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Ab initio study of electron-phonon coupling in rubrene
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The use of ab initio methods for accurate simulations of electronic, phononic, and electron-phonon properties
of molecular materials such as organic crystals is a challenge that is often tackled stepwise based on molecular
properties calculated in gas phase and perturbatively treated parameters relevant for solid phases. In contrast,
in this work we report a full first-principles description of such properties for the prototypical rubrene crystals.
More specifically, we determine a Holstein-Peierls–type Hamiltonian for rubrene, including local and nonlocal
electron-phonon couplings. Thereby, a recipe for circumventing the issue of numerical inaccuracies with low-
frequency phonons is presented. In addition, we study the phenyl group motion with a molecular dynamics
approach.
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I. INTRODUCTION

The scientific interest in organic semiconductors is contin-
uously high and driven by many technological applications,
where the molecular materials are employed in organic tran-
sistors [1–5], organic light emitting diodes [6–9], photovoltaic
applications [10–13], and a variety of other electronic devices
[14–17]. Thereby good charge transport properties of organic
semiconductors is the key for their efficient application and
a great effort is dedicated to improving carrier mobilities
by means of chemical and structural modifications of these
organic materials. In this process, theoretical input can
provide guidelines toward high mobilities of charge carriers
and additional functionality of the organic semiconductors.
The understanding of several properties of these materials,
however, remains incomplete as charge transport usually
shows very different behavior compared to conventional
inorganic semiconductors. In addition, a complete quantitative
characterization of the properties of the organic materials
remains a challenge due to their complexity.

One of the prototypical materials studied frequently is
rubrene (5,6,11,12-tetraphenyltetracene) (see Fig. 1). It often
serves as a model compound for experiments [18–27] and
simulations [28–36], including advances in growth by means
of van der Waals epitaxy [37], the detailed analysis of defect
formation [38], or investigation of electron-phonon coupling
effects [27,39,40]. Finally, rubrene has one of the highest
carrier mobilities, which can reach few tens of cm2/Vs for
holes.

On the theoretical side, rubrene has first been studied as
gas-phase molecules and later in solid state by means of
semiempirical and higher-level approaches [28,41]. However,
to date a full ab initio characterization of the electronic
properties and electron-phonon coupling (including Holstein
and Peierls type of couplings) has not been achieved, which
might be due to the sizable structure of the rubrene unit cell
consisting of 280 atoms and resulting in 840 vibrational modes.
As an additional challenge, we note that standard density-
functional theory (DFT)-based methods have well-known
difficulties with numerical accuracy when describing low-
frequency vibrations. Here, we present a full first-principles

characterization of rubrene crystals, including all intramolec-
ular and intermolecular modes. We thereby demonstrate a
practical way to remove the problem of inaccuracies with
low-frequency modes and imaginary frequencies that often
occur in DFT-based methods. This enables their application
also for systems with a large number of atoms.

The paper is organized as follows. In Sec. II we introduce
theoretical and computational methods. Section III contains
the resulting electronic structure, vibrational properties, and
electron-phonon couplings. Finally, we analyze the phenyl-
group motions and possible flipping in a molecular dynamics
(MD) study.

II. METHODOLOGY

A. Ab initio total energy approach

We perform density-functional theory [42] calculations of
rubrene in crystal geometry. Our unit cell consists of four
molecules of rubrene, where pairs of molecules are related by
a screw operation and other rubrene pairs by a nonprimitive
translation (see Fig. 1). Note that, while being computationally
more demanding, a large unit cell has the advantage of
weaker variations in the smaller Brillouin zone. We start from
the experimental coordinates [20] and perform a conjugate
gradient optimization to obtain relaxed atomic coordinates and
lattice constants of the crystal. For this relaxed unit cell, we
calculate electronic properties, phonon modes, and frequencies
as well as electron-phonon coupling parameters.

