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The diffraction of fast atoms at crystal surfaces is ideal for a detailed investigation of the surface electronic
density. However, instead of sharp diffraction spots, most experiments show elongated streaks characteristic
of inelastic diffraction. This paper describes these inelastic profiles in terms of individual inelastic collisions
with surface atoms taking place along the projectile trajectory and leading to vibrational excitation of the local
Debye oscillator. A quasielastic regime where only one inelastic event contributes is identified as well as a
mixed quantum-classical regime where several inelastic collisions are involved. These regimes describe a smooth
evolution of the scattering profiles from sharp spots to elongated streaks merging progressively into the classical
diffusion regime.
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I. INTRODUCTION

The interaction of keV atoms with surfaces has a long
history, motivated, in part by industrial applications such as
plasma-facing materials in tokamaks, but also by the specific
behavior of ions and atoms to probe surfaces compared with
photons or electrons. The combination of grazing incidences
and single-crystal surfaces has offered perfect conditions to
understand a variety of basic physical processes, for instance,
the resonant coherent excitation [1] of H atoms by the surface
electric field or, reversely, the excitation of surface optical
phonons by the electric field of the moving projectile ions
[2,3]. The interactions of keV ions or atoms with the surface
consist, in grazing incidence, of multiple collisions that are
well controlled so that individual surface electronic excitations
such as excitons [4] or trions [5] have been identified together
with their role in electronic emission from ionic insulator [2,4].
Progressively weaker and weaker interactions were probed
resulting in the observation of a quantum behavior illustrated
by diffraction features in the scattering profile [6–8].

Grazing incidence fast atom diffraction (GIFAD or FAD)
is an extreme surface-sensitive technique (see [9] for a
review) perfectly suited to probe, in real time and at high
temperatures, the surface-specific structures known as surface
reconstructions [10].

Despite elastic diffraction of keV atoms being predicted
theoretically [11,12], initial experimental diffraction patterns
[6–8] did not consist of sharp diffraction spots located on
the Laue circle, i.e., corresponding to energy conservation,
which is the signature of elastic diffraction. Later on, several
experiments using surfaces with large enough coherence
length revealed clear evidence of elastic diffraction [13–16].

This is illustrated in Fig. 1 where a typical experimental
setup is sketched. A keV ion beam is first neutralized and sent
inside an ultrahigh vacuum (UHV) chamber to interact with
the surface at angles close to one degree. If the crystal surface
is aligned along a low index direction, the detector placed
downstream shows a diffraction pattern. The one displayed
in Fig. 1 corresponds to the β2(2 × 4) reconstruction of
GaAs(001) along the [1-10] direction [15]. It was recorded
inside a molecular beam epitaxy (MBE) vessel using a GaAs
surface at high temperature (∼580 ◦C). Also, it has been shown

that the quality of the terminal layer is a prerequisite to monitor
layer-by-layer growth dynamics [10].

In most cases the Laue circle clearly visible in Fig. 1
for the GaAs surface is not present, indicating the lack of
energy conservation. This raises two important questions: Is
the diffraction information impaired in this inelastic regime?
Is there something to be learned from these inelastic profiles?
Before addressing these issues, the inelastic regime must be
understood better and this paper proposes an approach based
on a sudden approximation where individual phonon modes
are not included explicitly.

The paper is organized as follows: Theoretical models
are briefly presented together with well-established theory of
decoherence using the Debye-Waller factor (DWF) in spatial
and momentum domains. Then, the specific conditions of
grazing incidence scattering are examined from both spatial
and momentum points of view. A planar description of the
interaction of the atom with the surface is proposed. This
leads to a different presentation of the DWF where the
classical projectile energy loss determines the elastic scattering
probability and suggests the existence of a different mixed
quantum-classical regime. A unified description of these
different regimes is proposed showing a smooth continuity
through the crossover between quantum and classical diffu-
sion. From the statistical properties of the individual collisions,
the model predicts the angular and energy-loss distributions
and the associated line shapes of the inelastic diffraction
peaks. These predictions are then confronted with existing
experimental results in the literature.

II. THEORETICAL DESCRIPTIONS

All theoretical diffraction models for fast atom diffraction
start from a rigid surface lattice with atoms standing still at
their equilibrium positions. The potential energy landscape
is determined by quantum chemistry techniques, density
functionals, or model binary potentials. The specificity of
grazing angles is accounted for by averaging the actual
three-dimensional (3D) potential energy surface V3D(x,y,z)
along the direction of the fast movement (here x as in Fig. 1)
producing a two-dimensional (2D) landscape V2D(y,z) where
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FIG. 1. Schematic view of a GIFAD setup. A beam of keV helium
atoms interacts at grazing incidence with crystal surface. Here, a
pristine GaAs surface at ∼900 K inside a MBE chamber [10,14]. The
diffraction pattern is recorded ∼1 m downstream on a detector. The
bright spots sitting on the Laue circle correspond to the elastically
scattered intensity. The insets on the left show patterns [8,17] with
larger streaks corresponding to inelastic regimes investigated here.

a particle with energy E⊥ diffracts just as in standard thermal
energy atom scattering [8,18]. The range of validity of this
axial channeling approximation has been investigated in detail
[19–21]. With this energy landscape, several techniques have
successfully described the diffraction patterns such as exact
wave packet [8,14,22], close coupling [15], or multiconfigu-
ration time-dependent Hartree [20]. Other approaches based
on Bohmian trajectories [23] or even classical trajectories and
semiclassical approaches [24,25] including specific correction
of the rainbow divergence [25] have shown good agreement
with experimental results.

The simplest model one may think of is the hard corrugated
wall approach (HCW). In this model, the averaged 2D potential
energy landscape V2D(y,z) is replaced by a one-dimensional
(1D) corrugation function Zc(y) defined by energy conserva-
tion V2D[y,Zc(y)] = E⊥ [26]. Considering this 1D corrugation
function Zc(y) as a mirrorlike grating, an optical model is
enough to predict the diffracted intensities as a Fourier-type
transform of Zc(y). Elastic diffraction implies that no energy is
exchanged with the surface, hence, the profile of the diffracted
beams are supposed to be the same as the primary beam, in
contrast with most experimental observations.

In the case of inelastic diffraction, although many exper-
imental results have been demonstrated, no well-established
theory is available to analyze them. So far, experiments have
been interpreted using elastic theories. There has been an
attempt to describe observed diffraction results using an elastic
wave-packet calculation perturbed by random kicks to the
wave function [22]. It showed good agreement to inelastic
data, but the angular profile was not predicted. Instead, the
angular profile was adjusted by tuning properties of the initial
wave packet. Furthermore, this calculation did not account for
elastic diffraction and no indication was given as to how to
link both processes. Soon after, a general framework based
on the transition matrix formalism was proposed in Ref. [11]
to describe both elastic and inelastic processes. This model
includes all phonon modes, however, it does not provide an

FIG. 2. Schematic view of the two approaches to the decoherence
due to thermal vibrations. (a) The coherence of an ensemble is limited
by the spatial spread of the emitters. (b) The probability pe of
recoilless emission from an harmonic oscillator in its ground state
ψ〉 is |〈ψ |eiqz|ψ〉|2. Both approaches give identical result.

easy way to calculate the relevant transition matrix elements.
The model developed hereafter can be seen as a simplification
where the scattering process is expanded in terms of individual
elastic or inelastic collisions rather than in terms of individual
phonons. Before describing this model, we briefly recall
decoherence theory using the Debye-Waller factor.

III. COHERENCE AND DIFFRACTION

The Debye-Waller factor can be seen as the ratio of
the coherent scattered intensity (Ic) over the total scattered
intensity (I0) of the primary beam

DWF = Ic

I0
= e−q2〈z2〉. (1)

As usual in quantum mechanics, several interpretations are
possible from the standpoint of either real or momentum space.

