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We develop a theory of solar cell light trapping based on directly solving Maxwell’s equations through a
nonequilibrium Green’s function formalism. This theory rigorously connects the maximum power absorbed by the
solar cell to the density of states of the cell. With this theory we are able to reproduce all standard results in solar cell
light trapping previously derived using approximate formalisms. Therefore our development places solar cell light
trapping theory on a much firmer theoretical foundation. Moreover, here the maximum power formula is derived
without the assumption of reciprocity, unlike previous theories on solar cell light trapping. Therefore, we prove
that the upper bound of light trapping enhancement cannot be overcome with the use of nonreciprocal structures.
As a numerical test, we simulate an absorber structure that consists of a nonreciprocal material, and show that
the absorption enhancement factor is largely independent of nonreciprocity, in consistency with the theory.
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I. INTRODUCTION

For practical solar cell design, various techniques of light
trapping have been widely applied in order to achieve near-
complete absorption of sunlight using a cell with a thickness
that is smaller than the absorption depth of the material
[1–23]. The use of light trapping can reduce the amount of
material used in a solar cell and hence reduce the cost of solar
energy. In addition, the use of a thinner cell without sacrificing
absorption capability enhances carrier exaction and therefore
the efficiency of the solar cell [24].

The practical importance of light trapping in solar cells,
in turn, has motivated a significant body of theoretical works
aiming to understand the fundamental limits of absorption
enhancement that can be achieved with light trapping tech-
niques. Reference [1] considered the theoretical limits for
light trapping in standard crystalline silicon cells. Using an
argument combining ray optics with thermodynamics, it was
shown that compared to a single-pass absorption coefficient,
light trapping induced by a Lambertian surface roughness can
enhance the absorption by a factor of 4n2 when the single-pass
absorption is negligible, where n is the refractive index of
silicon. For cells with emission restricted to a cone with an apex
angle of θ , the enhancement factor can be further improved
to 4n2/ sin2 θ , again for a material with infinitesimal loss
[3]. The effect of more realistic material absorption on light
trapping has been considered in Ref. [25], which shows that
in general the light trapping enhancement factor goes down as
the material absorption increases. These classic papers form
the foundation of light trapping theory for solar cells and have
had substantial influence on the optical design of crystalline
silicon cells.

Since the thickness of crystalline silicon cell is typically on
the order of 50–100 microns [4], and the roughness used for
light trapping has a length scale on the order of tens of microns,
the optical properties of standard crystalline silicon cell can
be well described by the ray optics model. On the other hand,
in recent years there has been significant interest in the study
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of nanophotonic solar cells, where both the thickness of the
cell and the size of features used for light trapping purposes
are on a single-wavelength or even deep subwavelength scale
[7–12,14–16,18,20]. For these structures, ray optics theory is
no longer applicable. Therefore, in parallel there have been
substantial developments seeking to formulate light trapping
theory instead from an electromagnetic point of view [26–30].
In particular, in Refs. [28–30] a statistical coupled mode theory
formalism for light trapping in solar cells was developed.
Using this formalism, the standard results of light trapping
in crystalline silicon solar cells, as previously derived with ray
optics, could be reproduced. Moreover, it was predicted that in
the nanophotonic regime the 4n2 limit could be significantly
overcome through nanoscale modal confinement over broad
bandwidths. Related to these works, it was discussed in
Ref. [31] that the light trapping enhancement factor can be
related to the local density of electromagnetic modes.

The coupled mode theory formalism that underlies the
work of Refs. [28–30], however, is an approximate formalism.
While it is very well justified especially when considering
the coupling of external light with a structure containing only
a few modes [32–34], in a solar cell system one needs to
consider a large number of optical modes. In order to place
the theory of light trapping in nanophotonic structures on a
firmer theoretical foundation, it is therefore of fundamental
importance to formulate the problem of light trapping directly
from Maxwell’s equations.

In this paper, we develop a theory of light trapping
directly from Maxwell’s equations. For this purpose, we
adapt the nonequilibrium Green’s function (NEGF) formalism
[35,36], which has been widely used in studying transport
in nanoscale electronic systems, for Maxwell’s equations.
Our theory provides a rigorous proof of the connection of
light trapping enhancement factor to the density of states
(DOS) of the device. This connection can then be used to
reproduce the standard predictions of light trapping theory.
Moreover, as a key theoretical component, the proof here does
not use reciprocity or detailed balance. This is in contrast to
Ref. [28] where the underlying temporal coupled mode theory
formalism is derived using the assumption of reciprocity. It is
also in contrast with Ref. [1] which uses a detailed balance
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argument that is equivalent to reciprocity. Consequently, our
theory shows that introducing nonreciprocity alone does not
enhance the limit of light trapping. We validate this theoretical
prediction by a direct numerical simulation.

This paper is organized as follows: In Sec. II, we setup the
solar cell problem, discuss the statistical nature of the incident
solar radiation, and derive an expression for the absorbed
power. In Sec. III, we apply the NEGF formalism to this
setup, and derive relations regarding the density of states
of the device. In Sec. IV, we combine these formalisms to
derive the power absorbed by a near-lossless solar cell under
incident sunlight. In Sec. V, we use the formalism to reproduce
the standard results of light trapping theory. In Sec. VI, we
discuss light trapping in nonreciprocal structures, and provide a
numerical test of our theory. In Sec. VII, we extend the theory
to materials where the loss is not infinitesimal. We finally
conclude in Sec. VIII.

