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Using analytical arguments and computer simulations, we show that the dependence of the hopping carrier
mobility on the electric field μ(F )/μ(0) in a system of random sites is determined by the localization length
a, and not by the concentration of sites N . This result is in drastic contrast to what is usually assumed in the
literature for a theoretical description of experimental data and for device modeling, where N−1/3 is considered
as the decisive length scale for μ(F ). We show that although the limiting value μ(F → 0) is determined by the
ratio N−1/3/a, the dependence μ(F )/μ(0) is sensitive to the magnitude of a, and not to N−1/3. Furthermore, our
numerical and analytical results prove that the effective temperature responsible for the combined effect of the
electric field F and the real temperature T on the hopping transport via spatially random sites can contain the
electric field only in the combination eFa.
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I. INTRODUCTION

Organic semiconductors attract currently much attention in
the scientific community as materials desired for applications
in modern electronics. The term organic semiconductors cov-
ers a large class of materials with a broad variety of properties.
Organic semiconductors can be fabricated in crystalline form,
as for instance, pentacene and ruberene [1]. The energy
spectrum in such materials has a classical band structure with
charge carriers moving as free particles or polarons in the
conduction and valence bands. The main focus in research
on organic materials is put, however, on organic disordered
semiconductors (ODSs), such as polymers and low-molecular-
weight systems [2–21]. The interest in ODSs is caused
by their optoelectronic features and by easy manufacturing,
as compared to organic crystals. In contrary to crystalline
materials, ODSs possess neither structural regularity nor
spatially extended electronic states. Instead, electronic states
in ODSs are spatially localized [2–21]. This happens because
the overlap integrals for the weak Van-der-Waals interactions
between neighboring structural units (molecules or molecular
complexes) in ODSs are much smaller than the energy scale of
disorder, which prevents the formation of extended electronic
states [2–4]. Therefore charge transport in ODSs is due to
incoherent tunneling (hopping) of charge carriers between
localized states that are randomly distributed in space [2–21].
Our paper deals with the description of charge transport in this
hopping regime and the results are valid for ODSs, not for
organic crystals.

The most popular theoretical model to describe charge
transport in ODSs is the so-called Gaussian disorder model
(GDM), according to which localized states have a Gaussian
energy distribution [2–4,22]

g(ε) = N

σ
√

2π
exp

(
− ε2

2σ 2

)
. (1)

Here, σ is the energy scale of the spectrum, usually
estimated [3] in ODSs to the order of σ ≈ 0.1 eV, and N

is the concentration of randomly distributed localized states

(sites). A typical estimate [11,17] for the latter parameter is
between N � 1020 cm−3 and N � 1021 cm−3.

The hopping rates are usually assumed [3] to be described
by the Miller-Abrahams expression [23]. For each pair of sites
(i,j ), the rate νij is determined by their energy difference
εj − εi and position difference rij ≡ rj − ri :

νij = ν0 exp

(
− 2|rij |

a

)
γ (εj − εi + eF · rij ) (2)

with

γ (�ε) =
{

exp(−�ε/kT ), if �ε > 0,
1, otherwise, (3)

where a is the localization length of charge carriers, F is
the electric field, and ν0 is a prefactor determined by the
tunneling mechanism. The localization length a in ODSs is
estimated [24,25] at the order of 10−8 cm, which is much
smaller than the intersite distance N−1/3. Therefore we follow
the usual assumption [2–21] that a can be considered to be
independent of the concentration of sites N .

While powerful and transparent analytical theoretical tools
have been developed to describe the dependencies of the
hopping mobility μ on T , N , a, σ , and on the concentration of
carriers n, as highlighted in recent reviews [1,11,14,17,20],
theoretical studies of the dependence μ(F ) have mostly
been focused on computer simulations. The group of Bässler
simulated μ(F ) on a cubic lattice and fitted results in the form
of the parameterized equation [3,19,26]

μ(F )=μ0 exp

[
−

(
2

3

σ

kT

)2]
exp

{
C̃

[(
σ

kT

)2

−B

]√
F

}
,

(4)

where μ0 is a field-independent prefactor.
Two parameters, C̃ and B are involved in this fitting.