A. Spatial approach

The compact form of the DWF given in Eq. (1), where
q is the momentum transfer and 〈z2〉 denotes the thermal
mean-square displacement of the surface atoms, has a simple
geometric interpretation. It is related to the path difference
between different trajectories leading to the same final scatter-
ing angle. Bragg conditions correspond to certain directions
in space (�q) where incident particles with a wave vector �q
are scattered off by a periodic array of atoms located at their
equilibrium position. A displacement δ�r will then give rise
to a path difference δ�r and a phase shift δϕ = �q · δ�r [see
Fig. 2(a)]. Switching to one dimension z for simplicity, a
Gaussian distribution of surface atoms characterized by a
standard deviation σz produces a Gaussian phase distribution
with standard deviation σϕ = qσz. The global coherence of
these waves (amplitudes) is e−q2σ 2

z which is exactly the DWF
if one identifies 〈z2〉 to σ 2

z .
The evaluation of 〈z2〉 is usually performed in the harmonic

approximation defined by the frequency ω. For the ground
state 〈z2〉 = h̄

2mω
so that DWF = exp(− q2h̄

2mω
).
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B. Momentum approach

The DWF can also be written in a form where the recoil
energy Er = h̄2q2

2m
is explicit:

DWF = e
−Er
h̄ω . (2)

This form is better known in the atomic and nuclear physics
community as the Mössbauer-Lamb-Dicke factor. It gives
the fraction of recoilless emission from independent trapped
particles. At a single-particle level, it is more convenient
to define Mössbauer-Lamb-Dicke factor as a probability
for recoilless emission. This is illustrated in Mössbauer
spectroscopy where γ rays are absorbed by iron nuclei in a
crystal [27], in spectroscopic line narrowing at high pressure
[28], or in Doppler free interaction of light with cold atoms in
an optical lattice [29].

In these cases, there is no interference between emitted
waves and Eq. (2) can be interpreted as the probability
pe = |〈	|eiqz|	〉|2 of exchanging a momentum q with a
particle, without changing its energy. Modeling the trap by
an harmonic oscillator with resonant frequency ω, the solution
is straightforward using the Bloch theorem [30]

〈eiqz〉 = e− 1
2 q2〈z2〉 = e

−Er
2h̄ω (3)

with a squared value |〈eiqz〉|2 = e
−Er
h̄ω identical to the DWF

factor.
The recoil energy Er reported above is the classical kinetic

energy lost by the projectile and transferred to the surface atom
associated with the momentum q exchanged with the surface
atom. However, when this DWF probability is close to unity,
i.e., in the recoilless Lamb-Dicke regime, the trapped atom
does not change momentum. The basic laws of physics are
preserved since the system is not isolated; the whole crystal or
the experimental setup, responsible for the trapping potential,
collects the exchanged momentum without recoil energy.

In thermal energy atom scattering (TEAS), both interpre-
tations of the same formula can be given. On one hand,
elastic diffraction implies that no energy is exchanged with
the surface, i.e., recoilless reflection and, on the other hand,
bright diffraction peaks can be observed only if the thermal
fluctuations of the scatterer do not destroy the coherence. A
specificity of neutron or helium diffraction is that the mass
mp of the projectile is comparable to the mass m of the
surface atoms. This means that the Lamb-Dicke regime, or
high coherence diffraction, can exist only for projectile kinetic
energies on the order of h̄ω the surface atoms vibration energy.
This explains why diffraction of keV atoms came as a relative
surprise even when considering the relative decoupling of
motion ‖ and ⊥ to the surface.

IV. GRAZING ANGLE, COHERENCE,
AND MULTIPLE COLLISIONS

A. Momentum approach

Taking a rigid LiF lattice and the binary interaction
potential published in [15], the trajectory of a 1-keV helium
atom impinging at one degree incidence can be integrated
numerically. Figure 3 shows such a trajectory together with
the acceleration γx along the beam direction and γz perpen-
dicular to the surface. A peak in the acceleration along z is

FIG. 3. Classical trajectory z(x) of a 1-keV helium projectile
calculated on top of a row of fluorine atoms. Note that the z scale
(left) is ∼100 times the x scale. The smooth trajectory is made of
successive localized interactions with the surface atoms as illustrated
by the components γx,γz of the acceleration along the trajectory (right
scale).

present each time the projectile flies over a surface atom. γx

oscillates around zero, indicating that the slowing down in
front of an atom is immediately followed by an acceleration
behind, limiting the momentum transfer along x. Overall, the
integral of γx tends to zero as noted in [8,18,19,24] and
calculated analytically in [31,32]. This justifies the use of
the axial surface channeling approximation where, schemat-
ically, the surface egg-carton-like 3D surface corrugation is
replaced by a 2D washboardlike surface potential profile.
This cancellation of the integral momentum transfer along
x does not apply for γz because all peaks are positive
(directed towards the vacuum) and progressively repel the
projectile always in the same direction allowing specular
reflection.

For each binary collision, the momentum transfer can
be converted into a virtual recoil energy and are plotted
in Fig. 4. The probability Pe that all binary collisions are
elastic is given by the product of each individual probability
pe; Pe = 
i=N

i=1 pe. Taking the form of Eq. (2) for each of
these collisions with individual recoil energies Eri for pe, one
obtains a form where factorization leads to the sum of the
recoil energies Eloss = �i=N

i=1 Eri :

Pe = 
i=N
i=1 exp

(−Eri

h̄ω

)
= exp

(−�i=N
i=1 Eri

h̄ω

)
.

This is similar to Eq. (2) except that here the energy loss
results from the sum of each individual energy loss with the
surface atoms:

Pe = exp
(
−Eloss

h̄ω

)
. (4)

Such a compact form, similar to that of the Lamb-Dicke
regime, is new in the grazing incidence context where Eloss
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FIG. 4. The energy transferred to the surface atoms is estimated
by taking the integral under each peak in the acceleration curve γz

of Fig. 3 for trajectories on top of the atomic rows (black histogram)
or in-between two rows (blue). The predictions of the structureless
planar model is the quasi-Gaussian red curve (σ ∼ 1.04/�a). The
Neq model (dashed red) assumes Neq equivalent lattice sites.

is the sum of virtual energy transfer over a large number of
collisions.

B. Trajectory length, continuous model,
and projectile energy loss

The trajectory reported in Fig. 3 is derived from a straight-
forward integration of the Newtonian equations of motion.
Each peak in the acceleration curve can be integrated and
associated to a given momentum exchange and recoil energy
transferred to the surface atoms at each lattice site producing
an energy deposition curve. Two examples corresponding to
“on-top” and “in-the-valley” trajectories are plotted in Fig. 4.
Both display a strong Gaussian character with significantly
different amplitudes but with a common well-defined width.
Note that for the grazing angle considered here all trajectories
end up on the Laue circle confirming the axial channeling
model in the classical regime.

A simpler model can be proposed where the contributions
of the binary potentials V (r) are averaged to produce a
planar potential Vp(z). Using Moliere-type radial potential
V (r) = V

r
e−�r , the planar form is Vp(z) = 2π

�
nsV e−�z where

ns = 1/a2 is the surface density with one fluorine atom per
lattice site [a = 2.85 Å = 4.03/

√
(2)] [33]. In this translation-

invariant potential, the movements parallel and perpendicular
to the surface are decoupled. Let us call v‖ = vix and v⊥ =
−viz the initial velocity components parallel and perpendicular
to the surface, θ = tan(v⊥/v‖) ∼ v⊥/v‖, and z0 the turning
point such that Vp(z0) = E⊥ = E sin2 θ . The characteristic
time τ for a half-turn on the surface depends on the range
1/� of the potential τ ∼ 1/�v⊥ so that the interaction length
is L ∼ v‖τ ∝ 1/�θ independent of the projectile mass or
energy.

More precisely, the trajectory z(t) can be integrated analyt-
ically as well as its derivative ż and second derivative z̈ giving
the angle θ (t) = ż/v‖ and its square μz̈2/2 (μ = mproj/mtarget

is the mass ratio) corresponding to an energy deposition
curve:

z(t) = z0 + v⊥t + 2

�
ln

(
1 + exp(−�v⊥t)

2

)
,

dE(t) = μEa
1

v3
‖

�2v4
⊥

4 cosh4(�v⊥t/2)
,

dE(x) ∼ μEa�2θ4

4 cosh4(�θx/2).
(5)

The trajectory and energy deposition curves are plotted in
Figs. 3 and 4, respectively. Compared with their numerical
counterpart calculated on top of the fluorine rows or in-
between, the planar formula shows a comparable width and
a magnitude somewhere between “on top” and “in-between.”
Equation (5) can be integrated to produce the total energy loss
Eloss specific to grazing incidence [11]:

Eloss = 2
3μE�aθ3

in . (6)

It is interesting to outline the surface effect by comparing
the energy loss of Eq. (6) to the energy loss δEsingle expected
if only one atom would produce the total deflection 2θ =
(θin + θout); δEsingle = μE(2θ )2 (small-angle formula derived
from energy momentum conservation). The ratio of these two
values indicates [11] that Eloss is Neq times smaller than δEsingle

with Neq given by

Neq = 6

�aθin
. (7)

Another important parameter is the peak value δEmax of Eq. (5)
per lattice unit, corresponding to the central and most violent
collision encountered along the trajectory:

δEmax = μE�2a2θ4
in/4 . (8)

C. Equivalent scatterers model

In the equivalent scatterers model, used hereafter only
for illustration purposes, a further simplification is made by
considering that Neq successive collisions participate equally,
by δθeq = 2θ/Neq to the total deflection, and to the total energy
loss by Er = Eloss/Neq . The contributions of an individual
scattering are

δθeq = �aθ2/3, Er = μE�2a2θ4/9. (9)

Note that with θ ∼ 1◦ ∼ 1/57 rad, θ4 is on the order of
10−8 underlining that there should always be an angle for
which the Lamb-Dicke regime will be reached, i.e., where the
individual recoil energy Er is much less than the vibration
energy quantum h̄ω. Of course, this holds only if the surface
quality allows such grazing trajectories to develop without
encountering topological defects.

