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Exciton-phonon interaction breaking all antiunitary symmetries in external magnetic fields
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Recent experimental investigations by M. Aßmann et al. [Nat. Mater. 15, 741 (2016)] on the spectrum of
magnetoexcitons in cuprous oxide revealed the statistics of a Gaussian unitary ensemble (GUE). The model
of F. Schweiner et al. [Phys. Rev. Lett. 118, 046401 (2017)], which includes the complete cubic valence band
structure of the solid, can explain the appearance of GUE statistics if the magnetic field is not oriented in one
of the symmetry planes of the cubic lattice. However, it cannot explain the experimental observation of GUE
statistics for all orientations of the field. In this paper we investigate the effect of quasiparticle interactions or
especially the exciton-phonon interaction on the level statistics of magnetoexcitons and show that the motional
Stark field induced by the exciton-phonon interaction leads to the occurrence of GUE statistics for arbitrary
orientations of the magnetic field in agreement with experimental observations. Importantly, the breaking of all
antiunitary symmetries can be explained only by considering both the exciton-phonon interaction and the cubic
crystal lattice.
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I. INTRODUCTION

Excitons are fundamental quasiparticles in semiconductors,
which are the elementary excitations of the electronic system.
Consisting of a negatively charged electron in the conduction
band and a positively charge hole in the valence band, which
interact via a screened Coulomb interaction, excitons are
often regarded as the hydrogen analog of the solid state.
Especially excitons in cuprous oxide (Cu2O) are of interest due
to their high Rydberg energy. Only three years ago an almost
perfect hydrogenlike absorption series has been observed in
Cu2O up to a principal quantum number of n = 25 by T.
Kazimierczuk et al. [1]. This experiment has opened the field
of research of giant Rydberg excitons and has stimulated a
large number of experimental and theoretical investigations
[2–15], in particular as concerns the level statistics and
symmetry-breaking effects [16–19].

If symmetries are broken, the classical dynamics of a system
often becomes nonintegrable and chaotic. However, since the
description of chaos by trajectories and Lyapunov exponents is
not possible in quantum mechanics, classical chaos manifests
itself in quantum mechanics in a different way [20,21].
The Bohigas-Giannoni-Schmit conjecture [22] suggests that
quantum systems with few degrees of freedom and with a
chaotic classical limit can be described by random matrix
theory [23,24] and show typical level spacings. If the classical
dynamics is regular, the level spacing obeys Poissonian
statistics. At the transition to chaos, the level spacing statistics
changes to the statistics of a Gaussian orthogonal ensemble
(GOE), a Gaussian unitary ensemble (GUE), or a Gaussian
symplectic ensemble (GSE) as symmetry reduction leads to
a correlation of levels and hence to a strong suppression of
crossings [20]. To which of the three universality classes, i.e.,
to the orthogonal, the unitary, or the symplectic universality
class, a given system belongs is determined by the remaining
symmetries in the system. While GOE statistics appear if
there is at least one remaining antiunitary symmetry in the
system, for GUE statistics all antiunitary symmetries have to
be broken. GSE statistics can be observed for systems with
time-reversal invariance possessing Kramer’s degeneracy but
no geometric symmetry at all [20].

The hydrogenlike model of excitons is often too simple to
account for the large number of effects due to the surrounding
solid. Some essential corrections to this model comprise, e.g.,
the inclusion of the complete cubic valence band structure
[5,7,25–30], which leads to a complicated fine-structure
splitting, or the interaction with quasiparticles like phonons
[2,31–33].

An important experimental observation by M. Aßmann
et al. [16,17], which cannot be explained by the hydrogenlike
model, is the appearance of GUE statistics for excitons in
an external magnetic field in Cu2O. This observation implies
that all antiunitary symmetries are broken in the system.
However, for most of the physical systems still there is at
least one antiunitary symmetry left [34–43]. This also holds
for atoms in constant external fields [44–46]. Hence, based
on the hydrogenlike model one would expect to observe the
statistics of a Gaussian orthogonal ensemble (GOE).

As an explanation, M. Aßmann et al. [16,17] attributed
the breaking of all antiunitary symmetries observed for
magnetoexcitons to the interaction of excitons with phonons.
In a recent letter we have shown theoretically that the combined
presence of an external magnetic field and the cubic valence
band structure of Cu2O is sufficient to break all antiunitary
symmetries in the system without the need for phonons [18].
However, this breaking appears only if the magnetic field is
not oriented in one of the symmetry planes of the cubic lattice
of Cu2O. Hence, our model cannot explain the fact that GUE
statistics has been observed in the experiment for all directions
of the magnetic field [16,17]. This raises again the question
about the influence of the exciton-phonon interaction on the
level spacing statistics of the exciton spectra.

In this paper we will discuss in detail the effects which
leads to the appearance of GUE statistics whether or not the
external fields are oriented in one of the symmetry planes of
the cubic lattice. For fields oriented in a symmetry plane of the
lattice, we explain that the interaction of the exciton with other
quasiparticles like phonons is not able to restore the broken
antiunitary symmetries. As regards the other orientations of the
external fields, we discuss that the exciton-phonon interaction
leads to a finite momentum of the exciton center of mass and
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thus to the appearance of a magneto Stark effect in an external
magnetic. The electric field connected to this effect then
causes in combination with the cubic lattice the breaking of all
antiunitary symmetries. Hence, we explain the appearance of
GUE statistics for all orientations of the external fields.

