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Quantum lifetime in ultrahigh quality GaAs quantum wells: Relationship to �5/2 and impact
of density fluctuations
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We consider the quantum lifetime derived from low-field Shubnikov–de Haas oscillations as a metric of
the quality of the two-dimensional electron gas in GaAs quantum wells that expresses large excitation gaps
of the ν = 5

2 fractional quantum Hall state in the N = 1 Landau level. In high quality samples, small density
inhomogeneities dramatically impact the amplitude of Shubnikov–de Haas oscillations such that the canonical
method [cf. Coleridge, Phys. Rev. B 44, 3793 (1991)] for determination of the quantum lifetime substantially
underestimates τq unless density inhomogeneity is explicitly considered. We have developed a method that can
be used to determine density inhomogeneity and extract the intrinsic τq by analyzing the Shubnikov–de Haas
oscillations. However, even after accounting for inhomogeneity, τq does not correlate well with sample quality
as measured by �5/2, the excitation gap of the fractional quantum Hall state at 5/2 filling.
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I. INTRODUCTION

Improvements in heterostructure design and molecular
beam epitaxy (MBE) techniques have made it possible to
grow AlGaAs/GaAs heterostructures with low-temperature
mobility μ as high as 35 × 106 cm2/V s [1–3]. Ultrahigh
quality two-dimensional electron gases (2DEGs) provide a
platform to study the most fragile fractional quantum Hall
states (FQHSs) in the N = 1 Landau level (LL), including the
putative non-Abelian ν = 5

2 and 12
5 FQHSs. The existence of

ν = 5
2 and 12

5 states presents fundamental challenges to our
understanding of correlations in the fractional quantum Hall
regime, and it may provide a platform for exploration of exotic
braiding statistics [4]. However, it is often difficult to assess the
quality of a given sample by measurement of mobility alone
[2,3,5–8]. It has been proposed that the quantum scattering
time (or quantum lifetime), τq, may be a better predictor
of the strength of FQHSs at low temperatures and can be
used to quantify disorder-induced Landau level broadening
[5]. In this study, we investigate the relationship between τq,
2DEG density variations, and the strength of ν = 5

2 FQHS in
ultrahigh quality GaAs quantum wells. Our main findings can
be summarized as follows: (i) in 2DEGs with sufficiently large
τq, small density inhomogeneities result in nonlinear Dingle
plots and underestimate τq unless density inhomogeneity is
explicitly considered; (ii) we have developed a method to
determine density inhomogeneity from Shubnikov–de Haas
(SdH) oscillations and extract the intrinsic τq; and (iii) τq does
not correlate with sample quality as measured by �5/2, the
excitation gap at 5/2 filling.

*mmanfra@purdue.edu

II. DEFINITION OF LIFETIMES

Mobility can be recast as a transport lifetime, τt = m∗μ/e,
that depends on the electron effective mass, m∗, the mobility,
μ, and the electronic charge, e. τt is particularly sensitive
to large-angle scattering. This can be seen in its defining
integral [9],

1

τt
= m∗

πh̄3

∫ π

0
|Vq|2(1 − cos θ )dθ, (1)

with |Vq| being the probability of scattering through an
angle θ from a state k to a state k′ on the Fermi surface.
Note q = 2kF sin( θ

2 ) and the Fermi wave vector kF = √
2πn,

where n is the 2DEG density. The factor of (1 − cos θ ) in the
integral results in reduced weighting of small-angle scattering.
Historically, mobility has been the primary metric of 2DEG
quality.

The quantum lifetime is another measure of 2DEG quality
that is often used in conjunction with mobility measurements
to determine dominant scattering mechanisms [9–12]. Unlike
τt, the quantum lifetime weights all scattering events equally.
The quantum lifetime is defined as [9]

1

τq
= m∗

πh̄3

∫ π

0
|Vq|2dθ. (2)

It measures the mean time that a carrier remains in a
particular momentum eigenstate before being scattered into
a different state. Extraction of τq is usually accomplished with
transport measurements through analysis of low magnetic field
Shubnikov–de Haas oscillations.