This equivalent scatterers model considers a straight-line
trajectory of length L = Neq × a parallel to the surface. It
is a discrete version of the effective length model used, for
instance, to link the observed variation of the neutralization
fraction with the angle of incidence to an electron density-
dependent Auger rates [34]. Figure 4 shows that the length
defined here is close to twice the full width at half-maximum
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FWHM of the energy deposition curve and, consistently, that
the effective recoil energy is close to half of the maximum.

D. Spatial approach

As recalled in Eq. (1), the DWF can be expressed as
a function of the spatial fluctuation of the scatterers and
interpreted as a dephasing of the scattered waves. At grazing
incidence, the reflection of the projectile occurs on the rows
of well-aligned atoms. Considering that each row consists of
Neq scatterers [11,35], the thermal position fluctuations of the
portion of the probed row, should be reduced to σz/

√
Neq

where σz is the position fluctuation of a single surface atom:

DWF = Ic

I0
= exp

(−q2〈z2〉
Neq

)
. (10)

This is identical to Eqs. (6) and (4) so that the decoherence
in GIFAD can also be presented both in spatial and energetic
terms. In the elastic diffraction calculation, these rows are
considered infinite but it is precisely the finite length that
allows a simple estimate of the elastic scattering probability via
the phase coherence in the DWF adapted to grazing incidence.

E. Temperature and Debye model

The simple formulas reported above are valid for isolated
ground-state harmonic oscillators. They have to be adapted to
solids where all the local oscillators are connected together
giving rise, in the Debye model, to an increase of 〈z2〉 by a
factor 3 when summing over all phonon contributions [36]. The
temperature effects are easily accounted for by multiplying
the ground-state extension 〈z2〉 by coth( TD

2T
) where TD is the

Debye temperature describing the local oscillator: kBTD =
h̄ω. This exact formula, derived from Boltzmann weighting
of the harmonic oscillator wave functions, starts at unity for
T = 0, increases slowly above two for T = TD and reaches
the classical Dulong and Petit limit with a linear behavior
above TD . Overall, the crude estimate of 〈z2〉 from an isolated
oscillator in Eq. (3) has to be multiplied by 3 coth( TD

2T
):

〈z2〉 = 3h̄

2mω
coth

(
TD

2T

)
= 3h̄2

2mkBTD

coth

(
TD

2T

)
. (11)

For an individual event associated with an energy δE this gives
an elastic probability pe:

pe = exp

[
−3

δE

kTD

coth

(
TD

2T

)]
(12)

and for the entire trajectory

DWF = Pe = exp

[−2μE�aθ3
in

kTD

coth

(
TD

2T

)]
. (13)

Consistently using Eq. (12) in the Neq model gives a con-

stant individual probability peq = exp[−μE�2a2θ4
in

3kTD
coth ( TD

2T
)].

On surfaces and along the surface normal (i.e., along z),
the local harmonic oscillator strength is expected to be half
that of the bulk due to the absence of any layer on top.
The equipartition of energy is accounted for by considering
a surface Debye temperature TDs ∼ TD/

√
(2).

FIG. 5. The overall purely elastic probability Pe = DWF (blue
full line) is evaluated as a function of the angle of incidence.
The equivalent colliders model allows derivation of the individual
elastic pe = P 1/N

e (blue dashed), inelastic probability pi = 1 − pe

(red dashed), and the overall classical probability Pc = pN
i (red full

line). The quantum and classical regimes appear separated by a broad
mixed regime.

F. Different scattering regimes

The quantum and classical regimes are often identified by
the presence or absence of diffraction features [7,8]. Here, we
will consider the quantum regime as defined by the elastic
scattering which is a more strict requirement. In the above
approach it means that all individual collisions are elastic, and
the scattering profile is a delta function at the specular angle,
without energy loss associated. Surprisingly, the classical limit
is more difficult to define. Strictly speaking, the probability Pc

that all collisions along the trajectory are inelastic will always
be zero. This is because, at comparatively large distances
from the surface, in the wings of the profile in Fig. 4, the
elastic probability is unity. By construction, such events are
not taken into account in the Neq equivalent scatterer model
which considers only the collisions participating actively, so
that Pc is well defined as (1 − pe)Neq . This probability is
displayed in Fig. 5 for 1-keV helium atoms. It shows that
the quasielastic and quasiclassical regimes are completely
separated and that a mixed regime is present in-between. Here,
the predictions of the purely classical behavior would be only
slightly overestimated due to the lack of contribution from
the significant number of elastic collisions. Before discussing
the associated energy loss distribution and angular scattering
profiles, the effect of a single inelastic collision is investigated
in detail.

V. A SINGLE INELASTIC COLLISION

Taking into account all possible inelastic transitions at a
finite temperature is complex in quantum mechanics, even
for a harmonic oscillator, whereas it is comparatively simple
using classical mechanics. One simply considers position
and momentum distributions given by the Gaussian quantum
probability in Eq. (11). In the present case, the collision time
of keV projectiles is smaller than the typical vibration period
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by several orders of magnitude. Compared with TEAS, the
interaction time with the surface is the same (τ = 1/�v⊥)
but it is typically Neq times smaller with each surface atom.
The sudden approximation corresponds here to the situation
of an incident atom interacting with a frozen surface. Only
the position distribution has to be taken into account in an
inelastic collision by randomly distributing the surface atoms
around their equilibrium position (see, e.g., [3,37,38]).

A. Inelastic angular and energy profiles

At a distance z from the surface, the projectile deflection,
associated with a surface atom at its equilibrium position,
corresponds to the elastic value θe ∝ e−�z (height of the γz

peaks in Fig. 3). If the surface atom is displaced below or
above its equilibrium value by σz, the actual impact parameter
z becomes z ± σz and the deflection is distributed around the
elastic reference δθ± = δθee

∓�σz , i.e., an angular distribution
which is the exponential of a normal position distribution.
Such a distribution is known as the log-normal distribution:
P (δθ ) = LN [δθe; �σz](δθ ). This distribution LN [x0; w](x) is
characterized by its median value x0 and a scale parameter w.
Here, the median value is the elastic scattering angle x0 = δθe

and the scale parameter is w = �σz with σ 2
z the variance of

the normal distribution and � the coefficient in the exponential
form linking δθ and z:

LN [x0; w](x) = A√
2πwx

exp

(−(
ln x

x0

)2

2w2

)
. (14)

The scattering δθ angle appears as a ratio to the median
value δθe associated with the equilibrium position z = 0. For
the simple interaction potential considered here, � is fixed
and the scale parameter w = �σz does not depend on the
impact parameter (turning point) z0. The scale parameter
w is therefore the same for all binary collisions along the
trajectory and whatever the angle of incidence θ providing
a universal angular profile for individual deflection where
only the magnitude varies. The width σθ of this profile is
proportional to the deflection angle and can be defined via the
variance σ 2

θ of the log-normal distribution

σ 2
θ = ew2

(ew2 − 1)δθ2
e . (15)

The variance of the angular broadening induced by an
individual inelastic collision is therefore proportional to the
small-angle binary recoil energy (Er = μEδθ2

e ), i.e., σ 2
θ =

ew2
(ew2 − 1) Er

μE
.