The paper is organized as follows: In Sec. II A we discuss
the Hamiltonian of excitons in Cu2O when considering the
complete valence band structure and the presence of external
fields. We explain how to solve the corresponding Schrödinger
equation numerically by using a complete basis in Sec. II B.
The calculation of the level spacing distributions is shortly
presented in Sec. II C. We then show the breaking of all
antiunitary symmetries in external fields. At first, we treat the
case with the plane spanned by the external fields not being
identical to one symmetry plane of the lattice in Sec. III. In
Sec. IV we discuss the effect of the exciton-phonon interaction
and, hence, the motional Stark field, on the spectra if the
external fields are oriented in one of the symmetry planes
of the lattice. We finally give a short summary and outlook in
Sec. V.

II. THEORY

In this section we briefly introduce the Hamiltonian of
excitons in Cu2O and show how to solve the corresponding
Schrödinger equation in a complete basis. Furthermore, we
discuss how to determine the level spacing statistics of
the exciton spectra numerically and to which level spacing
distribution functions the results will be compared. For more
details see Refs. [2,7,8,19,47] and further references therein.

A. Hamiltonian

When neglecting external fields, the Hamiltonian of exci-
tons in direct semiconductors is given by [28]

H = Eg + V (re − rh) + He( pe) + Hh( ph) (1)

with the energy Eg of the band gap between the lowest
conduction band and the highest valence band. The Coulomb
interaction between the electron (e) and the hole (h) is screened
by the dielectric constant ε:

V (re − rh) = − e2

4πε0ε

1

|re − rh| . (2)

Since the conduction band is close to parabolic at zone
center, the kinetic energy of the electron is given by the simple
expression

He( pe) = p2
e

2me
, (3)

with the effective mass me of the electron. As regards the
valence bands, the situation is more complicated. In all crystals
with zinc-blende and diamond structure the valence band is
threefold degenerate at the center of the first Brillouin zone
or the � point [28,48]. Due to the spin-orbit coupling [49,50],
the degeneracy is lifted in Cu2O and two of the three valence
bands are shifted towards lower energies [51]. This is shown in
Fig. 1. The competition between the dispersion of the threefold
degenerate orbital valence band with the spin-orbit splitting is
responsible for a strong nonparabolicity of the valence bands.

FIG. 1. Band structure of Cu2O [1]. As a consequence of the
spin-orbit coupling (8) the valence band splits into a lower lying
fourfold-degenerate band (including the hole spin) of symmetry �+

8

of and a higher lying twofold-degenerate band of symmetry �+
7 . The

lowest lying conduction band of Cu2O has �+
6 symmetry. Depending

on the bands involved, one distinguishes between the yellow, green,
blue, and violet exciton series. Due to the cubic symmetry of Cu2O,
the symmetry of the bands can be assigned by the irreducible
representations �±

i of the cubic group Oh, where the superscript
± denotes the parity.

The kinetic energy of a hole within these valence bands is
given by [6,7,30]

Hh( ph) = Hso + (1/2h̄2m0){h̄2(γ1 + 4γ2) p2
h

+ 2(η1 + 2η2) p2
h(I · Sh)

− 6γ2
(
p2

h1 I2
1 + c.p.

) − 12η2
(
p2

h1 I1 Sh1 + c.p.
)

− 12γ3({ph1,ph2}{I1,I2} + c.p.)

− 12η3({ph1,ph2}(I1 Sh2 + I2 Sh1) + c.p.)} (4)

with p = (p1, p2, p3), {a,b} = 1
2 (ab + ba), and c.p. denoting

cyclic permutation. The three Luttinger parameters γi as well
as the parameters ηi describe the behavior and the anisotropic
effective mass of the hole in the vicinity of the � point. Note
that the parameters ηi are often much smaller than the Luttinger
parameters and are neglected in the following [6,7,25]. We
have recently shown that the inclusion of quartic and higher-
order terms in p in the kinetic energies of the electron and the
hole is not necessary due to their negligible size [14].

The quasispin I = 1 describes the threefold degenerate
valence band and is a convenient abstraction to denote the three
orbital Bloch functions xy, yz, and zx [52]. The matrices I j

and Shj denote the three spin matrices of the quasispin I and
the hole spin Sh = 1/2 while I and Sh are vectors containing
these matrices. Hence, the scalar product of these vectors is
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given by

I · Sh =
3∑

j=1

I j Shj . (5)

The components of the matrices I i read [7,52]

Ii, jk = −ih̄εijk (6)

with the Levi-Civita symbol εijk .
We have to note that the matrices I i of the quasispin I = 1

given by Eq. (6) are not the standard spin matrices Si of spin
one [53]. However, a unitary transformation can be found
so that U † I iU = Si holds. The corresponding transformation
matrix reads

U = 1√
2

⎛
⎝−1 0 1

−i 0 −i

0
√

2 0

⎞
⎠. (7)

Since in Ref. [53] the behavior of the standard spin matrices
under symmetry operations such as time reversal and reflec-
tions are given, we will use the standard spin matrices in the
following but denote them also by I i .

The spin-orbit coupling Hso in Eq. (4) is given by [52,54]

Hso = 2

3
�

(
1 + 1

h̄2 I · Sh

)
(8)

with the spin-orbit coupling constant �. This coupling
can be diagonalized by introducing the effective hole spin
J = I + Sh. We choose the form of the spin-orbit coupling
so that the energy of the valence band with J = 1/2 remains
unchanged while the two valence bands with J = 3/2 are
shifted by an amount of � towards lower energies. Note that
we neglect the central-cell corrections treated in Ref. [14] in
the Hamiltonian as they do not affect the exciton states of
high energy considered here.