The density of states g(ε) of a 2DEG becomes oscillatory at
low magnetic field [13–15]. The functional form of �g(ε)/g0
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was derived by Isihara and Smrcka [16],

�g

g0
= 2

∞∑
s=1

exp

(
− πs

ωcτq

)
cos

(
2πεs

h̄ωc
− sπ

)
, (3)

where ωc = eB/m∗ is the cyclotron frequency, ε is the electron
energy, and g0 is the two-dimensional (2D) density of states
at zero magnetic field. Here the quantum lifetime is related to
the width of disorder-broadened Landau levels (	) through the
relationship τq = h̄/2	. The broadening of the Landau levels
is also assumed to be Lorentzian and independent of energy and
magnetic field. At small magnetic fields, ωcτq ∼ 1; retaining
only the s = 1 term in the density of states, the functional form
for SdH oscillations can be written as

�Rxx = 4Ro exp

( −π

ωcτq

)
cos

(
2h̄π2n

m∗ωc
− π

)
χ (T ), (4)

where Ro is the zero field resistance, and χ (T ), a ther-
mal damping factor, is given by χ (T ) = (2π2kBT/h̄ωc)/
sinh(2π2kBT/h̄ωc).

In a formalism codified by Coleridge et al. [17,18], τq can
be related to the amplitude of developing Shubnikov–de Haas
oscillations by the expression

�R = 4Roχ (T ) exp(−π/ωcτq). (5)

Thus 1/τq can be extracted directly from the slope of
�R/[4Roχ (T )] plotted versus 1/B in natural logarithm scale,
also known as a Dingle plot. Assuming a homogeneous 2DEG,
data plotted in this manner should fall on a straight line with a
1/B = 0 intercept of 4. As discussed below, this assumption
is often far from valid for the highest quality 2DEGs available
today, requiring a more sophisticated application of the Dingle
plot formalism in order to extract 1/τq.

III. SAMPLE DESIGN AND EXPERIMENTAL DETAILS

We present measurements on in situ back-gated 2DEGs
grown by MBE. The 2DEG resides in a 30 nm GaAs quantum
well bounded by Al0.24Ga0.76As barriers. Charge transfer to the
quantum well is accomplished by δ-doping silicon in narrow
GaAs layers flanked by pure AlAs layers placed 66 nm above
the principal 30 nm GaAs quantum well. This design has
been shown to yield the largest gap energy for the ν = 5

2
FQHS [2,19–22]. The in situ gate is an n+ GaAs layer situated
850 nm below the bottom interface of the quantum well. Leak-
age from gate to 2DEG is minimized by an 830 nm GaAs/AlAs
superlattice in the intervening layer. The exact heterostructure
design and processing details can be found in Ref. [20].
The 2DEG density can typically be tuned from depletion
to 4 × 1011/cm2 without significant gate leakage (for larger
gate voltages, leakage current exceeds 10 pA, which causes
excessive electron heating). We have measured three devices
on the same chip, sharing a global back gate. Each device is a
1 mm × 1 mm lithographically defined van der Pauw square
with eight contacts on the edges. Most of the data were taken
after briefly illuminating the samples with a red LED, although
one exception to this is noted in the text. This particular wafer
was chosen because it exhibits the largest �5/2 = 0.625 K
reported to date. We performed standard low-frequency lock-in
measurements. Typically, for these low-field measurements,

the excitation current I = 200 nA at T = 0.3 K and I =
50 nA at T = 0.01 K.

IV. EXTRACTION OF τq: IMPACT OF DENSITY
INHOMOGENEITY

Figure 1(a) shows the magnetoresistance of a device at
zero gate bias after subtraction of a smooth background (mean
magnetoresistance at each field). The resistance is measured
by monitoring the voltage drop along one edge of the sample
while driving current between two contacts at the center of
opposing faces of the square. The amplitude of the oscillations
appears to be described by a single envelope function, and
no beating is observed. The density spectrum obtained from
a fast Fourier transform (FFT) of �Rxx versus 1/B is shown
in Fig. 1(b). Only a narrow fundamental peak associated with
the nominal 2DEG density and exact higher-order harmonics
are observed [23], indicating the sample does not suffer from
gross density inhomogeneity or from two or more regions with
distinct densities [24]. As we demonstrate below, however, it
is likely that small density inhomogeneities in these samples
limit the onset of SdH oscillations at low magnetic field [25].