II. THE SOLAR CELL PROBLEM

The device under consideration in this work is a solar
cell with an arbitrary geometry. The cell surface may be
patterned with gratings [8,28] or textured [4,37] to enhance
coupling with incident radiation. Figure 1(a) depicts a typical
solar cell setup, with the orange arrow representing solar
radiation incident from a narrow angular range and the green
arrows representing a broad angular emission. A rear reflector
increases the path length of the light inside the cell. Figure 1(b)
describes a theoretically simpler problem to study, which
corresponds to a concentrated, isotropic source in the upper
half-space, and isotropic emission from the cell in the upper
half-space. Figure 1(b) is theoretically related to Fig. 1(c),
which depicts a solar cell with an isotropic emission in the
presence of an isotropic source.

The solar radiation incident on the cell can be described
by a stationary random process, such that the ensemble
average of the incident electric and magnetic fields are time
independent. Therefore, the field-field correlation for the
incident electric field EI is given by 〈EI(r,ω)E†

I (r′,ω′)〉 =
2πδ(ω − ω′)〈EI(r)E†

I (r′)〉ω, where the δ(ω − ω′) term appears
because of stationarity. In this paper, the † superscript refers to
a conjugate transpose, while the T superscript refers to only a
transpose.

Since the cell receives this stationary input field, the electric
field in the device, ED(t), is also described by a stationary
random process with a field-field correlation function:

〈ED(r,ω)E†
D(r′,ω′)〉 = 2πδ(ω − ω′)〈ED(r)E†

D(r′)〉ω. (1)

The ensemble-averaged power absorbed by the cell can then
be determined from Poynting’s theorem (Ref. [38], p. 259) in
the absence of any currents:∮

dS · 〈ED × HD〉

= −
∫

dV

〈
ED(r) · ∂DD(r)

∂t
+ HD(r) · ∂BD(r)

∂t

〉
. (2)

A nonzero value of the left-hand side would indicate a net flow
of power into the cell, i.e., absorption in the cell. We evaluate

(a)

(b)

(c)

FIG. 1. (a) A typical cell operating under solar radiation that
covers a narrow angular range (orange). The cell surfaces may be
patterned to enhance coupling with incident radiation. The emission
from the cell has a broad angular (green) response. A rear reflector is
usually placed underneath such a cell to enhance absorption. (b) The
same cell under concentrated, near-isotropic incident radiation from
the upper half-space and near-isotropic emission into the upper half-
space. (c) A setup theoretically related to (b), with a near-isotropic
incident radiation as well as emission from the cell.

the first term on the right-hand side of Eq. (2) as follows:

P = −
∫

dV

〈
ED(r) · ∂DD(r)

∂t

〉
, (3)

=
∫

dV

∫∫ ∞

−∞

dω′

2π

dω

2π
〈ED(r,ω) · iω′D∗

D(r,ω′)〉ei(ω−ω′)t ,

(4)

=
∫ ∞

−∞

∫ ∞

−∞

dω′dω

(2π )2
iω′ Tr〈ED(ω)D†

D(ω′)〉ei(ω−ω′)t , (5)
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=
∫ ∞

−∞

∫ ∞

−∞

dω′dω

(2π )2
iω′ Tr [ε†(ω′)〈ED(ω)E†

D(ω′)〉]ei(ω−ω′)t ,

(6)

=
∫ ∞

−∞

dω

2π
iω Tr [ε†(ω)〈EDE†

D〉ω], (7)

=
∫ ∞

0

dω

2π
iω Tr [(ε†(ω) − ε(ω))〈EDE†

D〉ω], (8)

=
∫ ∞

0

dω

π
ω Tr [Im ε(ω)〈EDE†

D〉ω]. (9)

Note that in Eqs. (2) and (3) the fields are the underlying
physical, time-dependent fields that are real, whereas in the
rest of the paper the fields are complex phasors.

In obtaining Eq. (5), we use ED(ω) to represent a column
vector, which, when all indices are explicitly shown, denotes
ED,m(r,ω), where m denotes the indices for the polarization.
ED(ω)D†

D(ω′) therefore represents a tensorial quantity, which
corresponds to ED,m(r,ω)D†

D,n(r′,ω′), where m and n again
denote the polarization index. For any tensorial quantity A ≡
Amn(r,r′), the trace operator Tr is defined as

TrA ≡
∑
m

∫
dV Amm(r,r). (10)

That is, the operatorA can be considered a large matrix indexed
both in polarization and position. The Tr operation is then
simply the sum of the diagonal elements of the matrix. For the
continuous position coordinate, this sum is in fact an integral
over the volume of the device. For the rest of the paper, we will
be using such vector and tensor quantities whenever we do not
explicitly exhibit the coordinate and polarization indices.