The parameter C̃ is assumed to depend on the lattice
constant b (distance between localization sites) having the
value C̃ = 2.9 × 10−4 cm1/2 V−1/2 for b = 0.6 nm [3,19,26].
Although simulations were performed on regular cubic grids,
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a nondiagonal disorder has been introduced into simulations
by Bässler et al. [3,19,26] in order to mimic spatial disorder.
The exponent (2|rij |/a) in Eq. (2) was rewritten in the form
2λb|rij |/b, where b is the lattice spacing, and the parameter
λ can be viewed as the inverse localization length. The factor
2λb was distributed in a Gaussian manner with the width 	

around the value 2λb = 10. The parameter B in Eq. (4) was set
equal to B = 2.25 for 	 < 1.5 and to B = 	2 for 	 � 1.5.
Equation (4) is one of the most frequently used equations in
the context of organic semiconductors [14,17].

A similar approach to determine μ(F ) was used by Pasveer
et al. [27], who reduced the lattice GDM of Bässler et al. to
the case 	 = 0 and herewith completely eliminated spatial
disorder. Calculating numerically μ(F ) in the framework of
this reduced GDM on a cubic lattice, Pasveer et al. fitted results
to the analytical formula

μ(T ,n,F ) ≈ μ(T ,n)φ(T ,F ) (5)

with φ(T ,F ) in the form

φ(T ,F ) = exp

{
0.44

[(
σ

kT

)3/2

− 2.2

]

×
[√

1 + 0.8

(
Feb

σ

)2

− 1

]}
, (6)

where b is the lattice constant. The latter equations are
sometimes considered universal and they are the basis [28]
for the commercially available OLED simulation software
tools [simulation software SETFOSS3.2, product of Fluxim
(www.fluxim.com); simulation software SIMOLED3.X, product
of Sim4tec (www.sim4tec.com)].

Pasveer et al. [27] mentioned that Eq. (6) “should merely be
considered as a description of the numerical data in a limited
parameter range” promising to rationalize this parametrization
in future work. We show below that neither Eq. (4) nor
Eq. (6) can be rationalized because they do not contain decisive
parameters responsible for the field-dependent mobility μ(F ).
Equations (4) and (6), which are used by thousands of
researchers, were obtained by fitting the numerically simulated
data under the assumption that the decisive parameter for
the dependence μ(F ) is the intersite distance, parameter b

in Eq. (6). We rigorously prove below that this assumption
is wrong and the intersite distance is irrelevant for the
field-dependent mobility in disordered systems. One should
instead use the localization length a as the decisive length
scale determining the field dependence of the hopping carrier
mobility μ(F ). A theoretical recipe on how to describe the
dependence μ(F ) in disordered materials will be formulated
below, which should encourage researchers to reanalyze their
data on μ(F ) in disordered organic semiconductors.

The paper is organized as follows. In Sec. II, we first
stay for simplicity in the framework of the reduced GDM
used by Pasveer et al. [27], i.e., on a cubic lattice without
spatial disorder. We show that already in this oversimplified
case, Eq. (4) and Eq. (6) are incompatible with each other
even if the same material parameters in these equations are
used. We further show that the results of computer simulations
by Pasveer et al. [27] are incompatible with the results of
computer simulations by Bässler et al. [3,19,26] carried out in

the framework of the same reduced GDM on the cubic lattice
(i.e., for 	 = 0). Performing our own computer simulations,
we prove that the localization length a, not even present in
Eqs. (4) and (6), is responsible for this discrepancy in the
simulations and that the localization length affects decisively
the field dependence of carrier mobility.

