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Relativistic response and novel spin-charge plasmon at the Tl/Si(111) surface
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We present a comprehensive ab initio analysis of the spin-charge correlations at the Tl/Si(111) surface, where
the spin-orbit interaction is so strong that a detailed treatment of the noncollinear electron spin appears decisive
for the correct description of the response properties. The relativistic limit enforces a unified treatment of the
spin and charge densities as a four-vector, and the response function acquires then a 4 × 4 tensor structure.
Our all-electron implementation allows us to resolve the real-space structure of the possible collective modes,
and demonstrates the emergence of a novel collective excitation combining transverse-spin and ordinary charge
oscillations of a similar order of magnitude, whose spin character is strongly enhanced as we approach the q → 0
momentum limit.
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Understanding the role of the spin in the dynamics of
many-electron systems is of paramount importance. Contrary
to conventional electronics, primarily based on the charge
property of the electron states, controlling quasiparticles or
emergent many-body collective modes focusing on the spin
state has become a very challenging but realistic possibility
[1]. A key simplifying idea or approximation of contemporary
many-body physics has been the concept of the collective
mode [2,3]. Among others, the so-called plasmon and magnon
states have been historically considered as the collective modes
associated with the real-space oscillations of charge and spin
densities, respectively. Even without considering the spin-orbit
interaction, three decades of systematic quantum-mechanical
studies of response functions in real surfaces have led to the
prediction and discovery of unexpected collective phenomena,
such as the acoustic surface plasmon [4,5]. However, relativity
is known to introduce a peculiar interplay between the electron
charge and spin, and it has been proven to produce well-defined
spin textures even in nominally nonmagnetic materials [6]. The
last decade has been characterized by the emergence of several
entirely new research fields focusing on the study of the role
of the electron spin in the presence of relativistic corrections
and its associated topological properties [7–9]. This is so
because of the wide variety of fascinating electromagnetic
and transport properties shown by these materials, such
as the Edelstein [10,11] or the spin Hall [12,13] effects,
which have triggered a justified expectation about possible
applications.

Recently, several model theoretical studies considering
the Rashba or Dresselhaus spin-orbit interaction in ideal
homogeneous two-dimensional (2D) systems have predicted
the presence of novel types of collective excitations induced
by spin-orbit coupling, such as the so-called chiral spin waves
[14–17]. A particular mention of Ref. [17] is in order, as in
this work the authors predicted the presence of a ωq ∼ √

q

dispersing mode in a helically polarized ideal Dirac system,
showing that this mode is constituted by both spin and
ordinary charge oscillations. Along this line, metal surfaces
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and semiconductor/heavy-element overlayers holding spin-
polarized quasi-2D surface states may be potential systems
for showing mixed spin and charge collective excitations.
However, a thorough ab initio analysis of such excitations
in real materials incorporating the details of complex band
structures and strong spin-orbit coupling is still lacking. In
this respect, the Tl/Si(111) surface appears as an excellent
illustrative example due to the exceptionally strong spin-orbit-
induced spin splitting of its surface states (∼0.5 eV). Moreover,
these states show a characteristic spin texture composed by a
Rashba-like chiral pattern close to the �̄ point and a complete
surface-perpendicular spin polarization at the high-symmetry
point(s) K̄ (K̄′) [18–20].

In this article, we present a first-principles analysis of
the relativistic response properties of the Tl/Si(111) surface
system, incorporating the spinor structure of the electron wave
function as well as the fine structure details of the electron
bands and local field effects. The relativistic limit induces an
intimate coupling between electron spin and charge densities,
and it seems natural to introduce a four-density vector,
nμ ≡ (ρ,mx,my,mz), describing the ordinary charge density
together with the three possible Cartesian components of the
spin density. Thus, our response functions are represented
by a 4 × 4 tensor and the 16 components encode all the
possible charge- and spin-density correlations in the presence
of an external electromagnetic field. We show that, owing to
the particular band structure and spin texture of the surface
states present in this system, a novel low-energy collective
mode emerges, which is composed of coexisting charge- and
spin-density oscillations. Our first-principles scheme allows
us to resolve the real-space configuration of the spin/charge
character of such oscillations.