Next, we used Eq. (1) to obtain Eq. (7). To obtain Eq. (8)
we use the fact that, because the underlying fields E(r,t)
and D(r,t) are real, ε∗(−ω) = ε(ω) and E∗(−ω) = E(ω)
(Ref. [38], p. 262).

With a similar derivation, one can show that the second
term on the right-hand side of Eq. (2) is zero since we assume
the permeability to be μ0 with no imaginary part.

In order to compute the absorption of the solar cell, we need
to relate the fields inside the device, ED, to the incident solar
radiation EI. This relation is obtained from the nonequilibrium
Green’s function (NEGF) formalism in the next section.

III. NEGF FORMULATION FOR A LOSSLESS SYSTEM

Certainly, the materials used in solar cells are absorptive,
and therefore are described by a dielectric function ε(r) with a
nonzero imaginary part. However, in the understanding of light
trapping theory, the computation of the enhancement factor
when the material loss is infinitesimal plays a significant role
[1,4,28,39]. Therefore, in this paper we will start by consider-
ing the case where the material absorption is infinitesimal. The
formalism that we develop here, however, can be generalized to
treat the case where the material absorption is non-negligible,
which we will discuss in Sec. VII.

To compute the absorption enhancement factor where the
material absorption is infinitesimal, in this section we consider
the corresponding lossless system as described by the real part
εR(r) of the dielectric function ε(r), i.e., εR(r) = Re[ε(r)],

and describe the electromagnetic structure and the coupling of
externally incident waves to such a system. In the next section
we then relate the absorption properties of the system with
infinitesimal loss to such a lossless system.

Further, for simplicity, we ignore material dispersion in the
real part of the dielectric function, i.e., εR(r,ω) = εR(r). This
simplification is justified since, for light-trapping purposes,
one typically considers a frequency range near the semicon-
ductor band-edge where the variation in the real part of the
dielectric function, i.e., in εR(r,ω), is usually small. In addition,
we restrict εR(r) to be positive definite, which is applicable
for typical semiconductors. However, we note that both the
material dispersion and the negative dielectric constant cases
can be treated in a fashion similar to what we consider here
by an auxiliary field approach [40]. With this approach, one
can formulate the modal structure of a dispersive medium as
a standard eigenvalue problem where the system matrix has
no explicit frequency dependence. Therefore, the formalism
that we develop here can be generalized for systems such as
plasmonics-enhanced solar cells [11].

Consider Maxwell’s equations in the frequency domain for
a system described by εR:

∇ × E(ω) = −iωB(ω), (11)

∇ × H(ω) = iωD(ω), (12)

with the constitutive relations

B(ω) = μ0H(ω), (13)

D(ω) = ε0εRE(ω). (14)

Since εR is positive semidefinite, a positive semidefinite square
root

√
εR exists, and Eqs. (11) to (14) can be combined to form

a Hermitian eigenvalue problem [41]:

HF = [√
ε−1

R ∇ × ∇ ×
√

ε−1
R

]
F = ω2

c2
F, (15)

where F = √
εRE. To make a connection to the standard NEGF

literature, we refer to the operator H defined above as the
“Hamiltonian” of the system.

We now apply Eq. (15) to the system containing both the
cell itself and the surrounding air regions that have a uniform
ε = 1. The following derivation is based largely on Ref. [35],
starting on p. 188, and its results are summarized in Ref. [35],
p. 223. The readers are referred to Ref. [35] for a detailed
discussion of the concepts in this section, and to Ref. [42] for
a more formal treatment of NEGF.

The Hamiltonian of the system, H, can be decomposed as

H =
(
HS τ †

τ HD

)
, (16)

where HS and HD are the Hamiltonians of the surroundings
and the cell, respectively. The off-diagonal terms τ and τ † can
be numerically obtained, for example, by explicitly construct-
ing H in Eq. (15) by discretizing the spatial coordinates r.
We note that τ is in general not equal to τ †. In other words,
H might not be a symmetric matrix, and therefore we do not
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FI FSc

FD

FIG. 2. An illustration of Eq. (17). The incident field FI is
scattered in general into the scattered field FSc at the boundary, and
generates the device field FD.

assume reciprocity in this derivation. Using Eq. (16), Eq. (15)
can be rewritten as((

ω
c

)2 − HS −τ †

−τ
(

ω
c

)2 − HD

)(
FI + FSc

FD

)
= 0, (17)

where F = (FI + FSc,FD)T is an eigenvector of H. The
subscripts of F are used to distinguish components of F: FI is
the field incident from the surroundings onto the device (solar
cell), FSc is the scattered field from the device back into the
surroundings, and FD is the field in the device. Figure 2 depicts
the incident, scattered, and device fields as described here.