In Sec. III, we consider the GDM on spatially random
sites, i.e., not anymore on a lattice, and show by computer
simulations that the localization length a is the only spatial
scale responsible for the field-dependent hopping mobility.
Our computer simulations show herewith that the intersite
distance, present in the form of lattice constant b in Eq. (6), is
irrelevant for the field-dependent mobility μ(F ).

In Sec. IV, we further show by computer simulations that
the dependence of the carrier mobility on the electric field
F can be described by inserting the field-dependent effective
temperature Teff(F,T ), instead of the real temperature T , into
the temperature dependence of the hopping mobility, which is
well understood and described at low electric fields [11,17,20].
Herewith our computer simulations on random sites rigorously
prove the idea by Shklovskii et al. [29–34], who already
suggested many years ago that the field-dependent effective
temperature, which contains the localization length a as the
only relevant spatial parameter, describes the combined effects
of electric field and temperature on the hopping mobility.

In Sec. V, we prove the concept of the effective temperature
for spatially random sites by analytical calculations. It is shown
that the effective temperature does exist and that it depends on
the localization length a, and not on the concentration of sites
N . Concluding remarks are gathered in Sec. VI. A short version
of this work has been made publicly available in Ref. [35].

II. LOCALIZATION LENGTH AFFECTS μ(F)
IN THE LATTICE MODEL

Before considering a realistic case of a spatially disordered
system, let us analyze the simulated data on the field-
dependent mobility μ(F ) available in the literature [3,27],
which were obtained on regular cubic lattices and served for
parametrizations by Eqs. (4) and (6). The concentration of sites
N = b−3 is used for the plots in Fig. 1 in order to consist with
the data in other figures calculated for random sites.

Let us first check the compatibility of Eqs. (4) and (6)
with each other. In order to enable the comparison, we plot
the data of Bässler et al. [3,26] for the case 	 = 0, i.e., with
B = 2.25, since Pasveer et al. [27] simulated for 	 = 0. The
value T = 300 K was used in simulations by Bässler et al.,
which gives σ = 0.075 eV for σ/kT = 3. Using the realistic
value σ/kT = 3, we plot by a dotted line in Fig. 1 the curve
for μ(F )/μ(0) given by Eq. (4) and by a dashed line the curve
for the function φ(T ,F ) given by Eq. (6). The difference in the
dependencies μ(F ) given by Eqs. (4) and (6) for the same sets
of parameters is striking.

Trying to reveal the reason for such a large discrepancy,
we also plot in Fig. 1 the simulated data [3,27] that served
as the basis for fittings by Eqs. (4) and (6). The apparent
inability of Eq. (4) to fit the simulated data evidences the poor
accuracy of this equation but it can hardly be considered as
an issue of fundamental importance. However, it is surely an
issue of fundamental importance to elucidate the difference in
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FIG. 1. Normalized mobility μ(F )/μ(0) for the lattice model
calculated via Eqs. (4) and (6) and simulated for σ/kT = 3.

the results of the two simulations [3,27] for the same value
σ/kT = 3 because the difference between the data obtained
in simulations by the group of Bässler [3,26] and by Pasveer
et al. [27] is comparable to the total effect of F on μ.

The apparent difference in the simulated systems lies in
the choice of the parameter b/a. While the group of Bässler
simulated for b/a = 5, Pasveer et al. simulated for b/a = 10.
In order to check the validity of those previous simulations,
we carried out simulations on a cubic lattice similar to those
carried out by Bässler et al. and by Pasveer et al. Our data,
plotted in Fig. 1 for b/a = 10; 5; 3, confirm the data by Pasveer
et al. with b/a = 10 and the data by Bässler et al. with
b/a = 5, implying that the computer simulations by both
research groups [3,26,27] were correct. However, it has not
been recognized in previous simulations that the shape of the
dependence μ(F )/μ(0) is sensitive to the choice of b/a.