The recoil energy Er reported here is only the central recoil
energy associated with an inelastic collision Er = μEδθ2

e .
The energy loss profile of the projectile can be obtained by
considering that the values δE± associated with a displacement
of the surface atoms by ±σ are δE± = Ere

∓2�σ . This leads
to a log-normal distribution P (δE) = LN [Er ; 2�σz](δE) of
the energy loss with a scale parameter w = 2�σz, i.e., twice
the width of the angular deflection distribution, due to the
quadratic dependence of the energy loss on the angular
deflection. The inelastic angular profile is considered as a
broadening around the elastic value δθ . The energy profiles
are different since, by definition, the elastic scattering does
exchange energy and is therefore not centered around Er . This

is consistent with the fact that for an elastic collision, the wave
function is left unchanged in Eq. (3).

B. Out-of-plane broadening

In the previous sections, the scattering was described only
in the specular plane (along z), either with the planar surface
model or for trajectories located on top of a row of atoms.
Within these “top-row” trajectories, the out-of-plane inelastic
deflection originates from a target displacement inside the
surface plane and perpendicular to the specular (x,z) plane,
i.e., along the y direction. A position δy of the scattering center
will induce a lateral deviation δθy . This corresponds in Fig. 3 to
a surface atom displaced out of the figure plane and producing
a rotation by δθy of the scattering plane. This position δy is
normally distributed with a variance σ 2

y determined by the bulk
Debye temperature, i.e., ∼half of σ 2

z . The distance to the target
is now ρ =

√
z2

0 + y2 and the scattering plane is tilted by an
angle α = arctan(y/z0). The deviation δθy is δθy = δθe sin α.

For perpendicular energies E⊥ � 1 eV, z0 � few Å so that
for reasonable surface temperature, the ratio σy/z0 � 1/10
suggesting further simplifications of ρ � z0 and sin(α) ∼ α.
This leads to a linear form δθy = yδθe/z0 indicating that, at
this position, the typical lateral deviation δθy is an order of
magnitude smaller than δθe and that δθy should follow a normal
distribution if the z variation is neglected:

δθy = �aθ2y

3z0
, σθy

= �aθ2σy

3z0
. (16)

C. Averaging over the lattice unit

Equation (16) discussed above indicates that the on-top
situation is not representative of lateral momentum transfer
mainly because the angle α of the scattering plane is centered
around zero whereas this angle α can be significant for
positions y close to that producing the rainbow scattering angle
[2], i.e., such that dθy/dy = 0.

The actual profiles of the momentum transfer both in
the specular plane (δθ ) and perpendicular (δθy) have to be
evaluated over all possible impact parameters forcing us to
abandon the planar model and adopt the string model [21,39].
In the string model, or row model, the integration of the
individual binary contribution is performed along the identical
rows. Along the 〈100〉 direction, only one string (a row of
alternating F and Li) is needed per lattice site (inset in Fig. 4):

Vs(ρ) = 2V nxK0(�ρ), ρ =
√

y2 + z2, (17)

where nx is the linear density and K0 is the modified Bessel
function of the second kind. Close to the surface (z < a),
the potential energy landscape can be estimated accurately
by summing the contributions of only five rows, a central
one and two adjacent rows on either side. The turning point
z0 now depends on the lateral impact parameter by defining
the corrugation function zc(by). In this description, the elastic
contribution is given by deflection functions δθz(by) along z

and δθy(by) along y of an individual elastic collision with all
surface atoms still at their equilibrium position.

The corresponding inelastic scattering profile is now de-
rived by distributing the central atom according to the σy and
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FIG. 6. For 1-keV helium atoms along the 〈100〉 direction, the
elementary elastic deflection functions δθz(by) (top) and δθy(by)
(bottom) are plotted with the inelastic broadening σθz

and σθy
obtained

by distributing the scattering center located at by = 0 by a thermal
Gaussian distribution with σz from Eq. (11) and σy = σz/

√
2.

σz. Each point of the elastic deflection function becomes a
distribution and we follow these δθz(by) and δθy(by) distribu-
tions along the corrugation function. Taking the corrugation
function zc(by) corresponding to E⊥ = 0.1 eV, the values of
the elastic scattering along y and z and their standard deviations
σθz

and σθy
are plotted in Fig. 6 for the 〈100〉 direction. In this

direction, the linear periodicity within the string is a
√

2 while
the string periodicity or transverse periodicity, as observed in
diffraction, is ay = a/

√
2 = 2.015 Å.

As anticipated, σθy
is minimum on top of a row (the scatter-

ing plane is perpendicular to the displacement), corresponding
in Fig. 6 to by = 0 and almost ∼3.5 times larger in the bottom
of the corrugation function where the displacement has a large
projection into the scattering plane. In addition, the shape of
the inelastic scattering profile averaged over the lattice unit is
displayed in Fig. 7. The δθz inelastic angular distribution, along
the z axis, still shows a pronounced log-normal character, but
clear departures can be observed for the tails. The inelastic
width σθy

at by = ±ay/2 is almost half that at by = 0,
resulting in an average scale parameter reduced by ∼30%.
This ratio originates mainly from geometric projection of the
z contribution and could be system specific.

Figure 7 shows that the inelastic δθy distribution is almost
Gaussian for on-top conditions as in Eq. (16) but large side
wings are produced by the tails of the log-normal distributions
on both sloping sides of the corrugation function. In this
geometry, both the displacements in y and z contribute to
the δθy profile. A Lorentzian profile is superposed, showing
a resemblance but also clear departure on the wings. The
standard deviation averaged over the lattice unit is almost three
times larger than the prediction of Eq. (16) which was restricted
to on-top trajectories.

The inelastic angular width σθy
depends both on the in-plane

and out-of-plane movements σy and σz. Since these two values
are proportional to each other, the ratio of σθy

to σθz
should not

depend on temperature. Also, the ratio should hardly evolve

FIG. 7. Angular straggling δθz (right) and δθy (left) of an
individual inelastic collision averaged over the lattice cell. Compared
with the “on-top” trajectory, the lateral broadening has acquired a
Lorentzian character with wL ∼ 3 times that of Eq. (16) while the
log-normal scale parameter wz describing the broadening of the polar
distribution is reduced by ∼30%.

with the angle of incidence because the turning point z0 varies
smoothly so that the geometry changes very slowly. Last but
not least, the integration over the lattice unit shows that, for
moderate angles of incidence, the length of the trajectory does
not vary significantly but the associated energy loss does.
This is visible in Fig. 4 where the energy deposition curves
associated with “on-top” and “in-between-rows” trajectories
both display a width comparable to that of the planar model,
but with quite different magnitudes.

VI. CLASSICAL LIMIT

A. Angular and energy profiles

As stated above, it is not possible to reach a condition
where all collisions would be inelastic. There will always be
a significant probability that collisions on the wings of the
energy deposition curves are elastic. The classical angular
distribution is defined here as the one corresponding to an
energy loss equal to the classical limit derived in the planar
model in Eq. (6). The resulting angular variance σ 2

cl will be
the sum of individual variance. As each individual variance is
linked to the associated recoil energy, the resulting variance is
given by the sum of the recoil energies Eloss = �Er in Eq. (6):

σ 2
cl = ew2

(ew2 − 1)
Eloss

μE
, w = �σz

σ 2
cl = ew2

(ew2 − 1)
2

3
�aθ3

in,

(18)

where Eloss from Eq. (6) corresponds here to the measured
energy loss. This result can be derived also from the Neq

model where the ensemble of participating sites is finite and
restricted to the Neq most important collisions, each associated
with a log-normal scattering profile. The convolutions of
log-normal distributions are not log-normal distributions but,
probably because here w < 1, they display a very strong
log-normal character as can be seen in Fig. 8 where successive
self-convolutions perfectly superimpose with their fit by log-
normal distribution with scale parameter wNeq

= w/
√

N . Both
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FIG. 8. The log-normal angular profile of a single scattering event
LN1(θ ) (red curve) is self-convoluted N times (blue curves). They
are displayed using a 1/N scale. These are well fitted by log-normal
distributions (red dots) having a log-normal scale parameter wN =
w1/

√
N (inset).

the total energy loss approach and the Neq approach agree on a
classical angular distribution corresponding to a log-normal
distribution with median value 2θ and a scale parameter
wcl = �σz/

√
Neq

.