An expression for the field in the device FD can be obtained
by solving Eq. (17). To do this, we first note that the incident
field FI satisfies [( ω

c
)2 − HS]FI = 0. Therefore from the first

row of Eq. (17), [(ω
c

)2 − HS]FSc − τ †FD = 0, so that

FSc = GSτ
†FD, (18)

where GS = [(ω
c

)2 − HS − iη]−1, with η being an infinites-
imal positive number, is the retarded Green’s function for
the free space surrounding the device. Note that the retarded
Green’s function contains a −η here, in contrast with +η in
Ref. [35], due to the +iωt convention used here as opposed to
the −iωt convention in quantum mechanics. From the second
row of Eq. (17), [( ω

c
)2 − HD]FD − τ (FI + FSc) = 0, which

gives [(
ω

c

)2

− HD − 


]
FD = τFI, (19)

where 
 = τGSτ
† is the self-energy. Equation (19) can be

succinctly written as

FD = GDτFI, (20)

where we identify

GD =
[(

ω

c

)2

− HD − 


]−1

(21)

as the effective Green’s function for the device coupled to its
environment.

Before we provide a discussion of the density of states of
the device under consideration, we consider the density of
states of a closed system. Consider the Green’s function for a
general system with Hamiltonian H, G = [(ω

c
)2 − H − iη]−1.

From the equationHF(m) = (ω2
m/c2)F(m), we have the retarded

Green’s function

G = c2
∑
m

F(m)F(m)†

ω2 − ω2
m − iη

. (22)

The density of states is related to ImG, which from Eq. (22)
is given by

1

π
ImG = c2

∑
m

δ
(
ω2 − ω2

m

)
F(m)F(m)†

= c2
∑
m

1

2ωm

δ(ω − ωm)F(m)F(m)†

= c2
∑
m

1

2ω
δ(ω − ωm)F(m)F(m)†, (23)

which gives us the relation

A ≡
∑
m

δ(ω − ωm)F(m)F(m)† = 2ω

πc2
ImG, (24)

where, following the nomenclature of NEGF [35], A is called
the spectral function. Note that we dropped the negative
frequency solutions −ωm in the summation since we are
interested only in an integration over positive frequencies
in Eq. (9). The local density of states (LDOS) ρ(r) is given
by [43]

ρ(r) ≡
3∑

i=1

Aii(r,r)

=
∑
m

δ(ω − ωm)E(m)∗(r) · εR(r)E(m)(r). (25)

Generalizing from the discussion above for the LDOS of
a closed system, we define a spectral function specific to the
device, given by

AD = 2ω

πc2
ImGD, (26)

where GD is defined by Eq. (21). Equation (26) can be
manipulated to form a useful identity [35] using the following
relation:

ImGD = 1

2i
(GD − G†

D)

= 1

2i
GD

(
G†−1

D − G−1
D

)
G†

D

= 1

2i
GD

(
ω2

c2
− HD − 
† − ω2

c2
+ HD + 


)
G†

D

= 1

2i
GD(
 − 
†)G†

D

= GD[Im 
]G†
D

= GDτ [ImGS]τ †G†
D (27)

since 
 = τGSτ
†. Therefore,

AD = 2ω

πc2
GDτ [ImGS]τ †G†

D. (28)
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AD(r,r,ω) has the interpretation of the “accessible” density
of states. To see this, note that if 
 is zero then GD is
Hermitian, and therefore AD = 0 from Eq. (26). This notion
can be generalized: if a subset of modes do not couple with the
surroundings, then 
 for those modes is zero, and AD corre-
sponding to those modes is zero. Therefore,

∑
m Amm,D(r,r,ω)

is the local density of device modes that can couple with
the incident radiation. On the other hand, the full Green’s
function will consist of the decoupled surroundings and device
Green’s functions. Therefore, G over the device coordinates
will simply be [ω2/c2 − HD − iη]−1, and

∑
m Amm(r,r,ω)

will then be the device local density of states, regardless of
whether these states actually couple to the incident radiation.
This means that

∑
m Amm,D(r,r,ω) is in general less than or

equal to the local density of states given by
∑

m Amm(r,r,ω)
corresponding to the isolated device, i.e.,∑

m

Amm,D(r,r,ω) �
∑
m

Amm(r,r,ω). (29)

IV. ABSORPTION UNDER FULLY
CONCENTRATED SUNLIGHT

We now have a mathematical structure to connect the device
field FD to the incident field FI described through Eq. (20).
We have also established the concept of LDOS defined
through Eqs. (26) and (28) for a lossless system. As a step
forward, suppose the device has a small imaginary part of ε(r),
i.e., Im(ε)/ Re(ε) 
 1. Then the solutions FD of the corre-
sponding lossless system are sufficiently good approximations
to the solutions in the lossy device. Therefore, for small
losses, we can apply the NEGF formulation in the previous

section to Eq. (9) to compute the absorbed power:

P =
∫ ∞

0

dω

π
ω Tr [Im ε(ω)〈EDE†

D〉ω]

=
∫ ∞

0

dω

π
ω Tr

[
Im ε(ω)

√
ε−1

R 〈FDF†
D〉ω

√
ε
†−1
R

]
(using F = √

εRE)

=
∫ ∞

0

dω

π
ω Tr

[
Im ε(ω)

√
ε−1

R GDτ 〈FIF
†
I 〉τ †G†

D

√
ε−1

R

]
,

(30)

where ε
†
R = εR. Equation (30) provides the power absorbed by

the solar cell for incident solar radiation given by 〈FIF
†
I 〉.