The expression for Hh( ph) can be written in terms of
irreducible tensors (see, e.g., Refs. [7,8,27,55]):

Hh( ph) = Hso + γ1

2m0
p2

h + γ ′
1

2h̄2m0

[
−μ′

3
P

(2)
h · I (2)

+ δ′

3

( ∑
k=±4

[
P

(2)
h ×I (2)](4)

k
+

√
70

5

[
P

(2)
h ×I (2)](4)

0

)]
.

(9)

In this case one can clearly distinguish between the terms
having spherical symmetry and the terms having cubic sym-
metry. While the first three terms have spherical symmetry,
the last part with the coefficient δ′ has cubic symmetry. The
coefficients μ′ and δ′ are given in terms of the three Luttinger
parameters as μ′ = (6γ3 + 4γ2)/5γ ′

1 and δ′ = (γ3 − γ2)/γ ′
1

with γ ′
1 = γ1 + m0/me [7,27,54].

When applying external fields, the corresponding
Hamiltonian is obtained via the minimal substitution. We
additionally introduce relative and center of mass coordinates
[56–58]. Hence, we replace the coordinates and momenta of
electron and hole with

re = R + (mh/M)r, (10a)

rh = R − (me/M)r, (10b)

TABLE I. Material parameters of Cu2O.

band gap energy Eg = 2.17208 eV [1]
electron mass me = 0.99 m0 [65]
dielectric constant ε = 7.5 [66]
spin-orbit coupling � = 0.131 eV [6]
Luttinger parameters γ1 = 1.76 [6,7]

γ2 = 0.7532 [6,7]
γ3 = −0.3668 [6,7]
κ = −0.5 [8]

g factor of cond. band gc = 2.1 [67]

pe = (me/M)P + p + eA(r), (10c)

ph = (mh/M)P − p + eA(r), (10d)

where M = me + mh = me + m0/γ1 denotes the yellow ex-
citon mass. Then the Hamiltonian of the exciton reads
[56,58–63]

Hexc = Eg + V (r) + e
(r) + HB

+He((me/M)P + p + eA(r))

+Hh((mh/M)P − p + eA(r)). (11)

We use the vector potential A = (B × r)/2 of a constant
magnetic field B and the electrostatic potential 
(r) = −F · r
of a constant electric field F.

Since the Hamiltonian depends only on the relative coor-
dinate r , the generalized momentum of the center of mass
is a good quantum number, i.e., [P,Hexc] = 0, and one
can generally set P = h̄K [29,57,64]. When neglecting the
exciton-phonon interaction, one can especially assume K ≈ 0,
as the wave vector of photons, by which the excitons are
created, is very close to the origin of the Brillouin zone [62].

The additional term HB in Eq. (11) describes the energy of
the spins in the magnetic field [30,52,60,63]:

HB = μB[gc Se + (3κ + gs/2)I − gs Sh] · B/h̄. (12)

Here μB denotes the Bohr magneton, gs ≈ 2 the g factor of
the hole spin Sh, gc the g factor of the conduction band or
the electron spin Se, and κ the fourth Luttinger parameter. All
relevant material parameters of Cu2O are listed in Table I.

As we will show in Sec. III, the symmetry breaking in the
system depends on the orientation of the fields with respect to
the crystal lattice. We will denote the orientation of B and F
in spherical coordinates via

B(ϕ, ϑ) = B

⎛
⎝cos ϕ sin ϑ,

sin ϕ sin ϑ

cos ϑ

⎞
⎠ (13)

and similar for F in what follows.
Before we solve the Schrödinger equation corresponding

to the Hamiltonian (11), we rotate the coordinate system to
make the quantization axis coincide with the direction of
the magnetic field (see Appendix A) and then express the
Hamiltonian (11) in terms of irreducible tensors [27,55,63].
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B. Complete basis

For our numerical investigations, we calculate a matrix
representation of the Schrödinger equation corresponding to
the Hamiltonian Hexc of Eq. (11) using a complete basis. As
regards the angular momentum part of the basis, we have to
consider that the spin orbit coupling Hso couples the quasispin
I and the hole spin Sh to the effective hole spin J = I + Sh.
The remaining parts of the kinetic energy of the hole couple
the effective hole spin J and the angular momentum L of the
exciton to the effective angular momentum F = L + J . The
electron spin Se or its z component MSe is a good quantum
number. For the radial part of the exciton wave function we
use the Coulomb-Sturmian functions of Ref. [68]

UNL(r) = NNL(2ρ)Le−ρL2L+1
N (2ρ) (14)

with ρ = r/α, a normalization factor NNL, the associated
Laguerre polynomials Lm

n (x), and an arbitrary scaling parame-
ter α. Note that we use the radial quantum number N , which is
related to the principal quantum number n via n = N + L + 1.
Finally, we make the following ansatz for the exciton wave
function

|�〉 =
∑

NLJFMF

cNLJFMF
|�〉|Se,MSe〉, (15a)

|�〉 = |N,L; (I, Sh) J ; F,MF 〉 (15b)

with complex coefficients c. The parenthesis and semicolons
in Eq. (15b) shall illustrate the coupling scheme of the spins
and the angular momenta.