B. Angular and energy correlations

At the single collision level, the energy and angular
distribution are strictly correlated as Er = μEδθ2. Naively,
there is a concern that successive convolutions would blur
this correlation, but this is not the case. The correlation is
well preserved so that, for a given angle of incidence θin, the
energy loss depends on the scattering angle θout within the
angular profile. More precisely, it evolves with the cube of
the scattering angle referred to the primary beam direction
�E ∝ (θin + θout)3.

C. Neon LiF

Only few experiments have measured the energy loss
for neutral projectiles at grazing angle of incidence. The
main reason is that electrostatic analysis is not possible and
that sub-eV accuracy is desirable on top of keV energies.
To our knowledge, only neon atoms have been carefully
investigated between 1 and 5 keV on LiF target oriented along
a random direction and for angle of incidence larger than 1◦
[37,38,40,41]. According to Eq. (13), this corresponds to a
situation close to the classical limit.

Villette [40] showed that the energy loss profile can be
well described by a log-normal distribution, where the scale
parameter w varies slowly with the angle of incidence and
depends only on the surface temperature for fixed incidence
angles. The measured energy loss �E was found to depend
both on the angle of incidence and on the outgoing angle;
it was found proportional to the overall scattering angle
�E ∝ (θin + θout)3. For grazing incidence data using Ne atoms
between 1–3 keV on a LiF surface at room temperature,
all the data could be described by �E

E
= α(θin + θout)3 with

α = 8 ± 310−6 if θ is expressed in degrees. The log-normal

angular and energy profiles as well as the cubic dependence
were reasonably well reproduced in numerical simulations
using randomly displaced surface atoms [see Eq. (11)] with
a surface Debye temperature of 539 K. From the simulations
it was possible to derive the number of surface atoms which
participate actively in the scattering process, using a range

� = 3.5 Å
−1

from Ref. [3].
Soon after, a planar model was developed to make the

link between the log-normal scale parameter w and the range
� of the interaction potential [11,42]. Similar qualitative
conclusions were reached by [37,38,41] with higher projectile
energy and a surface temperature twice as large. These authors
also developed an elaborate tracking of systematic errors and
came up with a value of α almost twice larger. They suggested
a surface Debye temperature of 250 K instead of 539 K.

All these observations find a natural interpretation in the
present frozen lattice formalism where the shape and corre-
lations of these quantities are calculated and linked together
without adjustable parameters. In the present form, using the
range parameter of the binary interaction potential in [38,40]
we obtain �E

E
= 2μ�a

3×8 ∼ 410−6(θin + θout)3, which indicates
that the planar model is capable of semiquantitative prediction.
Equation (6) indicates an energy loss independent of the
temperature, but a surface Debye temperature as low as 250 K
means larger amplitudes of surface atoms. For instance, the Li+

ions would not be completely hidden by the F− ions as indi-
cated in Fig. 3. For an equivalent momentum transfer, the recoil
energy of these Li ions is three times larger due to their lighter
mass. More simulation work is needed to take into account the
contribution of different species in the surface unit cell.

VII. MIXED QUANTUM-CLASSICAL REGIME

This is the regime where both pN
e and (1 − pe)N , the

probabilities for the successive collisions to be all elastic or
inelastic, respectively, are far from one (red and blue curves
in Fig. 5). The observables such as the energy loss and
angular profiles should lie in-between the delta function of
the quantum regime and the broader log-normal distribution
discussed above. The actual mean energy loss results from
the Lamb-Dicke weighting of all individual collisions along
the trajectory, i.e., �E = �i=+N

i=−N δE(i)P (δE) with i = x/a

and P [δE(x)] given by Eq. (5). In contrast to Eloss which
was defined earlier as the sum of the possible (virtual) recoil
energies (becoming real in the classical limit), �E is the actual
energy loss, i.e., the sum of the inelastic events. The mean
variance of the inelastic angular profile is

σ 2
ine = ew2

(ew2 − 1)
�E

μE
, w = �σz. (19)

This mean variance lies well below the classical limit σCl of
Eq. (18) (as displayed a little further in Fig. 16). The curve
starts with a linear behavior [see Eq. (20) below] and then
merges with the E

3/4
⊥ classical dependence, implicit in Eq. (18).

Alternately, given the (quasi-Gaussian) energy deposition
profile displayed in Fig. 4, the statistical weight of any com-
bination of elastic and inelastic collision can be calculated to
generate the proper combination of all the (∼Neq!) associated
scattering profiles, instead of using the one associated with
the average energy loss. In addition, the development in
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FIG. 9. For 1-keV He atoms, the red curve indicates the number
of lattice sites participating to the deflection (trajectory length) as a
function of θin. The blue curve indicates the number Nine of inelastic
collisions that actually participate to the energy loss and angular
straggling.

perturbation can be expanded in terms of the number Nine

of inelastic events where all contributing profiles weighted
by their probability are taken into account. For illustration
purposes, this can be done by hand within the Neq model,
keeping in mind that the flat probability distribution is a poor
representation of the quasi-Gaussian one displayed in Fig. 4.

The equivalent colliders model assumes independent events
with well-defined probability pe and pine = 1 − pe. The
angular profile Pine(θ ) can thus be cast in a binomial form
where the number of inelastic collisions Nine among Neq is
reflected in the binomial coefficient

(
Neq

Nine

)
:

P (Nine) =
(

Neq

Nine

)
p

Neq−Nine
e (1 − pe)Nine ,

Pine(θ ) = �
Neq

Nine=1P (Nine)LNNine (θ ).

For large Neq this distribution is characterized by its mean
value 〈Nine〉 = (1 − pe)Neq , and variance Neqpe(1 − pe).
These quantities are plotted in blue in Fig. 9 with the standard
deviation as an error bar. The mean angular straggling and
mean energy loss will simply be given by the classical value
(fully inelastic) multiplied by pine = 1 − pe, the blue line in
Fig. 9. This line indicates approximately how the observables
connect to the classical behavior.

The consequence on the scattering profiles is quite sig-
nificant since the final variance is only Nine times that of a
single collision, much less than the Neq of the classical profile.
For a number of inelastic collisions, exactly Nine (among
Neq), the scale parameter is wNine = w

√
Nin/Neq . The mean

scattering profile corresponds to a scale parameter wmean =
wCl

√
(1 − pe) which can be much narrower than the classical

limit, the latter being much narrower than the individual
scattering width (central and external curves in Fig. 8).

Returning to the more realistic planar model, the energy
deposition curve is more localized and so is the inelastic
probability distribution. In the quasielastic regime, i.e., when
Eq. (13) gives an overall probability larger than few percent,

the individual inelastic probabilities [Eq. (12)] are small
enough to be approximated by pine = 1 − pe = 1 − e−βδE �
βδE with β = 3

kTD
coth( TD

2T
).

The probability follows the same Gaussian-type distribu-
tion so that the weighted distribution should follow an even
more localized distribution with a variance reduced by a
factor 2. This suggests that the inelastic properties will be
governed by the few central collisions making the Neq model
inappropriate in this quasielastic regime where only one or two
inelastic events contribute to the inelastic profile. The most
probable angular broadening will be associated with δEmax,
the peak of the energy deposition curves [Eq. (8)], giving a
standard deviation of the θz inelastic angular profile [Eq. (15)]

σ 2
sc = ew2

(ew2 − 1)�2a2θ4/4,

σsc = �a
E⊥
2E

[e�2σ 2
z (e�2σ 2

z − 1)]1/2 (20)

which should be characteristic of the quasielastic regime.
The θ2 dependence indicates that the inelastic width can be

extremely small at the lowest grazing angles and Eq. (20) can
be useful to point out the angular resolution needed to resolve
inelastic events. σsc can also be expressed as σ 2

sc ∼ σ 2
cl

3�aθin
8 .

This is approximately twice as large than predicted by the
Neq model which also gives a linear behavior but with σ 2

sc ∼
σ 2

cl/Neq = σ 2
cl

�aθin
6 because the average value considered in the

Neq model is ∼half the value of the peak.