Figure 1(c) is a Dingle plot for the data in Fig. 1(a). A
single-parameter least-squares fit of the data between 55 and
95 mT yields a quantum lifetime τq = 17 ps. However, the
data points clearly deviate from the straight line expected for
a sample with homogeneous density [18].

It is known that even slight density inhomogeneities
or gradients can impact transport at high magnetic fields
in the quantum Hall regime [26–31]. For example, Pan
and collaborators [28] demonstrated that a 1%/cm density
gradient in high quality AlGaAs/GaAs 2DEGs could explain
quantization of diagonal resistance in the N = 1 LL at T ∼
9 mK. The sample geometry explored in Ref. [28] is similar
to that employed for our experiments. As we show below,
minute levels of inhomogeneity can also dominate the low-
field magnetoresistance when small-angle scattering has been
strongly suppressed by strong screening of remote scattering
centers. For the data shown in Fig. 1(a), the onset of SdH
oscillations is around 45 mT at T = 0.3 K, corresponding
to filling factor ν ∼ 165, where ν = nh/eB (in SI units).
At a qualitative level, this onset field could correspond to
Landau level broadening associated with τq. On the other hand,
density inhomogeneity on the order of 1/ν ∼ 1/165 ∼ 0.6%
will preclude observation of well-defined oscillations at lower
magnetic field even in the limit of infinite τq.

To model the effect of inhomogeneities quantitatively, we
assume a Gaussian distribution of densities ni around nominal
density no with standard deviation �n. The 2DEG density
distribution is then described by

g(ni) = 1

�n
√

2π
e− 1

2 ( ni−no
�n

)2
, (6)

where no is the nominal 2DEG density obtained from the
FFT spectrum of �Rxx versus 1/B. For computational
purposes, the densities are discretized and evenly spaced, and
the weight given to each discrete density ni is denoted as
P (ni). The densities are discretized and evenly spaced by
�d = 6�n/(2M + 1), where M is the number of discrete
density values included in the calculation (typically 100 in our
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FIG. 1. Impact of density inhomogeneity on low field transport measured at T = 0.3 K. (a) Magnetoresistance as a function of B after
background subtraction for nominal 2DEG density no = 1.78 × 1011/cm2 and simulated trace with �n/no ∼ 0.23% density inhomogeneity
and τq = 24.6 ps (red). (b) Density spectrum obtained through a FFT of �Rxx vs 1/B. (c) Dingle plots from data (blue squares) and simulated
trace (red line) shown in (a). The black line is a single-parameter least-squares fit of the data between 55 and 95 mT with the intercept fixed to
4; it clearly shows poor overlap with the data. (d) Two-dimensional plot of the fit error for various combinations of �n and τq for data shown
in (a). The fit error is minimized at �n = 4.15 × 108 cm−2 and τq = 24.6 ps.

simulations). The weight of density ni is given by

P (ni) =
∫ ni+�d/2

ni−�d/2
g(ni)dni, (7)

which can be evaluated as

P (ni) = 1

2

[
erf

(−ni + �d/2 + no√
2�n

)

− erf

(−ni − �d/2 + no√
2�n

)]
, (8)

where erf(x) is the error function defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt. (9)

It is assumed that each density carries the same quantum
lifetime τq . The resultant magnetotransport at low field then
can be expressed as the sum of the distribution of all partial
SdH oscillations,

�Rxx = 4Ro

m∑
i=1

P (ni) exp

( −π

ωcτq

)

× cos

(
2h̄π2ni

m∗ωc
− π

)
χ (T ). (10)

This sum of a spread of oscillation frequencies (expressed
in 1/B) damps the net oscillation amplitude heavily at small
B and results in curvature in a Dingle plot. For samples with
low scattering rates (that is, very high quality and long τq), the
effect can be enormous. Throughout this paper, Dingle plots
are superimposed with simulation results after performing
error analysis to obtain the best-fit �n and τq. We define the
fit error as

error =
∑

i

(
log �Rsimulation

i − log �Rdata
i

)2
. (11)