Inserting the ansatz (15) in the Schrödinger equation H� =
E� and multiplying from the left with another basis state 〈�′|
yields a matrix representation of the Schrödinger equation of
the form [18]

Dc = EMc. (16)

The vector c contains the coefficients of the expansion (15).
Since the functions UNL(r) actually depend on the coordinate
ρ = r/α, we substitute r → ρα in the Hamiltonian (11) and
multiply the corresponding Schrödinger equation by α2. All
matrix elements which enter the Hermitian matrices D and
M can be calculated similarly to the matrix elements given in
Refs. [7,8]. The generalized eigenvalue problem (16) is finally
solved using an appropriate LAPACK routine [69].

Since in numerical calculations the basis cannot be in-
finitely large, the values of the quantum numbers are chosen in
the following way: For each value of n = N + L + 1 � nmax

we use

L = 0, . . . , n − 1,

J = 1/2, 3/2,

F = |L − J |, . . . , min (L + J, Fmax), (17)

MF = −F, . . . , F.

The values Fmax and nmax are chosen appropriately large so
that as many eigenvalues as possible converge. Additionally,
we can use the scaling parameter α to enhance convergence
[68]. However, it should be noted that the value of α does not
influence the theoretical results for the exciton energies in any

way, i.e., the converged results do not depend on the value of
α.

C. Level spacing distributions

Having solved the generalized eigenvalue problem (16) the
level statistics of the exciton spectra can be determined. Before
analyzing the nearest-neighbor spacings, we have to unfold the
spectra to obtain a constant mean spacing [19,20,22,35,46].
The unfolding procedure separates the average behavior of
the nonuniversal spectral density from universal spectral
fluctuations and yields a spectrum in which the mean level
spacing is equal to unity [47]. We leave out a certain number
of low-lying sparse levels to remove individual but nontypical
fluctuations [46].

Since the external fields break all symmetries in the system
and limit the convergence of the solutions of the generalized
eigenvalue problem with high energies [7], the number of level
spacings analyzed here is comparatively small. In this case, the
cumulative distribution function [70]

F (s) =
∫ s

0
P (x) dx (18)

is often more meaningful than histograms of the level spacing
probability distribution function P (s).

We will compare our results with the distribution functions
known from random matrix theory [16,22]: the Poissonian
distribution

PP(s) = e−s (19)

for noninteracting energy levels, the Wigner distribution

PGOE(s) = π

2
se−πs2/4, (20)

and the distribution

PGUE(s) = 32

π2
s2e−4s2/π (21)

for systems without any antiunitary symmetry. Note that the
most characteristic feature of GOE or GUE statistics is the
linear or quadratic level repulsion for small s, respectively.

In Ref. [47] also analytical expressions for the spacing
distribution functions in the transition region between the
different statistics have been derived using random matrix
theory for 2 × 2 matrices. As in our case only the transition
from GOE to GUE statistics will be important, we only give
the analytical formula for this transition:

PGOE→GUE(s; λ) = Cse−D2s2
erf

(
Ds

λ

)
(22a)

with

D(λ) =
√

1 + λ2

√
π

(
λ

1 + λ2
+ arccot(λ)

)
, (22b)

C(λ) = 2
√

1 + λ2D(λ)2. (22c)

For the special cases of λ → 0 or λ → ∞ GOE or
GUE statistics is obtained, respectively. However, already for
λ � 0.8 the transition to GUE statistics is almost completed
[47]. As in Ref. [47], we calculate the distribution functions
for λ = 0.01 × 1000(k−1)/999 with k = 1, . . . ,1000 and then
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numerically integrate the results to obtain the corresponding
cumulative distribution functions FGOE→GUE(s; λ).

III. FIELDS NOT ORIENTED IN SYMMETRY PLANE OF
THE LATTICE

In a previous paper [18] we have shown analytically that
the last remaining antiunitary symmetry known from the
hydrogen atom in external fields is broken for the exciton
Hamiltonian (11) if the plane spanned by the external fields is
not identical to one of the symmetry planes of the solid. Here
we discuss this symmetry breaking in more detail and also
explain that the presence of quasiparticle interactions will not
restore the broken symmetries.

In the special case of γ2 = γ3 = 0, the exciton Hamiltonian
(11) is of the same form as the Hamiltonian of a hydrogen
atom in external fields. It is well known that this Hamiltonian
is invariant under the combined symmetry of time inversion
K followed by a reflection Sn̂ at the specific plane spanned by
both fields [20]. This plane is given by the normal vector

n̂ = (B × F)/|B × F| (23)

or n̂ ⊥ B̂ = B/B if F = 0 holds. Due to this antiunitary
symmetry, the hydrogenlike system shows GOE statistics in
the chaotic regime [46,71]. However, we have to note that
this is the last remaining antiunitary symmetry when applying
external fields.

Since the hydrogen atom is spherically symmetric in the
field-free case, it makes no difference whether the magnetic
field is oriented in the z direction or not. However, in a
semiconductor with δ′ 
= 0 the exciton Hamiltonian has cubic
symmetry and the orientation of the external fields with respect
to the crystal axis of the lattice becomes important. Any
rotation of the coordinate system with the aim of making
the z axis coincide with the direction of the magnetic field
will also rotate the cubic crystal lattice. Hence, the antiunitary
symmetry mentioned above is only present if the plane spanned
by both fields is identical to one of the nine symmetry planes
of the cubic lattice since then the reflection Sn̂ transforms the
lattice into itself. However, if none of the normal vectors n̂i

of these nine symmetry planes (cf. Appendix B) is parallel to
the direction n̂ given in Eq. (23), or, in the case of F = 0, if
none of these vectors is perpendicular to B̂ = B/B, the last
antiunitary symmetry is broken. In these cases the commutator
of the exciton Hamiltonian (11) with the operator KSn̂ does
not vanish as we will show in the following.