A. Temperature dependence

Two temperatures are present in the model. The surface
Debye temperature TD describes the most important surface
property here, namely, the frequency of the Debye local oscil-
lator. The Debye frequency, when expressed as a temperature,
gives an idea whether, at a given temperature T , the surface
atoms are mainly in the vibrational ground state or not. The
Debye temperature enters in two places to calculate the elastic
probability. One is via the simple ratio Eloss

kTD
and the other is

in the term coth( TD

2T
) which also scales as T/TD providing a

high 1/T 2
D sensitivity inside the exponent of the elastic ratio

as illustrated in Fig. 15. The actual temperature T does not
enter in the energy loss Eloss because the momentum transfer
is calculated with respect to the center of the wave function
and is therefore temperature independent. The temperature
T enters only in the term coth( TD

2T
) and in the inelastic

properties. It determines the spatial extent σz of the surface
atoms [see Eq. (11)] and therefore the width w = �σz of the
log-normal scattering profile of an individual inelastic event.
For small values of the scale parameter (w2 
 1), the prefactor
present in the variance of the log-normal distribution can be
simplified ew2

(ew2 − 1) ∼= w2 so that the quasielastic angular
width [Eq. (20)] receives a compact form

σsc ∼ �a�σz

E⊥
2E

. (21)

In this respect the He-LiF system is probably not a favorable
case because large values of the work function usually mean
large values of � and light mass of surface atoms contribute to
large values of σz.
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VIII. INELASTIC DIFFRACTION

The inelastic processes have been described as angular
straggling around the elastic scattering values. Each deflection
is so tiny that it hardly perturbs the overall trajectory
but induces significant broadening in the final angle. The
associated recoil energy is, on average, less than a vibration
quantum and does not allow which path information that would
prevent diffraction. Of course, inelastic events with different
final momentum do not interfere with the elastic one, even if
some inelastic event can accidentally end up exactly at Bragg
position. This makes the line profile and data analysis more
complex.

In the following sections, we use existing data [8,15] on the
well-investigated helium LiF system for which the parameters
of the model binary interaction potential have been published
[15]. The direction 〈100〉 (inset in Fig. 13) was chosen because
only one row of alternating Li and F ions is needed with a
negligible role from the Li ions at limited temperature and
perpendicular energy E⊥ (see Fig. 3). Before comparing with
the predictions of the model developed in the previous sections,
we briefly review some of the specific aspects of inelastic
diffraction in the experiments.

A. Data (re)analysis

In the early experiments where well-resolved diffraction
features were first observed with fast atoms [7,8], there was no
clear evidence of an increased intensity at the Laue circle (see,
e.g., Fig. 10). In this context where the energy is not conserved,
even the central concept of wavelength is not uniquely defined.
The detector is located far away from the surface, so each pixel
corresponds to well-defined scattering angles θy,θz or ky,kz

with the fast motion kx being perpendicular to the detector.
A priori, two polar transformations are possible to associate

these scattering angles to a diffraction circle (keff) while
preserving the coordinate ky where diffraction is observed.
One takes the center of the Laue circle as a universal reference,
i.e., the shadow edge (red circle in Fig. 10 concentric to Laue
circle), and the other one refers all angles to the position of the
direct beam (white circles in Fig. 10).

FIG. 10. For 460-eV He4 at 1.57◦ (i.e., E⊥ = 345 meV compa-
rable to Refs. [22,43]), the diffraction circles containing the beam
position in the raw image (a) are transformed into horizontal lines in
(c). The effect of the doubly differential filter applied in the z direction
and isolating the elastic ky profile and intensity [44] is illustrated in
(b) and (d), the kz vertical extension is then given by the bandwidth
of the filter.

Schematically, the scattering by the surface consists of
an incoming and an outgoing part. The first polar transform
considers that only the part leaving the surface is important
while the incoming trajectory is forgotten. The second one
illustrated in Fig. 10 considers, for each pixel, a diffraction
circle intersecting to the primary beam and having a diameter
that is the average between incoming and outgoing trajectories.

In the previous discussion, the total scattering angle appears
in several equations as a natural reference for all trajectories.
The optical analogy implicit in the HCW model allows
a simple interpretation. In the HCW model, the surface
corrugation function is a mirror with a shape zc(y) and the
phase difference responsible for the diffracted intensity is
2kinzc in the specular plane. The inelastic diffraction can be
regarded as a modification of the wavelength by the surface.
The phase difference between possible paths naturally splits
into two terms corresponding to the incoming and outgoing
wave vectors resulting in phase modulation (kin + kout)zc with
keff = (kin + kout)/2. The relevant circle contains the primary
beam and the pixel of interest and is forced to preserve the
specular plane. With this transformation, an effective wave
vector keff is associated to any pixel on the detector [44]. All
circles become horizontal lines while the diffraction coordinate
ky is left unchanged, showing evenly spaced diffraction peaks
ky = mGy labeled according to the specular one. In elastic
diffraction, these intensities Im are directly connected to the
form factor, i.e., to the scattering elements inside the unit cell.
In the present case, the form factor is the potential energy
landscape of the frozen lattice unit cell.

To analyze how the relative intensities evolve on either side
of the Laue circle, we use an automatic fitting procedure using
a multiparameter profile that can adapt to different line shape
but that is common to all diffraction orders. For each given
value of keff the fit produces a line shape and peak intensities
Im. For successive values of keff the fit leaves the line shape
free to evolve independently from previous k values. The fitted
relative intensities are reported in the top panel of Fig. 12 for
diffraction images recorded with 200-eV He3 projectiles on
LiF〈100〉 at six different incidence angles [8] with their associ-
ated profiles reported in the bottom panel of Fig. 12. Obviously,
there is a smooth continuity and, looking only at the relative
diffracted intensities it is impossible to guess the location of
the Laue circle. Only the polar profiles indicated below and in
Fig. 14 indicate the location of the Laue circle [45].

Here, the elastic diffraction profiles reported as dashed lines
under the scattering profiles are obtained by passing a doubly
differential “Mexican hat” filter having a bandwidth equal to
that of the primary beam σθ on the 2D transformed images
[14,44,46]. It relies on the fact that inelastic profiles evolve
more smoothly than the elastic profile with the scattering angle
θ . Subtracting the half sum of the intensities located at angle
θ + σθ and θ − σθ from the intensity at θ gives then only the
rapidly varying elastic intensity at the Laue circle. Although
not fully quantitative, this procedure [44] provides a value of
the Laue circle and gives an indication of the absolute elastic
fraction. These estimated elastic peaks are displayed here only
to underline that continuity in the intensity ratios Im(keff) is not
accidentally due to the absence of elastic diffraction. It also
shows that elastic diffraction was present in the data [8,15] but
was not identified as such because there was no model of the

035415-10



ELASTIC AND INELASTIC DIFFRACTION OF FAST . . . PHYSICAL REVIEW B 96, 035415 (2017)

inelastic profile. Most important, the intensity ratios Im(keff)
derived on both sides of the Laue circle seem to connect to
each other as if elastic or inelastic regime were giving identical
results. This alone is a clear motivation to better understand
the inelastic behavior. Note that profiles analyzed here have an
elastic component indicating that the collisions on the surface
take place in the quasielastic regime and that the continuity
of the intensity ratios holds only for scattering values within
the FWHM of each polar profile. Beyond this limited angular
range, the inelastic intensity ratio Im departs from the one
measured under the elastic component.

To interpret the intensity ratios Im(keff) we use the HCW
model which is here particularly simple along the 〈100〉
direction where the LiF corrugation function Zc(y) was shown
[8,9,35] to be close to a simple cosine Zc(y) = zc/2 cos(Gyy)
with zc the full corrugation amplitude. In this case, the HCW
predict diffracted intensities Im given by Im = J 2

m(2keffzc)
where Jm is the Bessel function of rank m. A fit to this
model allows a direct evaluation of the corrugation function
and the results are displayed in Fig. 13. It indicates clearly that
the corrugation amplitude depends only on the perpendicular
energy E⊥ (axial channeling approximation) and that, along
this 〈100〉 direction, zc increases with E⊥; the more the
projectile presses on the surface, the larger the corrugation
amplitude. This is not surprising here since the minimum of the
corrugation function is in-between the rows [17], at a location
where there is no atom so that the local repulsion evolves less
rapidly that on top of the rows (inset in Fig. 13). At larger
perpendicular energy (�10 eV), the projectile will eventually
penetrate in-between the rows. Note that the energy region
investigated in TEAS is below 100 meV.