Using Eq. (30), we can compute the power absorbed by a so-
lar cell in the presence of maximally concentrated sunlight, i.e.,
in the case of Fig. 1(c). Assuming the environment surrounding
the cell to be a blackbody of temperature T at equilibrium, we
have from the fluctuation-dissipation theorem [44]

ε0〈EIE
†
I 〉ω = sgn(ω)

2h̄ω2/c2

eh̄|ω|/kT − 1
ImGS

= π�(ω)

[
2ω

πc2
ImGS

]
, ω > 0, (31)

where GS is the free-space Green’s function that describes the
surroundings, and �(ω) = h̄ω/[eh̄ω/kT − 1]. Note that we are
interested only in ω > 0 from Eq. (30). We also note that to
describe a realistic solar spectrum, one could use a form of
�(ω) different from the one used here without affecting the
results that follow. Continuing from Eq. (30) we have

P =
∫ ∞

0

dω

π
ω Tr

[
Im ε(ω)

√
ε−1

R GDτ

(
π�(ω)

2ω

πc2
ImGS

)
τ †G†

D

√
ε−1

R

]

=
∫ ∞

0
dω ω�(ω) Tr

[√
ε−1

R Im ε(ω)
√

ε−1
R

2ω

πc2
GDτ ImGSτ

†G†
D

]
(32)

=
∫ ∞

0
dω ω�(ω) Tr

[√
ε−1

R Im ε(ω)
√

ε−1
R AD(ω)

]
, (33)

where we used Eq. (28) to obtain Eq. (33). This result also
tells us the optimal structure of the cell: from Eq. (29),
maximum power absorption occurs when all modes in the
device become “accessible” to the environment. That is,

Pmax =
∫ ∞

0
dω ω�(ω) Tr [

√
Re ε−1 Im ε(ω)

√
Re ε−1A(ω)].

(34)

The derivations leading to Eqs. (33) and (34) represent
the major results of this paper. The results provide a rigorous
derivation of the connection between the absorption under
maximum concentration to the accessible density of states
inside the device. This connection was previously argued in
Ref. [1] using the argument of detailed balance, assuming
that the cell consists of a bulk medium. This connection
was generalized in Refs. [28] and [31] for nanophotonic

geometry. Neither of these papers, however, provide a rig-
orous derivation of this connection directly from Maxwell’s
equations. Our results here therefore provide a rigorous
justification of the foundation of light trapping theory. In
the next two sections we will explore the consequence of
Eqs. (33) and (34). In Sec. V we provide a re-derivation
of the standard light trapping results, starting from these
equations.

We note that, to arrive at Eq. (34), we make no assumption of
the coupling between the free space and the device as described
by the matrix τ , other than the assumption that all modes in
the cell are accessible. Thus, Eq. (34) is equally applicable to a
solar cell that has a Lambertian surface and hence absorbs and
emits isotropically, as well as to a solar cell that has a strong
angular selectivity. We will use this observation in Sec. V when
we discuss the light trapping limit for a solar cell with a strong
angular selectivity.
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Before we discuss absorption enhancement, we would like
to make a brief comment on spatial coherence of sunlight
in the context of Eq. (31). In the formalism of fluctuational
electrodynamics, which we use to obtain Eq. (31), the current-
current correlation of the current source in the sun has the
form

〈J(r)J†(r′)〉ω = h̄ω2 coth
h̄ω

2kBT
Im ε(r,r)δ(r − r′). (35)

That is, the current source in the sun is spatially incoherent. On
the other hand, it is known that the sunlight is partially coherent
[45,46], and that coherence impacts device performance
[47,48]. We would like to point out here that our formalism,
which builds upon fluctuational electrodynamics, takes spatial
coherence into account in a systematic fashion because the
field-field correlation of Eq. (31) is proportional to ImGS,
which in general is not proportional to δ(r − r′).

We also note that the derivation of Eq. (33) makes no use
of reciprocity. Therefore, in Sec. VI we use these results to
discuss light trapping in nonreciprocal structures.

V. ABSORPTION ENHANCEMENT

Various limits on absorption enhancement have been
derived previously. The 4n2 limit in [1] was derived from
a statistical thermodynamics and ray-tracing approach. This
can be extended to a 4n2/ sin2 θ limit [3,49] for the case
of angle-selective emission from the solar cell. In addition,
Ref. [8] considers the case of light trapping with a subwave-
length grating, and concludes that at normal incidence that
enhancement factor can significantly exceed the 4n2 limit. In
this section, we briefly re-derive these limits starting from
Eq. (34).