Under time inversion K and reflections Sn̂ at a plane
perpendicular to a normal vector n̂ the vectors of position
r , momentum p, and spin S transform according to [53]

K rK† = r, (24a)

K pK† = − p, (24b)

K SK† = −S, (24c)

and

Sn̂ rS†
n̂ = r − 2n̂(n̂ · r), (25a)

Sn̂ pS
†
n̂ = p − 2n̂(n̂ · p), (25b)

Sn̂ SS
†
n̂ = −S + 2n̂(n̂ · S). (25c)

For all orientations of the external fields the hydrogenlike
part of the Hamiltonian (11) is invariant under KSn̂ with n̂
given by Eq. (23). However, other parts of the Hamiltonian
such as Hc = (p2

1 I2
1 + c.p.) are not invariant if the fields are

not oriented in one symmetry plane of the lattice. For example,
for the case with B(0, 0) and F(π/6, π/2), we obtain

Sn̂KHcK
†S†

n̂ − Hc

= 1/8
[
2
√

3
(
I2

2 − I2
1

)
p1p2

+ 3
(
I2

1p
2
2 + I2

2p
2
1

) − 3
(
I2

1p
2
1 + I2

2p
2
2

)
+{I1,I2}

(
2
√

3
(
p2

2 − p2
1

) + 12p1p2
)] 
= 0 (26)

with n̂ = (−1/2,
√

3/2, 0)
T
. Note that even though Hc does

not depend on the external fields, the normal vector n̂ is
determined by these fields via Eq. (23). Otherwise, the
hydrogenlike part of the Hamiltonian would not be invariant
under KSn̂.

Since the expression in Eq. (26) is not equal to zero, we
have shown for B(0, 0) and F(π/6, π/2) that the generalized
time-reversal symmetry of the hydrogen atom is broken for
excitons due to the cubic symmetry of the semiconductor. The
same calculation can also be performed for other orientations
of the external fields. As we have stated above, the antiunitary
symmetry remains unbroken only for those specific orienta-
tions of the fields, where n̂ given by Eq. (23) is parallel to one
of the normal vectors in Eq. (B1).

In the previous treatment we have neglected quasiparticle
interactions like the exciton-phonon interaction. Hence, one
may ask whether these interactions are able to restore the
broken symmetries.

It is well known that when adding an additional interaction
to a Hamiltonian, this interaction will often further reduce
the symmetry of the problem and not increase it. Indeed,
it is not possible that the effects of the band structure and
quasiparticle interactions on the symmetry or the level spacing
statistics will cancel each other out, in particular for all values
of the external field strengths. The quasiparticle interaction
would have to have the same form as the operators in our
Hamiltonian to make the commutator of the Hamiltonian
and the symmetry operator KSn̂ vanish. However, if we,
e.g., consider the interaction between excitons and phonons,
the interaction operators [49] look quite different than the
operators in the exciton Hamiltonian (11). Hence, phonons
or other interactions in the solid do not restore the broken
antiunitary symmetries if the external fields are not oriented in
one symmetry plane of the solid.

IV. FIELDS ORIENTED IN SYMMETRY PLANE
OF THE LATTICE

In this section we discuss the case that the plane spanned
by the external fields coincides with a symmetry plane
of the lattice. Without the exciton-phonon interaction one
would expect to observe only GOE statistics according to the
explanations given in Sec. III. However, recent experiments
indicate that the spectrum of magnetoexcitons reveals GUE
statistics for all orientations of the magnetic field applied
[16,17]. Hence, we will now concentrate on the effects of the
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exciton-phonon interaction in more detail and show that they
lead, in combination with the cubic valence band structure,
to a breaking of all antiunitary symmetries for an arbitrary
orientation of the external fields.

The Hamiltonian describing the exciton-phonon interaction
[49] does not only depend on the relative coordinate r but
also on the coordinate of the center of mass R. Hence,
when considering the Hamiltonian of excitons and photons
the momentum of the center of mass P is not a good
quantum number, i.e., the Hamiltonian and the operator P no
longer commute. Consequently, we are not allowed to set the
momentum of the center of mass to zero, as has been done in the
calculation of Sec. III, but have to treat the complete problem.
However, the consideration of the valence band structure, a
finite momentum of the center of mass, the external fields, and
the phonons is very complicated. Hence, we concentrate only
on the main effects to show that the exciton-phonon interaction
will lead to a breaking of all antiunitary symmetries even if the
plane spanned by the external fields is identical to a symmetry
plane of the lattice.

When considering a finite momentum P = h̄K of the
exciton center of mass in an external magnetic field, the
motional Stark effect occurs [57]. Since the insertion of a finite
momentum of the center of mass in the complete Hamiltonian
(11) is quite laborious (cf. Ref. [15]), we treat only the leading
term of the motional Stark effect, which has the form [57]

Hms = h̄e

M
(K × B) · r (27)

with the isotropic exciton mass M = me + mh = me + m0/γ1.
Note that this term has the same form as the electric field term
in the Hamiltonian (11). Hence, the effect of the motional Stark
effect is the same as that of an external electric field, and we
can introduce a total electric field

Ftot = F + Fms = F − h̄

M
(K × B). (28)

One could now, in principle, do the same calculation as in
Eq. (26) to show that the antiunitary symmetry known from
the hydrogen atom is broken if the plane spanned by B and Ftot

is not identical to one symmetry plane of the solid. However,
we have to consider the specific properties, i.e., the size and
the orientation, of the motional stark field Fms related to the
size and the orientation of K .