B. Elastic ratio

The DWF or elastic ratio can be estimated from the
relative area of the elastic peak. As illustrated in Fig. 10, the
1D doubly differential filter isolates an almost pure elastic
component when applied along kz, i.e., perpendicular to the
ky diffraction coordinate. On the Laue circle, the resulting
1D profile preserves the relative intensities of the diffraction
orders [14,44,46] but the absolute intensity is quite sensitive to
the bandwidth. Here, the intensity of the elastic and inelastic
components is determined by fitting the polar scattering profile
by a Gaussian peak with a constant width equal to that
of the primary beam profile and a free log-normal profile
as illustrated in Fig. 14. In this figure, the e−θ3 ∝ 1 − θ3

attenuation of the elastic ratio of Eq. (13) is almost visible
with naked eyes. The height of the elastic peak decreases
more or less linearly while both the height and the width of
the inelastic profile increase linearly with the polar scattering
angle. More quantitatively, Fig. 15 displays the absolute elastic
fraction determined from the fits in Fig. 14 as a function of
the product Eθ3. It shows an exponential decay but with
a maximum coherence limited to 50% and with a slope
of ≈0.24 meV−1. Assuming a value of � = 3.3 Å−1[14] in
agreement with [47], the results of Eq. (13) are reported for
quite different values of the surface Debye temperature found
in the literature [22,37,38,41,47,48]. A critical analysis of TD

and, to a minor extent �, is beyond the scope of the paper
but the physical assumptions behind the derivation of these

numbers will probably have to be investigated in more detail.
The comparison shows that at least 50% of the decoherence
is not accounted for by the present model. The possible origin
will be discussed with help of the polar and transverse inelastic
angular profiles.

C. Polar angle inelastic line profiles

To our knowledge, the shape of the polar inelastic profiles
(along kz) has never been analyzed in the diffraction regime.
Even in the quantum Monte Carlo description of the decoher-
ence in Refs. [22,47], the kz profile is reproduced by artificially
broadening the projectile wave packet.

According to the present model, a significant elastic
diffraction probability indicates a quasielastic regime where
only few collisions are inelastic. The width should then follow
Eq. (20) and scale linearly with E⊥/E. The rms widths of
the inelastic profiles are displayed in Fig. 16. Once again, the
comparison with prediction is far from quantitative. The most
salient disagreement being that the experiment widths indicate
a minimum value of 0.13◦. This could be due to the limited
surface quality, either microscopic in the form of a reduced
mean terrace dimension or macroscopic, in the form of mosaic
domain [16] which was indeed present on some part of the
crystal but difficult to identify due to the limited resolution. In
this context, the prediction of Eqs. (18)–(20) is only plotted
to illustrate the distinct angular dependencies associated with
these three simple regimes.

D. Transverse inelastic line profiles

All published analyses of the diffracted intensity have
focused on the Laue circle but since the inelastic contribution
can not be neglected, the question of the peak profile in
general and of the inelastic contribution in particular are
not well defined. Some empirical descriptions [35,43] have
been proposed which do not take into account the intensity
away from the Laue circle and can not compare with the
present description. As shown on the 2D plots of Fig. 10,
the elastic profile on the Laue circle can be isolated by a
doubly differential filter. The 1D profiles corresponding to
Fig. 11(b) are plotted in the lower part of Fig. 17 and display
a strong Gaussian character with a width σθ corresponding

FIG. 11. Polar transformed diffraction patterns of He on LiF
along the 〈100〉 direction. (a) 460 eV from Refs. [15] and (b)–(d)
200 eV from Ref. [8]. Each horizontal line corresponds to a well
defined keff . The polar plots in Figs. 12 and 14 correspond to
projections on the vertical axis, i.e., P(keff ).
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FIG. 12. Scattering profiles as a function of the average momen-
tum keff for six different angles of incidence [8] (lower panel). The
elastic component is estimated from a doubly differential filter (see
Fig. 14 for a better estimate). The corresponding relative intensities
on the top panel show no singularity when passing though the elastic
component.

to that of the primary beam. This, however, does not give
an answer to the inelastic line profile because the filter is
not considered fully quantitative. Assuming that the elastic
contribution drops rapidly away from the Laue circle, the
transverse profiles are analyzed in the upper part of the Fig. 17
at a distance of 3 standard deviations σθ from the Laue circle.
This later is well fitted by a Lorentzian profile as used in
Ref. [43] but with little precision whether the wings are
correct or not. Figure 7 suggests that the Lorentzian curve

FIG. 13. Experimental corrugation amplitude zc (squares and
circles) fitted via a HCW model are reported for different energies and
angles [8,17]. As expected from the axial channeling approximation
[19,20,32], zc depends only on the perpendicular energy E⊥. Line is
drawn only to guide the eye.

FIG. 14. Polar angle distributions of 200-eV He atoms corre-
sponding to different angle of incidence θin. The inelastic width and
the elastic ratio are estimated using a two-component fit. A narrow
Gaussian component of fixed width σ = 0.04◦ corresponding to the
primary beam profile and a broader log-normal with free width w.

possesses too large wings; this specific aspect is evaluated in
Fig. 18 recorded along the 〈110〉 direction. Figure 18(b) shows
indeed that the large wings of Lorentzian profile produce
significant intensity above the rainbow angle and negative
intensities when a diffraction order with low intensity is located
in-between more intense peaks. Since the profiles calculated in
the model and displayed in Fig. 7 are not analytic, we have used
a simple but empirical “bounded Lorentzian” profile which
resembles a standard Lorentzian Lw(x) = A/(x2 + w2/4) in
its center but with wings attenuated by a Gaussian function
BLw(x) = Lw(x) × e−x2/4w2

. In this case, the variance is
well defined σBL ∼ 0.732.w contrary to the Cauchy-Lorentz
distribution.

To further investigate the disagreement pointed above,
that inelastic scattering width does not tend to zero in the

FIG. 15. The absolute elastic diffraction probability DWF esti-
mated by the fit of the polar profile in Fig. 14 is reported as a function
of the product Eθ3 and compared with prediction of Eq. (13) (scaled
by by 0.4) for Debye surface temperatures of 540 K [22,47], 310 K
[48], and 250 K [37,38,41].
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FIG. 16. The polar widths measured in Fig. 14 are plotted as a
function of the ratio E⊥/E and compared with the prediction of the
classical limit [Eq. (18)] of the quasielastic limit [Eq. (20)] and of the
mixed inelastic regime [Eq. (19)].

quasielastic regime, we have analyzed the data of Ref. [15]
recorded with 460-eV He4 atoms at 1◦ with an angular
resolution of 7 mdeg and where no trace of surface mosaicity
was found [Fig. 11(a)].

The elastic ratio is still limited to 50% but the width of polar
profile is lower around 80 mdeg (not shown) which is still more
than predicted in Eq. (20). Figure 19 shows the corresponding
transverse momentum profiles with narrow elastic peaks on the
Laue circle even without application of the doubly differential
filter. The inelastic profile is made of sharp peaks on top of
a comparatively broad base. It is hard to tell what is the best
line profile, but the bounded Lorentzian profile (see above)
indicates a rms width of 17 mdeg. It is tempting to identify
this narrow structure as the inelastic profile originating from
the quasielastic collisions predicted here while the broader

FIG. 17. Transverse momentum distribution on the Laue circle
(bottom). The intensity is plotted with and without application doubly
differential filter suppressing the inelastic contribution. The full lines
are fit by Gaussian profiles indicating the elastic standard deviation
σθ = 35 mdeg. Data from Ref. [8].

FIG. 18. For a diffraction pattern recorded in condition where no
elastic intensity is found, the inelastic profiles close to the rainbow
angle are analyzed by a bounded Lorentzian profile in (a) (see text)
and by pure Lorentzian profile in (b).

contributions would originate from surface defects. At 1◦
incidence, a single terrace edge prevents elastic diffraction
over a distance L � a/θ ≈ 200 Å so that the useful fraction
of a terrace of size T is only (T − L)/T . All the projectiles
getting closer to the terrace edge undergo more and more
violent collisions. Since a terrace edge perpendicular to the
beam does not affect the transverse periodicity, a whole range
of inelastic diffraction conditions can be produced.

It should be mentioned that a quasilinear increase of the
transverse width, qualitatively in-line with Eqs. (20) and
(19) was measured by [43]. However, this observation is
performed at the specular angle with an unknown composition
of elastic and inelastic contributions and the absence of a clear
definition of the reported width prevents a direct comparison.
Interestingly, though, they suggest that the transverse width is
identical along different directions of the crystal surface.

