
resummation technique that corresponds to the summation of
all rainbow diagrams: the noncrossing approximation (NCA).
The reason behind using NCA is twofold: first, for the zero-
temperature case, we see that the leading-order divergence is
rooted in the rainbow (nested) diagram. Hence, we aim to sum
all the rainbow diagrams to infinite order with the motive of
curing the leading-order divergent contributions. The NCA is
a resummation technique, which is well suited to account for
strong divergences. Second, there are successful applications
of the NCA in the other fields of many-body physics such as
the Anderson impurity problem [13,14], quantum dot transport
[15], and the role of phonon interactions in the Anderson-
Holstein model, in a quantum antiferrromagnet and in the
Holstein-Hubbard model [16-18].

In the next section, we introduce the IBMA and use it to
calculate the atom self-energy ¥y in the infrared limit e — O.

A. Independent boson model approximation

The model in Eq. (1) can be viewed as a generalization of
the IBM with two coupling constants g, and g,. Our primary
interest is in describing ultracold atoms. Thus we focus on
the regime where gy, > grp, as gkp is reduced by the effect

a7

(

of quantum reflection for ultracold neutral atoms [19]. We
aim to derive an exact solution in the stronger channel (|b))
compared to the continuum (|k)), which we treat perturbatively
[8]. An exact solution for the stronger channel with atom-
phonon coupling g, is obtained in terms of the IBM. We
begin with the IBM Hamiltonian, which is contained in our
model Hamiltonian. The IBM only considers the interaction
of the bound atom of energy — E; with the flexural phonons
with energy w,. Thus,

Higy = —EbbTb + Za)qa;aq — gbbbTb Z(aq + aj]').

q q
(18)

The exact time-dependent Green’s function of the IBM
GIEM(1) is [20]

GpM(t) = —ie CEm R0, (19)

where (1) = 3, g5,(1 — e7"")/w] and the polaron shift A
is given as [20],

2 wp 52
A=Y, / BP0 g, (20)
— . 1)

In the quasicontinuum approximation, we rewrite Eq. (19)
as

GIBM(r) = i explit(Ey + A exp |—igy [ (205!
bb = p b P |—18b ; o2

@p 1-— t
X exp |:—gb/ dw(%)} 21
€

where we have defined g, = g7, p0. The Fourier transform of
Gup(1) s

Y G . [*? dosinot
GEZM(ES) = — / {elf(Ex+A) exp <_lgb/ T)
0 €

@D 1 — cos wt
X exp | —&bp dw — dt,

where the energy E; is defined as E; = E + E},.

The above integral is computed numerically and gives
convergent, finite results for both the real and imaginary parts
of Gpp(Ey) in the infrared limit € — 0. This is somewhat
surprising at first blush, as the polaron shift in Eq. (20) clearly
diverges logarithmically as € — 0. There is, however, a can-
cellation in the phases that gives a finite limit. It is convenient
to rewrite Eq. (22) in the scaling form g,Gyp(Es/gp). In the
limits of wp — oo and € — 0, this scaling form is a universal
function. Figure 3 shows the imaginary and the real parts of the

(22)
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FIG. 3. The real and imaginary parts of scaled IBM Green’s
function g, GIEM(E, /g}) vs E,/ g, for IR cutoff € = 0. GEM(E, /g,)
is a smooth, complex-valued function in the limit € — 0.

scaled Green’s function g,Gp,(E;/gp) as function of E;/gp.
We note that the imaginary part, proportional to the density
of states for the bound atom coupled to the flexural phonons,
has a broad, asymmetric peak centered at E;/g, ~ —1 + y
where y is the Euler-Mascheroni constant. No weight of
the quasiparticle (§ function) density of states in ImG,(Ey)
remains when € = 0. The real part of Gp,(E;/gp) vanishes
approximately at the energy corresponding to the peak in the
imaginary part.