This result shows that neither Eq. (4) nor Eq. (6) can
be considered as universal because these equations do not
even contain the localization length a. Furthermore, this result
shows the apparent deficiency of doing physics by computer
simulations. Parameterized phenomenological equations, such
as Eq. (4) and Eq. (6), do not contain the material parameter
a, which is decisive for the field-dependent mobility μ(F ), as
evidenced in Fig. 1. Being interested in the dependence μ(F )
for realistic spatially disordered systems rather than for cubic
grids, we will consider in the rest of this paper a system of
sites distributed in space randomly.

III. LOCALIZATION LENGTH DETERMINES
μ(F) FOR RANDOM SITES

In order to discern the decisive length scale (a, N−1/3,
or some combination of these parameters) for the field
dependence of μ in a system of random sites, we performed
computer simulations using the standard Monte Carlo proce-
dure. A disordered system is created with 140 × 140 × 140
sites distributed randomly in a box of L = 140, so that the
average inter-site distance N−1/3 is unity. The site energies
are chosen randomly according to the DOS given in Eq. (1).
A single electron is placed onto a random site i and in each
simulation step performs a hopping transition to another site j

with probabilities weighted by the MA hopping rates given
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FIG. 2. Normalized mobility μ(F )/μ(0) for the system of ran-
dom sites at σ/kT = 4 and different values a/N−1/3 plotted vs
FN−1/3/(σ/e).

by Eqs. (2) and (3). After each hop, the system time is
advanced by τ = ν−1

ij . Initially, the electron is allowed to make
5 × 107 relaxation hops to ensure steady-state conditions, after
which statistics is collected for 5 × 108 hopping transitions.
The simulations were repeated and averaged 20 times. The
realistically chosen parameters were σ/kT = 4 and 0.18 �
a/N−1/3 � 0.30.

Our simulation results for μ(F )/μ(0) are plotted versus
FN−1/3 in Fig. 2 and versus Fa in Fig. 3. The results look
really remarkable. While the plots as a function of FN−1/3

differ from each other for different values of the parameter
a/N−1/3, as they do in the case of the lattice model shown
in Fig. 1, the data fall onto a universal curve when plotted
as a function of Fa. The deviations for a = 0.18N−1/3 at
high F are caused by the effect of the negative differential
conductivity discussed elsewhere [36,37]. The universality
of plots μ(F )/μ(0) versus F in units σ/ea proves that the
localization length a, and not the intersite distance N−1/3

[present in Eq. (6) in the form of the lattice constant b], is
the decisive length scale for the dependence μ(F )/μ(0).

0.0 0.2 0.4 0.6 0.8 1.0

Field Fa [σ/e]

100

101

102

m
o
b
il
it
y

μ
(F

)/
μ
(0

)

a = 0.18N−1/3

a = 0.22N−1/3

a = 0.26N−1/3

a = 0.30N−1/3

FIG. 3. Normalized mobility μ(F )/μ(0) for the system of ran-
dom sites at σ/kT = 4 and different values a/N−1/3 plotted vs
Fa/(σ/e).
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IV. EFFECTIVE TEMPERATURE DEPENDENT
ON a IS RESPONSIBLE FOR μ(F)

One might be tempted to invent new phenomenological
fitting equations in the spirit of Eqs. (4) and (6) for μ(F )/μ(0)
that would take into account the effect of the parameter a.
Instead, we suggest to recall the idea by Shklovskii, who
recognized the importance of the localization length a for the
dependence μ(F ) more than 40 years ago [29].

Let us try to understand, why the localization length a

and not the intersite distance N−1/3 is the decisive length
scale for the field dependence of μ(F )/μ(0). Shklovskii [29]
considered the case T = 0 and pointed out that when a charge
carrier tunnels in the field direction over some distance x,
its energy gain due to the applied electric field amounts to
δ = eFx. The tunneling probability ν(x) ∝ exp(−2x/a) can
then be rewritten as ν(δ) ∝ exp(−δ/kTeff) with Teff � eFa/2.