Within the framework of spin-density functional theory
(SDFT), Kohn-Sham (KS) wave functions are generalized by
a two-component spinor at each k point in the first Brillouin
zone,

�n,k(r) =
(

ϕ
(↑)
n,k(r)

ϕ
(↓)
n,k(r)

)
, (1)

where ϕ
(↑)
n,k(r) and ϕ

(↓)
n,k(r) represent the up and down compo-

nents for a given direction. The components of the spinor
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wave function satisfy a set of two coupled KS equations
[21] in which the effective scalar potential is replaced by a
spin-dependent one and the ordinary electron density becomes
a four-component spin-density matrix,

nαβ(r) =
occ∑
n,k

ϕα
n,k(r)

(
ϕ

β

n,k(r)
)∗

, (2)

where the sum runs over all the occupied KS states. As for
linear response theory, the generalization of the noninteracting
density-density response function leads, as mentioned above,
to a 4 × 4 response matrix and is directly accessible by
considering the ground-state KS spinors of Eq. (1) by [22,23]

χ
αβα′β ′,GG′
KS (q,ω) = 1

	

1BZ∑
k

∑
n,m

(fnk − fmk+q)

ω + (εnk − εmk+q) + iη

× 〈
ϕ

β

n,k

∣∣e−i(q+G)·r∣∣ϕα
m,k+q

〉 〈
ϕα′

m,k+q

∣∣ei(q+G′)·r∣∣ϕβ ′
n,k

〉
, (3)

where G and G′ represent reciprocal lattice vectors, ε and f

represent the energies and occupation factors of the KS states,
respectively, and η → 0+. Following the time-dependent
density-functional theory scheme [24,25], the full interacting
response matrix χ can then be obtained by means of the Dyson
equation, which formally reads

χ = [1 − χKSFxc]−1χKS. (4)

In principle, Fxc includes both the Coulomb interaction and
the exchange-correlation kernel, and the inhomogeneities in
real space (so-called local field effects) are taken into account
by the nondiagonal G 
= G′ elements in Eq. (3).

In Eq. (3) we express the generalized response matrix in the
spinor basis, but a clearer physical interpretation is obtained
by means of the more usual tensor representation considering
the Pauli tetrad basis σμ ≡ (σ 0,σ x,σ y,σ z),

nμ = 1

2

∑
αβ

σ
μ
αβnβα, (5)

χμν = 1

4

∑
αβα′β ′

σ
μ
βαχαβα′β ′

σ ν
α′β ′ , (6)

where nμ represents the four-component density vector nμ ≡
(ρ,mx,my,mz). In this way, we arrive at the generalized linear
spin- and charge-density response equation,

δnμ(r,ω) =
∑

ν

∫
d3r ′χμν(r,r′,ω)δφν(ext)(r′,ω), (7)

which relates the induced charge and spin densi-
ties, and the external electromagnetic field, δφν(ext) ≡
(δV (ext)

0 ,δH (ext)
x ,δH (ext)

y ,δH (ext)
z ).

The Tl/Si(111) surface was simulated considering a slab
system consisting of ten silicon layers with a thallium adlayer
and a vacuum space of 51 Bohr radii (a0) between the repeated
slabs (see Ref. [26]). On the other side of the slab a hydrogen
adlayer was introduced in order to saturate the dangling
bonds. Ground-state calculations were performed using the all-
electron linearized augmented plane-wave (LAPW) method
[27], considering a 24 × 24 × 1 Monkhorst-Pack grid [28] and
the noncollinear local spin-density approximation (LSDA) for
the exchange-correlation energy [29]. Spin-orbit interaction

FIG. 1. Ground-state electronic structure of the Tl/Si(111) sur-
face. (a) Calculated band structure. Energies are given with respect
to Fermi energy, which is represented by the dashed line. The dotted
line shows the shifted Fermi level used in the response function
calculations. The light gray background represents the bulk band
projection. The inset shows a zoom of the S↓

1 and S↑
1 surface bands

near the �̄ point. (b), (c) Momentum-dependent spin polarization
of the two occupied surface states S↓

1 and S↑
1 , respectively, over the

whole first surface Brillouin zone. Arrows represent the in-plane
spin-polarization components, whereas the color code represents
the out-of-plane spin-polarization component. The Fermi contour
corresponding to the Fermi level shifted by −0.03 eV is represented
by the black solid line in (c).

has been included self-consistently in all the ground-state
calculations.