Under the IBMA, we calculate the atom self-energy X, by
replacement of the bare bound-state Green’s function G, (Ey)
in the diagram of Fig. 1 by the IBM Green’s function G}2M(Ey).
Owing to the relative strength of atom-phonon couplings, the
infrared behavior produced by higher-order processes in g
will be small and thus can be neglected [8]. Hence, we can
restrict our calculations for the self-energy X®M at the first
loop, which would contain all orders in the strong coupling
gib but only to the lowest order in g,fb.

The imaginary part of the atom self-energy is consequently
evaluated by numerically integrating the following expression:

ImEM(E) = —pogg, / IMGEM(E, — w)dw.  (23)
€

Because ImGIBM(ES) is a smooth, finite, well-behaved func-
tion, the integral in Eq. (23) converges in the infrared limit
€ —> 0.

The IBMA sticking rate I''™M is obtained by combining
Egs. (8) and (23), yielding

wp
IM"M(E) = 27 g7, po f pp(Ey —w)dw,  (24)

where pp(E) = ——ImGIBM(E) is the bound atom density
of states for HIBM pp(E) is subject to a sum rule and
must, when integrated over all E, give 1. (We verified this
sum rule numerically as a partial check of our results.) By
comparing Egs. (13) and (24), we conclude that '"™BM < T,
Our numerical results for the IBMA sticking rate are discussed
in Sec. IV. In our next subsection, we turn to NCA to calculate
the sticking rate.
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Ypp(E) = +

Ypp(E) =

FIG. 4. Diagrams in the NCA. Evaluation of these diagrams
results in a set of coupled nonlinear integral equations that may be
solved self-consistently. This is equivalent to a sum of all diagrams
with no phonon lines crossing.

B. Noncrossing approximation

The one-loop approximation to the atom self-energy
Yk (E) (Fig. 1) depends on the bound atom Green’s function
G(b%). We can improve on this approximation by replacing the

10* g : :
F 2- Ioop self- energy
—— NCA (MP)

10% | — - IBMA (MP) 3

10% E

log <F/F0) ‘

107 E

100 | ——

e (ueV)

1.02 |- ) o —— NCA 4
Multiphonon Emission .

100 — — L — = = =

0.98 |- 1

vvvvvvvvvvVVVVVvvvvvvvvvvvvvvvvvvvvvvvv
-

e Aag

o

/T,

<

0.96 | i

0.94 - i

092} E;=40meV ]

0 1 2 3 4
e (ueV)

ot

FIG. 5. Dependence of the (normalized) adsorption rate I'/ Iy
with IR cutoff € (top). The two-loop approximation to I" diverges
as € — 0. Under NCA and IBMA, I'/T"y converges to a constant
in this limit (bottom). In SPR [9], I'/ Iy behaves asymptotically as
ln’z(a)D/e) ase€ — 0.
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FIG. 6. Left: Real part of the atom self-energy Re X1 (E) vs energy E. Results are plotted for IR cutoff € = 0, g2, py = 0.711eV using three
different approximation methods: one-loop self-energy E;L), NCA, and IBMA. Right: Imaginary part of the atom self-energy Im X (E) vs

energy E. The sticking rate is obtained from self-energy using Eq. (8).

bare bound atom Green’s function with the dressed bound
atom Green’s function G,,. However, G, depends on the
bound atom self-energy X, which is unknown. That leads us
to consider the set of one-loop diagrams pictured in Fig. 4.

Evaluation of the one-loop diagrams for the atom self-
energies X, and X gives the following coupled, nonlinear
integral equations

2
8bb
Ypp(E) =
oo(E) ; E+Ep,—w; — Zp(E — wy)
gl%b
+ 9
;E—Ek—wq—Ekk(E—a)q)
g2
Su(E) =) L (25)

7 E +Eb — Wy — Ebb(E —a)q)'

We numerically solve this set of equations by iteration until
self-consistency has been achieved. The numerical solutions
to the atom self-energies were found to smoothly converge to a
limiting form as € — 0. Figure 6 shows the real and imaginary
parts of the atom self-energy X;; as a function of E using
NCA. Using Eq. (8), we then obtain the adsorption rate under
NCA. The energy dependence of the calculated adsorption
rate under the NCA is plotted in Fig. 7. The dependence of
the NCA sticking rate with IR cutoff ¢ at fixed energy E; is
plotted in Fig. 5.