For the case of finite temperatures, i.e., for T �= 0,
Shklovskii [29–31] and successors [32–34] have shown that
the combined effects of the electric field F and temperature T

on the hopping mobility can be expressed in the form of the
so-called effective temperature

Teff =
[
T 2 +

(
γ

eFa

k

)2]1/2

(7)

with γ ≈ 0.67 [31,32].
This result is nontrivial and it looks counterintuitive. The

electric field enters the theory only via Eq. (2), i.e., via the
combination eF · rij . The length of a hop |rij | is of the order
of the intersite distance N−1/3. Therefore, one might expect
the combination of parameters eN−1/3F to be essential for the
field-dependent mobility. Shklovskii instead argued [29] that
the localization length a, i.e., the feature of a single localized
state, and not the intersite distance N−1/3 is responsible for
μ(F ). Taking into account that the Stark effect (determined
by the length a) is not considered, this proposition sounds
revolutionary. Only very recently it has been proven [35] that
indeed a and not the intersite distance N−1/3 is responsible for
the dependence μ(F )/μ(0), as described in Sec. III.

The counterintuitive and revolutionary nature of
Shklovskii’s idea might be the reason for the fact that it was
ignored by the broad scientific community. For instance, in
recent review papers [18,21], Eqs. (4) and (6) are considered
as the main theoretical achievement in the study of charge
transport in ODSs. Another possible reason might be the
lack of a straightforward proof for this rather counterintuitive
concept. Notably, it has never been shown before that only
a, and not the intersite distance N−1/3, is responsible for
the dependence μ(F )/μ(0), as the parameter N−1/3/a was
always fixed and not varied in the simulations confirming
the validity of Eq. (7) [31–34]. For instance, Marianer and
Shklovskii [31] suggested Eq. (7) as the result of computer
simulations using the fixed value N−1/3/a = 3. Their result
can be plotted as a function of eaF , and, with the same
success, as a function of eN−1/3F/3. The data in Sec. III and
in the previous paper [35] prove, however, that the localization
length a, and not the intersite distance N−1/3 is responsible for
the dependence μ(F )/μ(0), as assumed in the concept of the
effective temperature.
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FIG. 4. Dependence of the mobility on 1/(kTeff)2 for the system
of random sites.

Following this concept [29–34], the dependence of the
charge carrier mobility μ(F ) on the electric field in hop-
ping conduction can be obtained by inserting the effective
temperature Teff in the place of the laboratory temperature
T in the analytical expressions for μ(T ) obtained at low F .
The temperature dependence of hopping mobility μ(T ) in
the GDM at low carrier concentrations is known to have the
form [3]

μ ∝ exp

[
− C

(
σ

kT

)2]
, (8)

where the coefficient C has typically the value C ≈ 0.4, only
slightly depending on the ratio N−1/3/a [38]. In Fig. 4, the
mobility μ, obtained in our simulations is plotted as a function
of (σ/kTeff)2, where Teff is given by Eq. (7) with γ = 0.67.
The results perfectly agree with the prediction of Eq. (8) with
T = Teff, C = 0.37, as shown in Fig. 4 by the solid line.
Simulations for Fig. 4 were carried out for the parameters sets
σ/kT between 3 and 4 with the step size 0.25 and eFN−1/3/σ

between 0.1 and 3.9 with the step size 0.2. The values of μ

in Fig. 4 are normalized by the mobility values at highest F

and T .
Experimental data for the field-dependent mobility at

low carrier concentrations should be compared not with
Eq. (4), or Eq. (6), but rather with Eq. (8), in which
temperature T is replaced by the field-dependent effective
temperature Teff given by Eq. (7). Such a comparison allows
one to determine the value of the localization length a

experimentally.
At high carrier concentrations n, the temperature de-

pendence of the mobility is described [11,17,20,39]
by the Arrhenius law instead of Eq. (8). In order to describe
the dependence μ(F ) in this regime, one should replace the
temperature T in the Arrhenius equation with the effective
temperature given by Eq. (7).