Figure 1 shows the essential information about the elec-
tronic band structure and spin polarization of the Tl/Si(111)
surface, as obtained by means of our relativistic ground-state
calculations. In Fig. 1(a), the solid black lines correspond to the
slab bands, while the continuous grey background represents
the projected band structure of bulk silicon. Figures 1(b) and
1(c) display the calculated momentum-dependent spin textures
of the occupied surface bands S↓

1 and S↑
1 , defined as the

expectation value of the Pauli matrices,

mn(k) = 1

	

∫
d3r�

†
nk(r)σ�nk(r), (8)

where 	 represents the volume of the unit cell. Our results
show excellent agreement (within tens of meV) with previous
SDFT calculations based on the pseudopotential method
[18], as well as with angle- and spin-resolved photoemission
experiments [19,20]. The Tl/Si(111) surface states show a rich
noncollinear spinor structure, and a moderate hole doping of
30 meV [see dotted line in the inset of Fig. 1(a)] results in
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FIG. 2. Selected components of the calculated spin-charge response tensor for q along the �̄-M̄ direction (corresponding to y in our
coordinate system). Calculated (a) charge/charge, (b) transverse-spin/charge, and (c) transverse-spin/transverse-spin response functions for the
noninteracting case [as in Eq. (3)] and (e)–(g) their interacting counterparts, calculated from Eq. (4). Panels (d) and (h) represent the imaginary
and real parts of the determinant of the spin-charge dielectric response tensor [see Eq. (9)], respectively, which are relevant for determining the
presence of possible collective modes and their real-space details [see Eqs. (10)–(12) and discussion therein].

a fully spin-polarized Fermi surface with chiral spin texture,
with only the upper spin-split subband S↑

1 crossing the Fermi
level. Furthermore, since the splitting of bands S↑

1 and S↓
1

remains almost constant in the vicinity of the �̄ point, the
band structure of this surface system near this point deviates
substantially from that of the pure Rashba-like systems.

Figure 2 presents our results for the generalized spin- and
charge-density response tensor of the hole-doped Tl/Si(111)
surface. For the sake of simplicity, we have focused on a
momentum q along the �̄-M̄ direction, which corresponds
to the y axis in our coordinate system. Therefore, from now
on we refer to the coordinate x as the transverse direction.
Figures 2(a)–2(c) show the calculated macroscopic contribu-
tions [χμν,G=0G′=0

KS (q,ω)] of the noninteracting charge/charge,
transverse-spin/charge, and transverse-spin/transverse-spin re-
sponses, respectively, while Figs. 2(e)–2(g) show their full
interacting counterparts [see Eq. (7)] [30]. The noninteracting
4 × 4 component response function has been obtained by
evaluating the summation of Eq. (3) over a dense 840 × 840
k-point grid, in which all the k-dependent elements have
been interpolated using the Wannier interpolation technique
[31,32]. This procedure allows one to achieve converged
results considering a damping parameter as fine as η = 1 meV,
which permits one to obtain a smooth q-dependent map of
the response functions [26]. As a next step, the interacting

response has been obtained by direct inversion of Eq. (4),
where we keep the local field effects. We use the LSDA of the
exchange-correlation kernel [29], and we consider a truncation
of the Coulomb potential in the direction perpendicular to the
surface in order to avoid artificial interaction between the slabs
[33].

The intraband single-particle excitation continuum can be
noticed in the three components of the noninteracting response
tensor [see Figs. 2(a)–2(c)] [3]. Moreover, the interband
excitation continuum (also called the “Rashba” continuum
[15]) is also visible in the Im(χx0

KS) and Im(χxx
KS) components.

Interestingly, we find that interband transitions carry a change
of sign in Im(χx0

KS) with respect to the intraband transitions,
an effect originating from the opposite spin orientation of the
two spin-split subbands. These three panels define the regions
of the (q,ω) space where the possible collective modes of
the system may suffer from damping due to single-particle
excitations (Landau damping [3]).

Turning back to the full interacting response, a prominent
peak on the charge/charge response component [Im(χ00)] is
observable in Fig. 2(e), which lies well above the single-
particle excitation continuum up to |q| ∼ 0.08a−1

0 , clearly
resembling the ωq ∼ √

q dispersion of a quasi-2D charge plas-
mon [34,35]. Noteworthy is that the spin-charge interplay in
the response introduced by the spin texture of the surface states
becomes manifest when we evaluate Im(χx0) and Im(χxx),
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because in both of these functions a similar peak is observed
with exactly the same dispersion [see Figs. 2(f) and 2(g)],
together with the single-particle excitation background in the
case of Im(χxx). As for Im(χx0), we observe a sign change
and an intensity enhancement for low values of q. This effect
comes from the aforementioned sign change of the Im(χx0

KS)
function, and is in principle also present in conventional pure
Rashba-like systems. However, when considering the ab initio
response of a real surface such as Tl/Si(111) new features
arise. The almost constant splitting between the subbands
near � [see inset of Fig. 1(a)] makes the interband continuum
remain at low energies over the considered momentum range,
allowing for a well-defined collective excitation—free from
decaying into single-particle excitations—in the region of
interest. In addition, for larger momentum transfers, another
almost constantly dispersive peak starting at |q| ∼ 0.03a−1