In this expression, i represents each discrete point in the Dingle
plot [such as the data points shown in Fig. 1(c)]. These points
are evenly spaced in terms of 1/B. We define the error in
terms of the logarithm of the oscillation amplitude in order to
account for the exponential factor in Eq. (5); this ensures that
the high-field and low-field data points are weighted equally.
We note that this formulation is somewhat different from a
typical standard least-squares error, which would be defined
as

error =
∑

i

(
�Rsimulation

i − �Rdata
i

)2
. (12)

Equation (12) gives significantly more weight to the high-field
data where the amplitude is much larger. This artifact makes
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FIG. 2. Dingle plots from data taken at T = 0.3 K and sim-
ulations. (a) Back gate 2DEG with nominal 2DEG density no =
1.75 × 1011/cm2. (b) A 91-nm-deep, single heterojunction 2DEG,
no = 1.30 × 1011/cm2.

Eq. (11) more suitable for obtaining a good fit to the SdH data
in the present case.

In Fig. 1(d), we plot the error calculated from Eq. (11)
incurred for various combinations of �n and τq for the data
in Fig. 1(a). The error is minimized at �n = 4.15 × 108/cm2

and τq = 24.6 ps. Next we compare our data to the simulated
SdH oscillations [Fig. 1(a)] and Dingle plot [Fig. 1(c)] with
a quantum lifetime τq = 24.6 ps and density fluctuations
�n/no ∼ 0.23%. The excellent overlap between data and
simulation reveals that we are able to determine the level
of density inhomogeneity in this sample and reproduce the
experimental data. The intrinsic quantum lifetime 24.6 ps
obtained after properly accounting for density inhomogeneity
is 45% higher than the value of 17 ps obtained from a naive
linear fit. Here, the percentage difference is quantified as
(τintrinsic − τlinear fit)/τlinear fit.

The inaccuracy of τq extracted from a linear fit to the
Dingle plot is exacerbated at larger τq and lower temperature.
Data in Fig. 2(a) are from the back-gated device (the same
chip as discussed in Fig. 1), while data shown in Fig. 2(b)
are from a 2DEG utilizing a different heterostructure known
to have shorter τq. This lower quality 2DEG is formed at
an Al0.36Ga0.64As/GaAs single heterojunction (SHJ) located
91 nm below the surface with silicon uniformly doped in
the Al0.36Ga0.64As layer. The low-field data are collected at
T = 0.3 K. For the single heterojunction wafer in Fig. 2(b),
we find density inhomogeneity �n/no ∼ 0.5%, and we find
that after accounting for the effect of density inhomogeneity,
the calculated τq increases by 10%. For the back-gated wafer
in Fig. 2(a), we find density inhomogeneity �n/no ∼ 0.1%
and we find that the calculated τq also increases by 10%
when accounting for density inhomogeneity. This confirms
our expectation that higher quality samples are most sensitive
to the impact of density inhomogeneity, since the high quality
sample has five times smaller percent density inhomogeneity
than the lower quality SHJ sample, but they both have the
same percentage change in τq after accounting for the effect of
density inhomogeneity. This happens because SdH oscillations
onset at lower field for higher quality samples with larger τq.
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FIG. 3. Low-field transport data of back-gated 2DEG with
nominal 2DEG density no = 1.60 × 1011/cm2 taken at T = 10 mK.
(a) Magnetoresistance as a function of B after background subtrac-
tion. (b) Dingle plots of experimental data and simulation.

The impact of temperature is explored in Fig. 3. Here the
back-gated sample is cooled in a dilution refrigerator to reach
electron temperature T = 10 mK. We have verified that the
electron temperature reaches the mixing chamber temperature
through careful measurements of the fragile reentrant integer
quantum Hall states in the N = 1 LL. The thermal damping
effect is largely suppressed at this temperature, and as a result
the SdH oscillation onset moves to lower field (∼15 mT),
as shown in Fig. 3(a). Now we compare Figs. 2(a) and
3(b); data for each plot are from samples with the same
heterostructure but measured at different temperatures. They
both have �n/no ∼ 0.1% density inhomogeneity, but the
correction to τq is ∼20% for the sample measured at T =
10 mK compared to 10% at T = 0.3 K; also, the curvature of
the Dingle plot is more visible in the lower temperature data.
Both larger τq and lower measurement temperature move the
onset of SdH oscillation to lower field, or equivalently higher
filling factor ν, where density inhomogeneity will have more
impact.