C. Soft-phonon resummation method

In our leading-order soft-phonon resummation method [9],
we note that the Hamiltonian [Egs. (1), (2), (3), (4)] contains
the independent boson model [Egs. (1), (2), (4)] that can be
exactly solved by canonical transformation. Thus, the SPR
method treats Eq. (3) as the sole perturbation, and as a result,

the SPR results are exact in g, the bound atom-phonon
interaction.

The inclusion of Eq. (4) in the unperturbed Hamiltonian
leads to a Franck-Condon factor that exponentially suppresses
the sticking rate for any finite number of emitted phonons.
Only by considering an infinite sum of leading-order, soft-
phonon contributions does a finite adsorption rate result. We
noted previously in the context of the infrared problem [9]
that this behavior has analogy with bremsstrahlung scattering
in QED.

The total multiphonon rate computed by this SPR method
gives a simple product of Eq. (15) and a suppression factor R =
1+ EAT)*z, which depends logarithmically on the IR cutoff
€ (see Fig. 5). By including the leading-order contributions,
the SPR result is asymptotically exact in the large membrane
limit. We note that SPR predicts an adsorption rate that
vanishes in the limit of an infinite membrane (¢ — 0). The
suppression results from the fact that the membrane distorts
to accommodate the adsorbed atom in the final state. Thus the
bound atom is in a phonon coherent state [9]. The resulting
vibrational Franck-Condon factor for the adsorption process
reduces the total transition rate by the factor of k.

IV. ADSORPTION OF ATOMIC HYDROGEN
ON GRAPHENE

We take the following for the numerical values of the
parameters for the model of Eq. (1): g7,00 = 0.06 meV,
gi,p0 = 0.5-10 peV, wp =65 meV, E, =40 meV, and
the transverse speed of sound in graphene is v, = 6.64 x
10°m/s. We consider micromembranes whose size ranges
from 100 nm to 10 um. These values have been previously
used to model [3,5,8] ultracold atomic hydrogen impinging
at normal incidence on a suspended, circular sample of
graphene.
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We compare the numerical results of the sticking rate
obtained by: (i) the loop expansion of the atom self-energy;
(i) the noncrossing approximation (NCA); (iii) the inde-
pendent boson model approximation (IBMA); and (iv) a
leading-order soft-phonon resummation method (SPR) [9].

While the one-loop sticking rate gives a result that in the
regime of interest is tantamount to the result from Fermi’s
golden rule, the two-loop sticking rate diverges linearly with
increasing membrane size (or equivalently, with vanishing IR
cutoff e — 0). This divergence is seen in the top panel of Fig. 5.
We conclude that approximations based on truncation of the
loop expansion break down for sufficiently large membranes.

As anticipated, the IBMA sticking rate is slightly less than
the golden rule rate Iy over the range of IR cutoff € considered
(see bottom panel of Fig. 5). The reduction in sticking under
IBMA was a result of the smearing of the bound atom density
of states through the interaction with the phonons. In contrast
to the two-loop result, the IBMA rate remains finite in the
limit of vanishing IR cutoff € — 0. We conclude that sticking
in the IBMA, which includes the spontaneous emission of an
arbitrary number of phonons remedies the infrared problem in
the loop expansion.

The NCA sticking rate is also suppressed relative to Iy and
is also consistently lower than the IBMA sticking rate over
the range of parameters used (see the bottom panel of Fig. 5).
The NCA further broadens the bound atom density of states
through the inclusion of virtual transitions of the atom back
to the continuum. This further depresses the sticking rate in
comparison to the IBMA. We note that the NCA also gives a
finite rate as € — 0.