The size of the momentum h̄K is determined by the inter-
action between excitons and phonons. Instead of considering
the huge number of phonon degrees of freedom, we assume
a thermal distribution at a finite temperature T . The direction
of K is then evenly distributed over the solid angle and its
average size is determined by

3

2
kBT = h̄2K2

2M
(29)

with the Boltzmann constant kB. We assume for all of our
calculations a temperature of T = 0.8 K, which is even slightly
smaller than the temperature in experiments [1]. The relation
(29) leads to a field strength of

Fms =
√

3kBT

M
B. (30)

Note that the value of K determined by Eq. (29) is of the same
order of magnitude as the value estimated via experimental
group velocity measurements of the 1S orthoexciton [72,73].

We will now show that the motional Stark field Fms leads
to GUE statistics if the external magnetic field B is oriented in
one of the symmetry planes of the lattice. In the general case,
the magnetic field then fulfils B ⊥ n̂i with one of the nine
normal vectors n̂i given in Eq. (B1). In our numerical example
we choose the magnetic field

B = B(ϕ = 0, ϑ = π/6) = B

2

⎛
⎝ 1

0√
3

⎞
⎠ ⊥ n̂2 (31)

with a constant field strength of B = 3 T. The external electric
field is set to F = 0. The motional Stark field is oriented
perpendicular to B. Hence, we assume it for arbitrary angles
ϕms to be oriented perpendicular to the magnetic field and for
ϕms = 0 to be lying in the same symmetry plane y = 0 of the
lattice. Then Fms is deflected from this plane, i.e., the field is
rotated by an angle ϕms about the axis given by the magnetic
field of Eq. (31):

Fms(ϕms) = Fms

2

⎛
⎝

√
3 cos ϕms

2 sin ϕms

− cos ϕms

⎞
⎠. (32)

Here Fms is given by Eq. (30) with B = 3 T and T = 0.8 K.
According to the explanations given in Sec. III, we expect to
obtain GOE statistics with our numerical results only for the
cases ϕms = 0 and ϕms = π , since

n̂ = (B × F)/|B × F| = 1

2

⎛
⎝−√

3 sin ϕms

2 cos ϕms

sin ϕms

⎞
⎠ (33)

is parallel to n̂2 only for these two values of ϕms. The decisive
question is how fast the transition from GOE to GUE statistics
takes place if the field Fms is deflected from the symmetry
plane y = 0. This is shown in Fig. 2.

As we have already stated in Ref. [18] and Sec. II C, the
number of eigenvalues which can be used for a statistical
analysis is limited due to the required computer memory or
the limited size of our basis. Therefore, to enhance the number
of converged states, we used for the calculation of Fig. 2 the
simplified model of Ref. [18] with � = HB = 0, me = m0,
γ1 = 2, and δ′ = −0.15. However, we expect a qualitatively
similar behavior for Cu2O, i.e., when considering � 
= 0, as
we will discuss and show below.

For a quantitative analysis the results are fitted with
the function FGOE→GUE(s; λ) [cf. Eq. (22)] describing the
transition between both statistics. We show the resulting values
of the fit parameter λ in Fig. 3. It can be seen that the parameter
λ increases very rapidly with increasing values of ϕms. Already
for ϕms = 5◦ the statistics is almost purely GUE statistics.
Hence, the motional Stark field has a strong influence on the
level spacing statistics. This implies that for a majority of the
orientations of Fms GUE statistics will be observable. Our
main argument for the observed level statistics is now that
since the momentum K and hence also the field Fms is evenly
distributed over the angle ϕms, the exciton spectrum will show
GUE statistics on average.
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0.0

0.1
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λ = 0.407
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λ = 1.691

F
(s
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G
O

E
(s

)

-0.1

0.0

0.1
ϕms = 1°
λ = 0.010

ϕms = 4°
λ = 0.629

ϕms = 7°
λ = 2.406

-0.1

0.0

0.1

0.0 0.5 1.0 1.5 2.0

ϕms = 2°
λ = 0.228

s

0.0 0.5 1.0 1.5 2.0

ϕms = 5°
λ = 1.042

FGOE(s)
FGUE(s)

FGOE-GUE(s; λ)

0.0 0.5 1.0 1.5 2.0

ϕms = 8°
λ = 1.589

FIG. 2. Transition from GOE to GUE statistics when deflecting the field Fms in Eq. (32) from the symmetry plane y = 0 by an angle ϕms.
For the magnetic field we have set B(ϕ = 0, ϑ = π/6) with B = 3 T. To obtain enough eigenvalues for a statistical evaluation, we used the
simplified model of Ref. [18], in which the spins of the electron and hole are neglected. To visualize the differences between the cumulative
distribution functions more clearly, we subtract FGOE(s) from them. The data points (red) were fitted with the analytical function FGOE→GUE(s; λ)
defined in Sec. II C. The optimum values of the fit parameter λ are given in each panel and are also shown in Fig. 3. One can observe a good
agreement between the numerical data and the analytical function describing the transition between the two statistics in dependence on λ. For
further information see text.