0
appears in Im(χx0) [see Fig. 2(f)], coming from the low-energy
interband transitions as well. For the sake of conciseness, from
now on we focus on the ωq ∼ √

q dispersing mode.
In order to gain further insight in the real-space details of

this excitation, we compute the spin-charge dielectric response
tensor ε:

ε = [1 + χFxc]−1 = 1 − χKSFxc. (9)

This tensor relates the four-component self-consistent poten-
tial (δφsc = δφext + δφind) and the external potential (δφext):

δφμ,G(ext) =
∑

ν

∑
G′

εμν,GG′
δφν,G′(sc). (10)

The self-sustained (δφext = 0) oscillations fulfill the following
condition:

det[εμν,GG′
(q,ω)] = 0. (11)

Above, the determinant has to be evaluated accounting for
both the space and the spin degrees of freedom and, therefore,
the dimension of the problem becomes 16 (4 × 4) times larger
than the scalar case. We can express Eq. (10) as an eigenvalue
equation (in a similar way as in Ref. [36] but including spin),∑

ν

∑
G′

εμν,GG′
(q,ω)δφν,G′

i (q,ω) = εi(q,ω)δφμ,G
i (q,ω), (12)

so that the condition of Eq. (11) is satisfied for the solution
of Eq. (12) with a vanishing eigenvalue [εi(q,ω) = 0] . This
procedure allows one to resolve the spatial dependence and the
mixed spin-charge character of the excitation [26]. We show
in Figs. 2(d) and 2(h) the calculated imaginary and real parts
of det[εμν,GG′

], respectively. We can recognize the peaks in
Im(χ00), Im(χx0), and Im(χxx) as zeros of the function Re(det
[εμν,GG′

] ) which lie in regions with vanishingly small Im(det
[εμν,GG′

] ), thus identifying the excitation as a well-defined
self-sustained collective oscillation.

Figure 3 shows the real-space structure of the self-sustained
oscillation as a function of q and z, the latter being the real-
space coordinate perpendicular to the surface. The ordinary
charge part (δV0) and transverse-magnetic component (δBx)
of the oscillation are represented in Figs. 3(a) and 3(b),
respectively. The longitudinal (δBy) and surface perpendicular
(δBz) magnetic components are negligible in comparison and

FIG. 3. Real-space configuration and q dependence of the cou-
pled spin-charge collective oscillation at the Tl/Si(111) surface.
(a) Magnitude of the induced charge potential oscillation and
(b) induced transverse magnetic field oscillation, where |δA|2 =∫

cell d
3r

∑
μ(δφ(r)μ)∗δφ(r)μ. The z coordinate corresponds to the

direction perpendicular to the surface, with negative values indicating
penetration into the bulk. Illustrative positions of the first thallium and
silicon atomic layers are represented by big gray and small yellow
spheres, respectively.

are shown in Ref. [26]. For the sake of simplicity, we keep
only the z dependence by averaging the amplitudes in the
surface-plane directions. The quasi-2D character of the mode
is confirmed as both components remain localized within the
first five atomic layers (∼12a0) close to the surface area.
Most importantly, this figure reveals that the amplitude of
the transverse-magnetic component is of a similar order of
magnitude and even larger than the amplitude of the charge part
over the considered momentum range. We also observe that the
real-space configuration of this mode is almost independent of
the momentum except for the q → 0 limit, where we find a
strong enhancement of the magnetic component relative to the
charge part.

In conclusion, we present a first-principles treatment of
the generalized spin-charge density response tensor at the
Tl/Si(111) surface. Our calculations demonstrate the appear-
ance of a coupled spin-charge collective mode localized at
the first few atomic layers close to the surface, which, as a
direct consequence of the chiral spin texture of the Fermi
contour, is composed by a transverse-spin-density oscillation
in addition to the usual charge-density oscillation. We resolve
the real-space details of this collective mode and show that the
order of magnitude of both amplitudes is similar except for the
small-q limit, where the spin component is strongly enhanced
with respect to the charge part. Moreover, we show that this
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relative increase of the spin character should be understood as
a general phenomenon, as long as the relevant electron band
structure is composed by at least two circularly spin-polarized
bands crossing at the �̄ point. The ab initio character of our
approach allows us to explore other surface systems with more
complex Fermi surfaces and spin textures, and paves the way
to study—or even find—novel types of collective spin-charge
excitations.
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