V. DENSITY DEPENDENCE OF τq AND �5/2

A. Scattering dominating τq

We extract τq from one of the back-gated samples at
various densities after accounting for the effect of density
inhomogeneity; the results are displayed in Fig. 4. We observe
that the quantum lifetime initially increases monotonically
from near depletion to n ∼ 1 × 1011/cm2, but it remains
nearly constant at around 25 ps from n ∼ 1 × 1011/cm2

to n ∼ 2.0 × 1011/cm2 and starts to decrease slightly when
density is higher than 2.0 × 1011/cm2. A similar trend was
observed in Ref. [7]. The decrease in τq at high density
is somewhat surprising since, assuming that the distribution
of impurities remains the same, τq would be expected to
increase monotonically with density in a gated device due
to the increase of the Fermi wave vector kF, as calculated in
Ref. [5]. This can be resolved by noting that, in our device, the
gate consists of a heavily silicon-doped GaAs layer, and when
the density is increased by applying increased positive bias to
the gate, an equal number of positively charged impurities are
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FIG. 4. Experimentally measured τq (red squares) and numeri-
cally calculated τq (solid lines) as a function of 2DEG density n.
The black line shows the scattering time corresponding to scattering
by donors in the doping well, while the blue line shows the
scattering time corresponding to scattering by ionized impurities on
the back gate. The red line shows the combined τq including both
sources of scattering, and it indicates reasonable agreement with the
experimental data.

ionized on the gate to maintain charge neutrality. These ionized
donors act as scattering sites, and since their concentration
increases linearly with density, τq starts to decrease at high
densities. At low density, on the other hand, scattering is
dominated by fixed charged impurities in the doping well,
and τq increases monotonically in that range.

To quantify this nonmonotonic behavior, we performed
numerical calculations of τq following the approach of
Refs. [5,32]. To model the device, we assume that when
positive bias is applied to the back gate, the number of ionized
impurity scattering sites is equal to the charge transferred from
the gate to the 2DEG. When zero or negative bias is applied
to the back gate, we assume no impurity scattering is caused
by the gate, since all of the donors remain unionized. The
impurity concentration on the gate is then

ngate = n − nVG=0(n � nVG=0) (13)

and

ngate = 0(n � nVG=0). (14)

In these expressions, ngate is the impurity concentration on the
back gate and nVG=0 is the 2DEG density with zero applied
gate bias. An additional complication is that while at nVG=0

scattering is expected to be dominated by ionized donors in the
doping well, the ionized donors in the doping well are screened
by electrons transferred to the X band of the AlAs barriers
surrounding the doping well [2], which reduces the scattering
rate by these donors. To account for this, we extract an effective
doping well impurity concentration, ndonor, by matching the
nVG=0 quantum lifetime; this gives ndonor = 1.35 × 1010/cm2.
This is smaller than the actual number of ionized donors, which
is ∼7 × 1011/cm2; evidently screening in the AlAs barriers is
highly effective at reducing scattering [2,19–22].

The results of the simulation using these assumptions are
presented as solid lines in Fig. 4. We have divided the impurity
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FIG. 5. Characteristic properties of the back-gated sample as a
function of the electron density n. (a) Quantum lifetime τq extracted
from Shubnikov–de Hass oscillations measured at T = 0.3 K, both
in dark (black) and after illumination (red). (b) The Landau level
broadening based on the low-field quantum lifetime time with
illumination, 	SdH = h̄/2τq . (c) Gap energy for the ν = 5

2 FQHS
with illumination.

scattering into the scattering by ionized donors in the doping
well (characterized by scattering time τdonor) and scattering
by the back gate (characterized by scattering time τgate). As
expected, τdonor increases as the 2DEG density n increases,
while τgate decreases when positive bias is applied to the gate
and impurities on the gate are ionized. The total quantum
lifetime τtotal, which takes into account both scattering by
the impurities on the gate and in the doping well, shows
reasonable agreement with the experimental data, especially
when n > 1.0 × 1011/cm2. At lower densities, the calculated
τtotal deviates from experimental data; this suggests that at
very low densities, the two-impurity model is insufficient.
Nevertheless, this simple treatment accounts for the striking
experimental result that τq decreases as density increases in
the high density range.