One might argue whether the effects of Fms cancel each
other out if the field is evenly distributed over the solid angle.
This can be ruled out when considering the effect of the field on

 0

 0.5

 1

 1.5

 2

 2.5

0° 2° 4° 6° 8°

λ(
ϕ m

s)

ϕms

GOE-GUE
transition region

FIG. 3. Optimum values of the fit parameter λ in dependence
on the angle ϕms for the situation presented in Fig. 2. One can
see that the value of λ increases very rapidly with increasing ϕms.
Already for ϕms = 5◦ the transition to GUE statistics is completed.
As regards the value of λ for ϕms = 8◦, we have to note that
the function FGOE→GUE(s; λ) only slightly varies for λ � 0.8 and
hence small fluctuations in the numerical results will lead to a strong
change in λ. For the transition between GOE and GUE statistics only
the range of 0.1 � λ � 0.8 is of importance (green dashed lines) (cf.
Ref. [19]). For ϕms > 8◦ it is always λ > 0.8 until ϕms ≈ 176◦ [cf.
Eq. (33)].

the exciton states for all values of the angle ϕms as shown for a
selection of exciton states in Fig. 4. It can be seen that the fields
Fms(ϕms) and Fms(π + ϕms) = −Fms(ϕms) shift the exciton
states in the same direction and not in opposite directions as
regards their energies. Hence, on average the exciton states are
shifted towards higher or lower energies and do not remain at
their position. This argument holds both when using the model
with the parameters of Ref. [18] and when using all material
parameters of Cu2O. In Fig. 4 the results for Cu2O are shown.

 2.1688

 2.16885

 2.1689

 2.16895

 2.169

-180° -90° 0° 90° 180°

E
 (

eV
)

ϕms

FIG. 4. Dependence of the energy of specific exciton states on
the angle ϕms of the field Fms. For the magnetic field we have set
B(ϕ = 0, ϑ = π/6) with B = 3 T. It can be seen that for ϕms and
π + ϕms the exciton energies (blue solid lines) are shifted in the same
direction with respect to the energy at ϕms = 0 (red dashed lines).
The average energy (green solid lines) often clearly differs from the
energy at ϕms = 0.
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Even though we cannot obtain enough converged exciton
energies for a statistical analysis when using the parameters
of Cu2O, we can use the small number of converged states
to show that the magneto Stark field has the small effect of
increasing level spacings, which is a characteristic feature of
GUE compared to GOE statistics [cf. Eqs. (20) and (21)].

To this aim, we consider at first the spectrum of Cu2O in a
magnetic field B(ϕ = 0, ϑ = π/6) to find an avoided crossing
[see panel (a) of Fig. 5]. We then choose the magnetic field
strength of B = 1.98 T, where an avoided crossing appears,
to be fixed, and calculate the spectrum in dependence on the
angle ϕms. The strength of the motional Stark field is given by
Eq. (30) with B = 1.98 T and T = 0.8 K. We now calculate
the energies of the states for the following three cases, where
the magnetic field strength is always given by B = 1.98 T:
(i) Fms = 0, (ii) Fms = √

2kBT/M B and ϕms = 0, (iii) Fms =√
2kBT/M B and taking the average of the exciton energies

over ϕms. These energies are shown in panel (b) of Fig. 5.
We assume a constant density of states due to the small
energy range considered here. Then the normalized spacings
between two neighboring exciton states are determined as si =
(Ei − Ei+1)/Ē with Ē denoting the mean value of all spacings
considered. One can see from panel (c) of Fig. 5 that the level
spacings change for the three cases considered. Especially for
small values of s the spacing increases, which illustrates the
repulsion of levels and the transition to GUE statistics.

Overall, it can be stated that the exciton-phonon interaction
leads to a finite momentum of the center of mass of the
exciton, which is evenly distributed over the solid angle.
The size of this momentum is on average determined by the
Boltzmann distribution. In an external magnetic field this finite
momentum causes the motional Stark effect. The electric field
corresponding to this effect breaks in combination with the
cubic lattice all antiunitary symmetries in the system even if
the plane spanned by the external fields coincides with one
symmetry plane of the lattice.

V. SUMMARY AND OUTLOOK

We have shown analytically that the combined presence of
the cubic valence band structure and external fields breaks all
antiunitary symmetries for excitons in Cu2O. When neglect-
ing the exciton-phonon interaction, this symmetry breaking
appears only if the plane spanned by the external fields is not
identical to one of the symmetry planes of the cubic lattice of
Cu2O. We have discussed that for these cases the additional
presence of the exciton-phonon interaction is not able to restore
the broken symmetries.