V. EFFECTIVE TEMPERATURE
PROVEN ANALYTICALLY

In Sec. IV, we provided analytical arguments for the validity
of the effective temperature concept, where Teff only depends
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on the localization length a, as suggested by Shklovskii [29]
at T = 0. Below, we provide additional arguments valid
also at finite T in favor of the localization length a as
the decisive spatial scale responsible for μ(F )/μ(0) in a
hopping motion of charge carriers via random sites. The
results proven in the rest of this report can be formulated as
follows.

(i) The energy distribution of charge carriers does not
depend on the concentration of sites N at a fixed ratio n/N .

(ii) At nonzero field and temperature the distribution
function is the Fermi function with the effective temperature,
independent of the site concentration N .

The applied electric field changes the rates of carrier
transitions between sites, so that site occupation probabilities
at nonzero field can differ from their equilibrium values given
by the Fermi-Dirac distribution. Here, we will show that
one can find the occupation probabilities in the presence of
an electric field from a simple integral equation, Eq. (14),
assuming that these probabilities are the same for all sites
of the same energy, as is granted for zero field. Herewith the
occupation probability of some site i is a function f (εi) solely
of the site energy εi , as in the case at zero field. Note that
the energy of a site is considered without the contribution of
the potential of the external field. The sites are considered
as randomly placed in space, without correlations between
their positions and energies. No further assumptions will be
involved.

Consider all the carrier transitions from sites within
some energy range [ε1, ε1 + dε1] to sites within another
range [ε2, ε2 + dε2], where widths dε1 and dε2 are small
compared to kT . Let us denote as R(ε1,ε2) dε1 dε2 the
number of such transitions per unit time in the whole sample.
Then,

R(ε1,ε2)dε1dε2

=
∑

i,εi∈[ε1,ε1+dε1]

∑
j,εj ∈[ε2,ε2+dε2]

f (εi)[1−f (εj )]νij . (9)

Since site positions and energies are uncorrelated, the vec-
tors rij are uniformly distributed over the three-dimensional
vector space with the density Vρ(ε1) dε1 ρ(ε2) dε2, where V

is the volume of the sample. If V is large enough, the vectors
rij fill the space densely enough to enable integration instead
of summation in Eq. (9),

∑
i

∑
j

⇒ Vρ(ε1) dε1 ρ(ε2) dε2

∞∫
0

r2dr

π∫
0

2π sin θ dθ,

(10)

where polar coordinates r and θ are introduced in the space
of vectors rij . Directing the polar axis along the field F, and
taking into account that εi = ε1 and εj = ε2 to the accuracy
of dε1 and dε2, one obtains from Eqs. (9)–(10) the following
representation for the rate R(ε1,ε2),

R(ε1,ε2) = Vρ(ε1) ρ(ε2) f (ε1) [1 − f (ε2)]F(ε2 − ε1),

(11)

where

F(�ε) = 2πν0

∫ ∞

0
e−2r/a

×
[∫ π

0
γ (�ε + eF r cos θ ) sin θ dθ

]
r2dr. (12)

Now it becomes easy to formulate the carrier balance
equation in the steady state. The rate of carrier transitions from
the vicinity of energy ε1 to the vicinity of ε2 is proportional to
R(ε1,ε2), and the rate of reverse transitions is proportional to
R(ε2,ε1). Integration of these rates over ε2 provides the total
carrier loss from/gain to the energy ε1, and the equality of loss
and gain determining the steady state, takes the form

+∞∫
−∞

R(ε1,ε2) dε2 =
+∞∫

−∞
R(ε2,ε1) dε2 . (13)

Inserting Eq. (11), one obtains the following balance equation:

f (ε1)

+∞∫
−∞

ρ(ε2) [1 − f (ε2)]F(ε2 − ε1) dε2

= [1 − f (ε1)]

+∞∫
−∞

ρ(ε2) f (ε2)F(ε1 − ε2) dε2. (14)

This is the master equation for calculating the carrier
distribution function f (ε) in the presence of the external
electric field. It proves that f (ε) does not depend on the site
concentration N . Indeed, since N contributes to this equation
only as a factor in the density of states ρ(ε2), it is present in
both sides of the equation, and the factors N cancel. Therefore,
the electric field F affects the carrier energy distribution only
in the combination eFa, but not in the combination eFN−1/3.
This supports our data obtained by Monte Carlo simulations
depicted in Fig. 3.