To derive the 4n2 limit, following Ref. [1], we consider
a solar cell as described by a dielectric slab of side L and
thickness d with a uniform dielectric constant ε = n2 + i2nn′′
such that n′′/n 
 1, where n and n′′ are the real and
imaginary parts of the refractive index, respectively. The
absorption coefficient is α0 = 2 Im(ω

√
ε/c) = 2ωn′′/c. To

start we assume that the device is under a full concentration
of sun light, as shown in Fig. 1(c). To achieve light trapping
in such a solar cell, one applies random roughness with a
Lambertian profile on the surface of the solar cell, which
allows all modes in the device to be accessible. As a result
we can use Eq. (34) to compute the absorption in the cell.
For such a slab TrA = L2dn3ω2/π2c3. With ε′′/ε′ = 2n′′/n

and �(ω) = h̄ω/[exp(h̄ω/kBT ) − 1], the absorbed power in
a narrow frequency range between ω and ω + �ω is then

Pmax = h̄ω

eh̄ω/kBT − 1

2ωn′′

n

n3ω2

π2c3
�ωL2d

= 2n2α0d

[
ω2�ω

4π2c2

h̄ω

eh̄ω/kBT − 1
2L2

]
, (36)

where the quantity in the brackets is the well-known formula
for power from isotropic blackbody radiation, incident in this
case on a surface of area of 2L2. With the bracketed quantity
as the input power Pin, the maximum enhancement is

f = 1

α0d

Pmax

Pin

= 2n2. (37)

The standard result of 4n2 corresponds to the case where a
perfect rear reflector is placed with the source only incident
from the upper half-hemisphere. Because of the reflector, the
absorbed power remains the same; but the incident power is
only a half of the isotropic radiation:

f = 1

α0d

Pmax

Pin/2
= 4n2. (38)

The commonly derived limit of 4n2 corresponds to a
single incident mode on a solar cell with a Lambertian
surface. However, since a Lambertian surface results in equal
absorption from all incident modes, the absorbed power as well
as the incident power are scaled by the same factor in going
from isotropic illumination to a single incident mode. In other
words, the absorption enhancement factor remains unaffected
by the angular range of incident radiation on a solar cell with
a Lambertian surface.

The derivation above can be generalized to describe a
solar cell with strong angular selection. As an illustration, we
consider a solar cell that has equal absorption for light within
the absorption cone having an angle of incidence within a range
θ around the normal direction, and has zero absorption for inci-
dent light outside the absorption cone. In this case, assuming all
modes within the cell are accessible, under full concentration
the absorption of solar cell is described by Eq. (36). On the
other hand, since the incident light outside the absorption cone
does not contribute to the solar cell absorption, the absorption
remains unchanged if we restrict the incident radiation to only
within the absorption cone. That is, the absorption remains
unchanged even when the incident radiation is reduced to
Pin = [ω2�ω/4π2c2]�(ω) sin2 θ , which leads to the limit of
4n2/ sin2 θ .

Reference [8] considered the case where the light trapping
is accomplished by placing a grating with a subwavelength
periodicity on the surface of solar cell, and showed that in
this case the enhancement factor can significantly exceed 4n2

for normally incident light. This increased enhancement factor
arises due to angle selectivity of the grating structure in the
single-channel regime, and comes at the expense of lower
enhancement at large angles [8] since the total enhancement
integrated across all angles is constrained for any solar
cell structure [29]. This is in contrast with the scheme of
Refs. [28,50], where an enhancement factor exceeding 4n2

for all angles of incidence was achieved in a thin, low-index
absorber surrounded by high-index media. We re-derive the
result of Ref. [8] for normal incidence using the formalism
developed in Sec. IV. When the grating period is less than the
free-space wavelength, normally incident light cannot scatter
into any other directions aside from normal. Therefore, the
surrounding medium can be described as a one-dimensional
system. In using Eq. (31) to describe the incident light, one
needs to use an expression for ImGS that is appropriate for the
one-dimensional system. With this modification, the derivation
to Eq. (36) remains unchanged. That is, assuming that all
modes in the cell are accessible, the power absorbed by the cell
is

Pmax = 4n2α0d

[
ω2�ω

4π2c2

h̄ω

eh̄ω/kBT − 1
l2

]
, (39)
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where l is the periodicity of the patterning on the top surface.
On the other hand, the incident power changes from its
three-dimensional (3D) expression of l2�(ω)ω2�ω/4π2c2 to
the 1D expression of �(ω)�ω/π , where we used the fact that
the 1D density of states is �ω/πc. Therefore, the enhancement
factor in this scenario is modified from the expression in
Eq. (38) to

f = 4n2 �(ω)ω2�ω
4π2c2 l

2

�(ω)�ω
π

= 4πn2s2, (40)

where s = l/λ.

VI. LIGHT TRAPPING IN NONRECIPROCAL SYSTEMS

In the previous section we used the NEGF formalism to
reproduce the standard theoretical results for solar cell light
trapping. As noted in Sec. IV, however, our result here is in
fact more general as compared to previous theoretical work on
solar cell light trapping in that we do not make an assumption
on reciprocity. This is in contrast to previous theoretical works
in this area. For example, Ref. [1] assumes detailed balance
in order to reach a conclusion similar to Eq. (33). Detailed
balance is a consequence of reciprocity. In Ref. [28], results
similar to Eq. (33) were derived using the temporal coupled
mode theory formalism, which again assumes reciprocity. In
our work here, by re-deriving all these previous results in
Sec. V, we have in fact shown that these results are equally
applicable to a cell containing nonreciprocal materials.