Most of the data we show are taken after the sample
is illuminated with a red LED; this procedure is known to
improve sample quality in terms of the strength of the FQHSs
[6]. However, in Fig. 5(a) we also show two representative data
points taken with no illumination of the sample. τq is lower
without illumination, indicating that illumination improves
screening of remote impurities that determine τq. This effect is
interesting, as the change in τq does not accompany an increase
in 2DEG density. The illumination and subsequent relaxation
simply allows the system to equilibrate to a configuration in
which scattering is reduced.

B. Comparison between τq and �5/2

Having accounted for the impact of density inhomogeneity
on τq, we turn now to the relationship between τq and �meas

5/2 ,
where �meas

5/2 is the experimentally measured gap, and we
discuss if τq can be used as a metric of quality relevant to N =
1 LL. As seen in Fig. 5(c), �meas

5/2 increases nearly
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monotonically with density. Clearly, �meas
5/2 and τq behave

differently as a function of density; a concomitant increase
in τq is not observed in the density regime above n = 1 ×
1011 cm−2. We note that our observation that �meas

5/2 increases
with density while τq decreases is in direct contradiction with
the expectations of Ref. [5]. The simplest explanation for this
is that the explicit increase of the intrinsic gap with density
leads to the increase of the experimentally measured gap, and
the effect of decreasing τq is overwhelmed. However, it is also
possible that τq is simply not sensitive to the disorder relevant
to �meas

5/2 ; in either case, τq cannot be used in a simple manner
to predict �meas

5/2 without additional analysis in density-tunable
devices.

We convert quantum lifetime to the Landau level broad-
ening using 	SdH = h̄/2τq as shown in Fig. 5(b). 	SdH is
usually interpreted as the magnetic field-independent energy
broadening of the Landau levels. Then one would expect
the relationship �theor

5/2 − �meas
5/2 = 	5/2 = 	SdH [33,34], where

�theor
5/2 is the intrinsic gap in the absence of disorder. �theor

5/2
in this density range was numerically calculated in Ref. [7],
taking into account the finite width of the quantum well and
LL mixing [35]. According to Ref. [7], �theor

5/2 should exceed
2 K at n = 3.0 × 1011 cm−2, far above the maximal value
of �meas

5/2 = 0.625 K. Clearly, 	SdH severely underestimates

the level broadening 	5/2 relevant to the ν = 5
2 state. This

observation is consistent with other experiments reported
previously [7,36]. However, we must be cognizant of the
limitations of this analysis. Since the experimentally measured
values of �meas

5/2 are much smaller than the numerically
calculated values, it follows that small errors in the numerically
calculated gap �theor

5/2 can lead to large changes of 	5/2 versus
density, including even its functional density dependence. We
also cannot completely rule out the possibility that 	5/2 is
proportional to 	SdH but differs by a scale factor. Regardless,

we are led to the same conclusions as before: τq does not
correlate directly with the gap �meas

5/2 nor can the disorder

broadening of the ν = 5
2 state be simply calculated from the

expression 	 = h̄/2τq . In Ref. [37], we describe the utility
of a different metric of 2DEG quality at T = 0.3 K, ρ5/2, the
high-temperature resistivity at ν = 5

2 where the state is best
described as a Fermi sea of composite fermions. ρ5/2 does
show correlation with �5/2.

VI. CONCLUSIONS

In conclusion, we consistently find that small density
inhomogeneities in samples whose scattering from remote
ionized impurities has been minimized yield Dingle plots
that are nonlinear and underestimate τq. This effect becomes
significant with larger τq and lower temperature, as both
move the onset of SdH oscillations to lower magnetic field
where small density fluctuations have a larger impact. We
have developed a method to determine this small density
inhomogeneity by assuming a Gaussian distribution of 2DEG
density, and we extract the intrinsic quantum lifetime using
this method. We observe no correlation between τq and �5/2

in our density tunable devices, and we conclude that τq is not
useful for predicting the strength of the ν = 5

2 FQHS.
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