The question might arise on how sensitive this conclusion
is with respect to the choice of the expression for transition
rates. So far, we considered the Miller-Abrahams expression
given by Eqs. (2) and (3). We would like to emphasize that
the electric field F affects the carrier energy distribution
only in the combination eFa also for all other shapes of the
transition rates, in which the distance r of a hop appears in the
combination r/a. If the transition rate can be represented in the
form of Eq. (2), Eqs. (9)–(14) keep their form. Therefore the
conclusion about the decisive role of the localization length a

as the only relevant length scale for the dependence μ(F )/μ(0)
is valid also for Marcus transition rates, which have the form
of Eq. (2), though depending on the matrix renormalization
energy [40].

Furthermore, Eq. (14) provides a basis for justifying the
concept of the effective temperature at nonzero temperatures
T . To see this, let us first note that at zero electric field, the
following relation holds for any �ε:

F(�ε)

F(−�ε)
= exp

(
− �ε

kT

)
(at F = 0), (15)

as evident from Eqs. (3) and (12). In this case, according to
detailed balance, the solution of the master equation (14) is
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the Fermi-Dirac distribution. Similarly, if (at nonzero electric
field) there is such a quantity Teff that for any �ε,

F(�ε)

F(−�ε)
≈ exp

(
− �ε

kTeff

)
, (16)

then the solution f (ε) of Eq. (14) should have the form of
the Fermi-Dirac function with the effective temperature Teff

instead of the real temperature T :

f (ε) ≈
[

exp

(
ε − εf

kTeff

)
+ 1

]−1

, (17)

with an appropriate value of the Fermi energy εf .
Using Eq. (12), we numerically checked the validity of

the relation in Eq. (16) for the whole range of electric fields
at σ/kT = 3 and σ/kT = 4. This relation is proven to hold
in the range of energy differences �ε ∈ [−σ 2/kT , σ 2/kT ],
which has been proven [1,3,11,14,17,20] as decisive for charge
transport in organic semiconductors. Moreover, in the limit of
small carrier concentrations, we verified that the solution f (ε)
of Eq. (14) follows Eq. (17) in the important energy range
ε ∈ [−σ 2/kT , 0]. Herewith it is apparent from the above
consideration that the effective temperature introduced in
Eqs. (16) and (17) cannot depend on the site concentration N ,
so that the electric field contributes to the effective temperature
only in the combination eFa.

VI. CONCLUSIONS

By computer simulations and by analytical calculations,
we showed that the localization length a of charge carriers in
the localized states is the only spatial parameter responsible
for the dependence of the hopping mobility μ on the applied
electric field F in a system of random sites. Remarkably, this
parameter a is not present in Eqs. (4) and (6), which are often
treated as theoretical predictions for μ(F ) and used in device
simulations. Results of the current report exclude Eqs. (4)
and (6) as candidates for the description of the dependence
μ(F )/μ(0). Instead, the effective temperature that contains
the electric field F in the combination eFa is responsible for
the dependencies of the carrier mobility μ on T and F , as
illustrated in Fig. 4.

In essence, theories developed for the temperature-
dependent hopping mobility μ(T ) at vanishingly small electric
fields F , as described in recent reviews [17,20], are capable
to account also for the field-dependent mobility at high F

if the temperature T in the low-field theories is replaced by
the field-dependent effective temperature Teff(F,T ) given by
Eq. (7).
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