The potential of using nonreciprocal materials for solar
energy conversion is a subject that is of fundamental interest.
It is known that the Landsberg limit, which represents the
upper limit of solar energy conversion, can only be reached
with the use of non-reciprocal materials [51–54]. On the other
hand, it is also known that the reciprocity between emission
and absorption can be broken with the use of magneto-optical
media, and such a reciprocity breaking can be further enhanced
with the use of nanophotonic structures [55,56]. These results
raise the question as to how breaking reciprocity affects the
light trapping limit. Since Eq. (34) is applicable for both
reciprocal and nonreciprocal cases, our results show that as
long as the accessible density of states within the solar cell is
the same, the upper limit of light trapping enhancement should
not be affected by reciprocity breaking.

We validate the theoretical results above using numerical
simulations. For the absorber we consider a slab of a nonre-
ciprocal material. The slab has a thickness of 3 micron. The
dielectric constant of such a material is in general asymmetric,
i.e., εT �= ε. As an illustration, we choose the following form
[57]:

ε =
⎛
⎝(n + iκ)2 iδ 0

−iδ (n + iκ)2 0
0 0 (n + iκ)2

⎞
⎠, (41)

where n2 = 12.5. δ characterizes the strength of the non-
reciprocity, with δ = 0 describing the reciprocal material. The
loss κ is chosen such that the absorption length α−1

0 in the
reciprocal case of δ = 0 equals [2ωκ(ω)/c]−1 = 22.5 mm over
the wavelength range of interest. For typical magneto-optical
materials, the maximum δ/n2 is typically <10−2 (see, e.g.,
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FIG. 3. (a) One unit cell of the solar cell structure considered, with
a back-reflector (yellow). The unit cell is a square with side length
l = 600 nm, which also corresponds to the periodicity of the structure.
The thickness of the bulk absorbing material (grey) is d = 3 μm. The
orange regions are nonabsorbing dielectric material. The air slots
between the orange regions have widths that are 20%, 5%, and 2% of
the period along one direction, and 20%, 5%, and 6% of the period
along the other. The thickness of the patterning region is 50 nm.
(b) Enhancement factor as a function of the strength of nonreciprocity.
The black solid curve was obtained using Eq. (34), which presents the
theoretical upper limit of enhancement. The blue curve is the result of
our numerically obtained absorption enhancement averaged over the
wavelength range of interest and over the two polarizations. The 4n2

limit is shown in red for reference. (c) and (d) Absorption spectra with
spectrally averaged absorption, i.e., f̄ (δ)α0(δ)d (red) and single-pass
absorption, i.e., α0(δ)d (blue) for δ = 0 and δ = 4 respectively.

Refs. [58,59]). In our numerical simulation, however, to
explore the effect of nonreciprocity, we consider a much wider
range δ from 0 to 4.

To achieve light trapping in such an absorbing layer, we
place a perfect electric conductor mirror at the bottom of the
layer [yellow layer, Fig. 3(a)]. On the top surface we place a
grating layer (orange), following Ref. [8]. The grating layer
consists of several rectangle-shaped dielectric regions with
dielectric constant of n2, separated by air slots. The grating
layer has a thickness of 50 nm. The periodicity l of the grating
is chosen to be 600 nm on both in-plane directions. We consider
a wavelength λ ranging from 600 to 1200 nm. The pattern of
the grating is such that there is not any mirror or rotational
symmetry within the plane. This choice of periodicity and the
use of such an asymmetric grating pattern ensure that there is
not any uncoupled mode in the slab due to either translational
symmetry or point-group symmetry considerations, in our
wavelength range of interest.

Within our wavelength range of interest the cell operates at
the single channel regime [28], where for normally incident
light in this regime there is only zeroth-order diffraction in the
air region outside the cell. For the reciprocal case of δ = 0,
the theoretical upper limit of absorption enhancement in this
wavelength range is given by Eq. (40), where s = l/λ takes
values between 0.5 and 1. Therefore, the spectrally averaged
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absorption enhancement over this wavelength range is

f̄TH = 1

ωR − ωL

∫ ωR

ωL

4πn2s2dω = 4π
7

12
n2 ≈ 91.6. (42)

Following the same derivation that leads to Eq. (40), the light
trapping enhancement factor for the nonreciprocal case can be
derived as

f̄TH(δ) = 1

ωR − ωL

∫ ωR

ωL

Pmax(ω,δ)

α0(δ)d�(ω)�ω/π
dω, (43)

as shown by the black solid curve in Fig. 3(b). Here α0(δ) is the
single-pass absorption length for normally propagating light
in the nonreciprocal material. The theoretical results show that
the light trapping enhancement factor is largely independent
of δ, in spite of the large range of δ that we have used. We note
that with our choice of a fairly sizable range of δ, the density of
states does depend on δ. This dependency, however, is largely
canceled out by the dependency of the group velocity on δ.