For the specific orientations of the external fields, where the
plane spanned by the fields is identical to one of the symmetry
planes of the cubic lattice, the exciton-phonon interaction
becomes important. This interaction causes a finite momentum
of the exciton center of mass, which leads to the motional Stark
effect in an external magnetic field. If the cubic valence band
structure is considered, the effective electric field connected
with the motional Stark effect finally leads to the breaking of all
antiunitary symmetries. Since the exciton-phonon interaction
is always present in the solid, we have thus shown that GUE
statistics will be observable in all spectra of magnetoexcitons
irrespective of the orientation of the external magnetic field,

B
 (

T
)

E [eV]

0.0

1.0

2.0

3.0

2.1684 2.1687 2.1690 2.1693

(a)

E [eV]

Fms≠0, 〈ϕms〉
Fms≠0, ϕms=0

Fms=0

2.1684 2.1687 2.1690 2.1693

(b)

P
(s

)

s

Fms≠0, 〈ϕms〉
Fms≠0, ϕms=0

Fms=0

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(c)

FIG. 5. (a) Splitting of the n = 5 exciton states of Cu2O in an
external magnetic field B = B(ϕ = 0, ϑ = π/6) with Fms = 0. At
B ≈ 1.98 T an avoided crossing can be observed (see inset and red
box). (b) Energy of the n = 5 states for B = 1.98 T and (i) Fms =
0 (blue lines), (ii) Fms = 9.57 × 103 V/m given by Eq. (32) with
ϕms = 0 (red lines), and (iii) Fms given by Eq. (32) but taking the
position of the states when averaging over ϕms = 0 (green lines).
(c) Normalized spacings for the three cases considered. It can be seen
that the motional Stark effect further suppresses small spacings. For
a comparison, we also show the distribution functions for Poisson
statistics (blue dash-dotted line), GOE statistics (red dashed line),
and GUE statistics (green solid line).

which is in agreement with the experimental observations in
Refs. [16,17].
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APPENDIX A: HAMILTONIAN

Here we give the complete Hamiltonian of Eq. (11) and describe the rotation necessary to make the quantization axis coincide
with the direction of the magnetic field. Let us write the Hamiltonian (11) in the form

H = H0 + (eB)H1 + (eB)2H2 − eF · r

+ Eg − e2

4πε0ε

1

r
+ 2

3
�

(
1 + 1

h̄2 I · Sh

)
(A1)

with B = |B|. Using B̂i = Bi/B with the components Bi of B, the terms H0, H1, and H2 are given by

H0 = 1

2m0
(γ ′

1 + 4γ2) p2 + 1

h̄2m0
(η1 + 2η2)(I · Sh) p2 − 3γ2

h̄2m0

[
I2

1p
2
1 + c.p.

] − 6η2

h̄2m0

[
I1 Sh1p

2
1 + c.p.

]
− 6γ3

h̄2m0
[{I1, I2}p1p2 + c.p.] − 6η3

h̄2m0
[(I1 Sh2 + I2 Sh1)p1p2 + c.p.], (A2)

H1 = 1

2m0

(
2m0

me
− γ ′

1 + 4γ2

)
B̂ · L − 1

h̄2m0
(η1 + 2η2)(I · Sh)B̂ · L + 1

2m0

[
gc Se +

(
3κ + gs

2

)
I − gs Sh

]
· B̂

+ 3γ2

h̄2m0

[
I2

1(B̂2r3p1 − B̂3r2p1) + c.p.
] + 6η2

h̄2m0
[I1 Sh1(B̂2r3p1 − B̂3r2p1) + c.p.]

+ 3γ3

h̄2m0
[{I1, I2}(B̂2r3p2 − B̂1r3p1 + B̂3r1p1 − B̂3r2p2) + c.p.]

+ 3η3

h̄2m0
[(I1 Sh2 + I2 Sh1)(B̂2r3p2 − B̂1r3p1 + B̂3r1p1 − B̂3r2p2) + c.p.], (A3)

H2 = 1

8m0
(γ ′

1 + 4γ2)[B̂
2
r2 − (B̂ · r)2] + 1

4h̄2m0
(η1 + 2η2)(I · Sh)[B̂

2
r2 − (B̂ · r)2]

− 3γ2

4h̄2m0

[
I2

1(B̂2r3 − B̂3r2)2 + c.p.
] − 3η2

2h̄2m0
[I1 Sh1(B̂2r3 − B̂3r2)2 + c.p.]

− 3γ3

2h̄2m0
[{I1, I2}(B̂2r3 − B̂3r2)(B̂3r1 − B̂1r3) + c.p.]

− 3η3

2h̄2m0
[(I1 Sh2 + I2 Sh1)(B̂2r3 − B̂3r2)(B̂3r1 − B̂1r3) + c.p.]. (A4)

In our calculations, we express the magnetic field in spherical coordinates [see Eq. (13)]. For the different orientations of the
magnetic field we rotate the coordinate system by

R =
⎛
⎝ cos ϕ cos ϑ sin ϕ cos ϑ − sin ϑ

− sin ϕ cos ϕ 0
cos ϕ sin ϑ sin ϕ sin ϑ cos ϑ

⎞
⎠, (A5)

i.e., we replace x → x′ = RTx with x ∈ {r, p, L, I, S} to make the quantization axis coincide with the direction of the magnetic
field [55,63]. Finally we express the Hamiltonian in terms of irreducible tensors (see, e.g., Refs. [7,8,27,55]) and calculate the
matrix elements of the matrices D and M in the generalized eigenvalue problem (16).

APPENDIX B: NORMAL VECTORS

Here we list the normal vectors of the nine symmetry planes
of the cubic lattice mentioned in the discussion of Sec. III:

n̂1 = (1, 0, 0)T, n̂2 = (0, 1, 0)T,

n̂3 = (0, 0, 1)T, n̂4 = (1, 1, 0)T/
√

2,

n̂5 = (0, 1, 1)T/
√

2,

n̂6 = (1, 0, 1)T/
√

2,

n̂7 = (1, − 1, 0)T/
√

2,

n̂8 = (0, 1, − 1)T/
√

2,

n̂9 = (−1, 0, 1)T/
√

2. (B1)
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