FIG. 19. Transverse momentum distribution (ky) at the specular
angle (bottom) showing a Gaussian profile with σ = 7 mdeg identical
to the primary beam [15]. The top curve is recorded 24 mdeg below
and should be inelastic. The sharp components have a “bounded
Lorentzian” width of 17 mdeg.
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As to the ratio close to three predicted in Fig. 6 for the kz to
ky inelastic broadening, it can be observed on Figs. 11(c) and
11(d) as the elongation ratio of the elliptic diffraction spots.
In these figures, the elastic contribution is negligible and the
brighter spots correspond to maximum of the diffraction curve
(dIm/dkeff ∼ 0) so that the polar profile is hardly distorted by
the slowly varying modulation of the Bessel function Jm along
this 〈100〉 direction. Also, at least in the quasielastic regime,
the strict correlation between individual scattering angle and
energy loss can be considered exact so that the quasilinear
increase of the transverse width with E⊥ is also present as
δky ∝ k2

eff in each inelastic diffraction image. In other words,
the spots are slightly distorted ellipses.

IX. DISCUSSION

We review here some of the assumptions made in the model
developed above.

At the very heart of the multiple inelastic model is the local
value of the stiffness � of the repulsive binary interaction
potential. In itself the existence of such binary potentials is not
a severe requirement, as these can be regarded as an efficient
way to fit the 3D potential energy landscape usually evaluated
within density functional theory.

Similarly, the requirement that these binary interaction
potentials can be expanded as a leading exponential term
V (r) = V e−�r for distances to the surface z = zt ± σz around
the turning point zt is probably not a severe constraint at limited
surface temperature. Most of the deflection takes place at these
distances where the projectile spends most of the interaction
time τ = (�v⊥)−1 and where the resulting forces are almost
perpendicular to the trajectory. The other fundamental input
of the model is the quantum motion of the surface atoms
represented by the surface Debye temperature TD . It enters
both the inelastic scattering properties and the Debye-Waller
factor. In other words, the model presented tries to answer the
following question: How much momentum can the vibrational
wave function absorb without changing energy?

It turned out that even for the well-investigated He-LiF
system, the literature reports slightly different values of �

[9,37,48,49] and surprisingly scattered values of TD [38,47,50]
fitted to reproduce specific classical or quantum features. A
critical reanalysis of the Debye surface temperature is needed
and would help improving the present model by putting clear
boundaries to the quantitative agreement. The surface Debye
temperature is of particular importance for the contribution of
the Li atoms completely neglected here. On the rigid lattice,
the Li atoms are hidden behind the significantly larger F atoms
but their light mass could help them spilling out even at room
temperature if TD is low enough.

The van der Waals (VdW) attraction also has been neglected
and is certainly important in the 10–50 meV [14,51–53] in the
form of the Beeby correction [54] where the effective impact
energy is E⊥ = E sin2 θ + EVdW with EVdW the depth of the
potential energy well. The VdW attraction also influences the
shape of the binary potential V (r) and may affect the local
value of �(E⊥) as illustrated in [25,53].

As pointed out in Sec. II, all theoretical descriptions of
elastic diffraction start from the potential energy landscape
(PEL). In opposition to Refs. [22,47], the present model

suggests that this PEL should be evaluated with surface atoms
at their equilibrium positions without taking into account the
thermal motion in the averaging. Starting from this PEL and
the projectile mass, the elastic diffraction intensities Im(kin)
are calculated by standard methods [8,11,19,20,23,51] without
any surface dynamical property. In the present model the effect
of the thermal motion is evaluated at each collision to predict a
self-consistent contribution to the inelastic scattering profiles
and to the DWF adapted to grazing angles in Eq. (13).

The model uses a rigid lattice so that all trajectories remain
identical close to the surface irrespective of the inelastic event
taking place. The influence of these events is considered
only statistically and in the far field. This is probably the
main limitation of the model. For instance, at high surface
temperature or at larger perpendicular energies, more violent
collisions can occur that could make the associated inelastic
trajectory significantly different from the elastic one.

Also, the common classical trajectory implicit in the model
is not adapted to more specific quantum effect where multiple
trajectories are involved, for instance, bound-state resonances
[15] or quantum reflection [55].

Only one inelastic process has been considered here: the
vibrational excitation of an individual surface atom whereas
collective phonon modes are identified in TEAS (see, e.g.,
[56,57]). The overall interaction time τ ∼ 1/�v⊥ with the
surface is the same but each collision with a surface atom
is Neq [Eq. (7)] times shorter. The validity of this sudden
approximation and the boundary between these regimes
remains to be investigated. Note that even at hyperthermal en-
ergies, recent measurements and analysis [58] have suggested
that a multiphonon excitation regime can be present with
consequences having similarities with the model developed
here.

X. SUMMARY AND CONCLUSION

A simple and parameter-free model has been presented. It
describes the multiple smooth collisions taking place along
the classical trajectory with surface atoms located at their
equilibrium position (rigid lattice). Considering the short
collision time, a sudden approximation is developed where
only the local Debye oscillator is considered instead of the
phonon branches. The successive virtual binary recoil energies
cumulated along the trajectory [Eq. (6)] is proposed as a
criterion to evaluate the overall elastic scattering probability
[Eq. (13). Three regimes have been identified:

(i) a quasielastic one where almost all collisions take place
in the Mössbauer-Lamb-Dicke regime and where the observed
inelastic properties can be understood as deriving from a single
inelastic event;

(ii) a quasiclassical regime where almost all collisions are
inelastic and where quantum effects only reduce the actual
amount of energy loss and angular straggling;

(iii) in-between a mixed quantum-classical regime is iden-
tified progressively linking the quantum and classical limits.

The model suggests that inelastic diffraction intensity is
given by Im(keff) where keff = (|kin| + |kout|)/2 and Im(kin) are
the intensity ratios of elastic diffraction. The overall polar
angle inelastic scattering profile P (keff) is predicted to follow
a log-normal distribution while the transverse momentum
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profile of each diffraction peak P (ky) is found to follow a
quasi-Lorentzian line shape. In both directions, the widths
are governed by the amount of inelastic energy loss drawing
a direct link between the well-documented nuclear energy
loss and the polar angular straggling around the specular
angle or Laue circle. On the Laue circle, both the elastic
and inelastic diffraction contribute, resulting in a composite
scattering profiles.

For pedagogical purposes, a simpler model where the Neq

collisions taking place close to the turning point are considered
equivalent was presented to illustrate the statistical treatment.

The model naturally merges to the classical scattering
regime where the cubic dependence Eloss ∝ θ3

in [Eq. (6)] is
in line with observations, at least for moderate energies angles
and surface temperatures [37,38,40,41]. The progressive blur-
ring of the diffraction features is interpreted as a degradation of
the visibility when the transverse width σy exceeds the Bragg
peak separation Gy .

Quantitatively, the comparison with existing experimental
data is not fully convincing. The measured elastic fraction is
much less than predicted, particularly at the lowest angles
of incidence where other sources of decoherence such as
topological defects are suspected to contribute.

This underlines an important difficulty inherent to inelastic
diffraction that different decoherence mechanisms tend to have
comparable consequences, often preventing unambiguous
interpretation. Note also that the comparison with scattering
profiles is much more demanding than a 2D color plot where
a general impression of good agreement is easier to reach.

Several analytical formulas have been derived allowing
simple estimates of the effect of the change in primary beam
energy or angle of incidence, the projectile mass, or target mass
as well as the sensitivity to temperature and thermal motion.

From the experimental point of view, procedures have
been suggested to analyze inelastic diffraction images taking
the primary beam as a reference for diffraction circles. The
data suggest that the topological defects becoming increas-
ingly important at grazing incidence are the most important

limitation to investigate the fully elastic regime. The 〈100〉
direction investigated here is simple in terms of modeling but
the random direction investigated by Ref. [43] produces a
simpler scattering profiles and it would be interesting to adapt
the present model to random direction. More work is needed
with new data and new binary interaction potentials to be
able to discuss the validity of the model and the underlying
assumptions.

Finally, several other inelastic processes can contribute to
the inelastic signal. High-energy (∼10 eV) localized electronic
excitations were found to give rise to a momentum exchange
larger than the reciprocal lattice vector destroying diffraction
[9,59]. At variance, more gentle electron-hole pair excitation at
the Fermi edge of metal [60] seems to preserve the diffraction
features [61–64]. Although not discussed here, it is worth
mentioning that electronic excitation should also play a role
in the elastic scattered intensity. It has been investigated
theoretically for molecular projectiles in Ref. [65]. So far,
fast atomic diffraction on molecular layer [66] has shown
only inelastic behavior and this remains to be investigated
more closely and the present model offers a direct link to
triangulation approaches [67,68].
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