As a validation of the theoretical results, we perform a
numerical simulation (blue dotted curve) using S4 [60], an
electromagnetic solver for layered media based on the method
of rigorous coupled wave analysis (RCWA). We vary the
strength of nonreciprocity by changing δ between 0 and 4,
and compute for each case the enhancement

f̄ (δ) = 1

ωR − ωL

∫ ωR

ωL

a(ω)

α0(δ)d
dω, (44)

where a(ω) is the spectrum of the absorption coefficient,
averaged across polarizations. Figs. 3(c)–3(d) show such
spectra for the cases of δ = 0 and δ = 4 respectively. The red
curve in Fig. 3(b) serves as a reference level corresponding to
the 4n2 enhancement of the single-pass absorption. We note
that, in consistency with the theoretical results, the simulated
enhancement f̄ varies only slightly for a large variation in the
nonreciprocity δ. The simulation supports our claim based on
Eq. (34) that the maximum possible enhancement is set by
the DOS of the material, and is unaffected by the breaking of
reciprocity. The simulated enhancement f̄ in all cases remains
below the theoretical upper limit f̄TH, because at the chosen
absorption length some modes are not in the overcoupling
regime, where the external coupling is much greater than the
intrinsic loss rate [8]. In the formalism developed here, this
means that the accessible density of states AD is smaller than
the density of states A of the isolated cell.

VII. NON-NEGLIGIBLE LOSS

In this section, we extend the discussion of the NEGF
formulation to solar cells whose loss is not infinitesimal. The

wave equation upon combining Eqs. (11)–(14) is

∇ × ∇ × E(ω) = ω2

c2
ε(ω)E(ω). (45)

A non-Hermitian ε(r,ω) can in principle have many square
roots

√
ε(r,ω); however, any choice of the square root will

mathematically give the same power absorption, since Eq. (9)
depends only on ε(r,ω) and E(r,ω). Further, we neglect
material dispersion again by considering a narrow frequency
range.

Choosing one such square root
√

ε(r), we have

HF ≡ [
√

ε−1∇ × ∇ ×
√

ε−1]F = ω2

c2
F, (46)

where the ‘Hamiltonian’ H is no longer Hermitian. H can still
be decomposed in a manner similar to Eq. (16) as

H =
(
HS τ1

τ2 HD

)
. (47)

The cross-terms τ1 and τ2 correspond to the cell bound-
aries, and we make a simplifying assumption that the non-
Hermiticity arising from Eq. (46) is captured purely in
the bulk of the cell, i.e., τ2 = τ

†
1 = τ but H†

D �= HD. The
Hamiltonian for the environment,HS, remains Hermitian since
it is unaffected by the dielectric function of the cell ε(r).

The relations given by Eqs. (19)–(21) continue to hold for
the non-Hermitian HD. By defining the spectral function AD

as in Eq. (26), we observe a departure from Eq. (27):

ImGD = GD − G†
D

2i

= GD
G†−1

D − G−1
D

2i
G†

D

= GD[Im 
]G†
D + GD[ImHD]G†

D

= GDτ [ImGS]τ †G†
D + GD[ImHD]G†

D, (48)

where the first term on the right-hand side is the same as
Eq. (27). The second term corresponds to material loss. In
the limit of the lossless system, we see that Eq. (48) reduces
to Eq. (27) as ImHD → 0. Inserting this relation, rearranged
as GDτ [ImGS]τ †G†

D = ImGD − GD[ImHD]G†
D, in Eq. (32),

we get

P =
∫ ∞

0
dω ω�(ω) Tr

[
(
√

ε†)−1 Im ε(ω)
√

ε−1
2ω

πc2
GDτ ImGSτ

†G†
D

]

=
∫ ∞

0
dω ω�(ω) Tr

[
(
√

ε†)−1 Im ε(ω)
√

ε−1
2ω

πc2
ImGD

]
−

∫ ∞

0
dω ω�(ω) Tr

[
(
√

ε†)−1 Im ε(ω)
√

ε−1
2ω

πc2
GD[ImHD]G†

D

]

=
∫ ∞

0
dω ω�(ω) Tr

[
(
√

ε†)−1 Im ε(ω)
√

ε−1AD

]
−

∫ ∞

0
dω ω�(ω) Tr

[
(
√

ε†)−1 Im ε(ω)
√

ε−1
2ω

πc2
GD[ImHD]G†

D

]
, (49)
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where AD ≡ (2ω/πc2) ImGD as before. The result here
indicates that, due to the second term on the right, the
enhancement factor decreases as the material absorption
strength increases, in consistency with the derivation [30] from
statistical-temporal coupled mode theory.

VIII. CONCLUSION

In this paper, we derived a theory of light trapping in solar
cells based on the nonequilibrium Green’s function formalism
applied to Maxwell’s equations. The theory provides a rigorous
connection between light trapping and the accessible density
of states of the cell, in the form of an upper bound on the
power absorbed by the cell. The derived upper bound was
used to obtain the standard light trapping results involving
Lambertian cells or periodic patternings. Further, since the
theory was derived without the assumption of reciprocity, the

upper bound on absorption was applicable to nonreciprocal
cells, showing that the standard light trapping enhancement
cannot be overcome by breaking reciprocity alone. This result
was numerically tested and verified on a slab-like cell with
periodic patterning, where it was seen that the enhancement
was largely independent of nonreciprocity for wide range of
parameters. Our results here provide a rigorous theoretical
foundation for the light trapping of solar cells. In addition,
the development points to the potential significance of the
nonequilibrium Green’s function (NEGF) formalism in the
treatment of solar and thermal radiation problems.
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