Lastly, we plot the sticking rate under the SPR method
[9] in Fig. 5 for comparative purposes. We note that over
the parameter range for micromembranes, the SPR sticking
rate lies in between the IBMA and NCA rate. Thus, there is
good agreement with the three methods for micromembranes;
however, the € behavior of the SPR rate differs from both the
NCA and IBMA rate. The SPR method remedies the infrared
problem, but in contrast to the IBMA and NCA rate, the SPR
rate vanishes logarithmically [9] with T" ~ Iy ln’z(a)D /€) as
€ — 0. The bottom panel of Fig. 7 shows that for sufficiently
low binding energy Ej, the SPR rate drops below the NCA
rate. As the SPR method is asymptotically exact as € — O,
we anticipate that for weakly bound adsorbates the monotonic
suppression of the sticking rate with increasing membrane size
might be experimentally accessible.

In summary, we have studied the adsorption of ultracold
atoms to a 2D elastic membrane. We have shown that the loop
expansion produces a series that is divergent as € — (. This
infrared problem is similar to the infamous infrared problem of
quantum electrodynamics where a scattered particle radiates
an infinite number of soft photons. In QED, the infrared
problem has been treated in several ways, including: (i) Bloch-
Nordsieck theory [10,21] where the soft-photon corrections are
arranged as an expansion in the photon frequency (iw/cAp
where Ap is the momentum change from scattering) rather
than the fine structure constant «; (ii) Kinoshita’s cancellation
of real and virtual corrections in perturbation theory [22]; and
(iii) use of a photon coherent state basis [23]. Unencumbered
by the constraints of Lorentz covariance in our model, the
study of the phonon infrared problem may help to provide

PHYSICAL REVIEW B 96, 035419 (2017)

100 T T T T T T T
SPR
o0
0.95 | 0000222266%8%888888—2
o® ) pA A g muE
OOAASDDD
0.90 | OOASDD i
OAAD
||
QO 0.85 |- OAI:I -
P A
= 080 1 -
AD
0.75 i
[ ]
#- L= 10pm
0.70 H A~ L=1um 7
o— L= 100 nm
065 - 1 1 1 1 1 1
E, (meV)
1.1 I I I I I I I
L=1pm
10 [ == = Em = e E_E___—=_—_-_—-— =
09| .
[ 1.05
Uo
= 08 - I I I I I -
~ 1.00 po= == = — — - —
0.7 - 0.95 |- B b
0.90 —
06 L SPR 1
- IBMA 085 Ll—1L 1 1 |
NCA 15 20 25 30 35 40
05 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40
E, (meV)

FIG. 7. Top: Normalized adsorption rate I'/ 'y from the SPR
method vs energy transfer E; = E + E,, for various membrane sizes
ranging 100 nm to 10 um. Bottom: Normalized adsorption rate I'/ Iy
from SPR, IBMA, and NCA vs E; for a 1 um micromembrane. For
shallow bound states, the SPR result shows appreciable suppression
in sticking relative to the other methods. However, for deep bound
states, the three methods (IBMA, NCA, and SPR) give sticking rates
that are in good agreement with each other.

a more complete understanding of the issues in the QED
counterpart.

In our work, both the IBMA and NCA replace the bare
bound atom Green’s function with a propagator that includes
atom-phonon interactions. This dressed propagator leads to a
broadened density of states for the bound atom and eliminates
infrared divergences in the probability amplitudes. The SPR
method has similarity with the use of coherent states in QED
[23]. In the SPR method, the inclusion of the interaction of the
bound atom with the phonons in the unperturbed Hamiltonian
leads to the use of a coherent state basis for the phonons in
the evaluation of the sticking amplitudes. All three of these
methods include the spontaneous emission of an arbitrary
number of phonons.

Our numerical results for micromembranes show that the
IBMA, NCA, and SPR methods give results that are in good
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agreement with each other and yield sticking rates that are
mildly suppressed relative to the lowest-order golden rule rate.
All three methods produce results that are free of infrared
divergences. However, the SPR sticking rate decreases slowly
to zero with increasing membrane size, while both the NCA
and IBMA rates tend to a nonzero constant as € — 0. We
conclude that approximations to the sticking rate can be
sensitive to the effects of soft-phonon emission for large

PHYSICAL REVIEW B 96, 035419 (2017)

membranes and that cold atom adsorption on a membrane
might be viewed as a finite-size effect.
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