All the simulations are performed with the SIESTA code
[43,44]. The calculations are done using the local density
approximation (LDA) using the exchange-correlation (XC)
potential of Ceperley and Alder [45] as parametrized by
Perdew and Zunger [46]. It is known that intermolecular
bonding in molecular crystals and similar systems is partly
due to van der Waals interaction, which is only included in
the homogenous limit in the semilocal XC functionals such
as LDA- or GGA-type functionals [47–49]. Still, the LDA
approach used here has been shown to give reliable results
for organic crystals [50], which is also the case for rubrene
(see below).
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FIG. 1. Perspective view to the rubrene unit cell with four
molecules. The molecules are labeled (A–D).

Separable, norm-conserving pseudopotentials of the
Troullier-Martins type [51] in the Kleinman-Bylander form
[52] are used to describe the effect of the core electrons.
The basis sets in SIESTA are strictly localized numerical
atomic orbitals. We have used a split-valence double-ζ basis
set, including polarization functions, optimized for the bulk
structure of rubrene. The parameters that define the basis
are presented in Table I. Phonon calculations are performed
using a finite differences approach, as described in Sec. II B.
Molecular dynamics simulations are performed in the constant
temperature ensemble using a Nose-Hoover thermostat and a
time step of 0.5 fs.

B. Vibrations

1. Method I: Direct diagonalization

For the simulation of the vibrational properties, we calculate
the force-constant matrix by displacing individual atoms
along the Cartesian directions. The dynamical matrix is defined
with the Hessian of the DFT total energy according to

Diα,jβ ≡ 1√
mi

√
mj

∂2E

∂uiα∂ujβ

, (1)

where mi and mj are the masses of atoms i and j . uiα and
ujβ are the displacements of these atoms along the Cartesian
coordinates α and β, respectively. From Newton’s equations
of motion, the force Fi on atom i upon displacement by
ui is given as Fi = − ∂E

∂ui
. By approximation, we take finite

differences with positive and negative displacements such that

the dynamical matrix is calculated as

Diα,jβ = 1√
mi

√
mj

�Fiα

�ujβ

.

The solution of the eigenvalue equation of the dynamical
matrix ∑

jβ

Diα,jβejβ = ω2eiα (2)

yields eigenvectors ep (mode index p) with the Cartesian
components e

p

iα (for atom i) and phonon frequencies ωp. The
phonon normal modes ζ p are calculated as

ζ
p

iα = 1√
mi

e
p

iα. (3)

2. Method II: Frozen phonons

To obtain the phonon frequencies to a sufficient level of
accuracy and minimize numerical inaccuracies (see below), we
also employ an alternative method for their calculation, which
improves the results of the calculations for the low-frequency
modes. We take a two-step approach, which involves the above
direct diagonalization as a first step. As a second step, we
displace all atoms of the crystal in the direction of the mode
vectors ζ p of the given phonon mode p according to

u
p

iα = uiα + λζ
p

iα, (4)

and we recalculate the total energies of the crystal with the
frozen phonon. We perform these calculations for every normal
mode for a set of different amplitudes λ and observe the change
in energy E → E + �E(λ), which is given by the quadratic
form

�E(λ) = 1

2

∑
iα,jβ

λe
p

iαDiα,jβλe
p

jβ

= 1

2
ω2

pλ2. (5)

Given the relaxed ground state for λ = 0, this allows to
compute low-energy mode frequencies with better accuracy
and without the problem of imaginary or negative ones as will
be analyzed in Sec. III B. Note that formally both approaches
should give the same results if numerical inaccuracies were
not present.

C. Effective Holstein-Peierls Hamiltonian

Beyond the numerical calculation of electronic energy
bands and vibrational properties, we derive an effective
tight-binding model to parametrize electronic properties and

TABLE I. Parameters defining the basis sets for H and C, optimized for the rubrene crystal. rc is the cutoff radius of each of the orbitals. V0

and ri are parameters that determine the confining potential for each shell (see Ref. [53]). Q is a net charge assigned to the atom in the solution
of the free atom problem (see Ref. [53]).

rc (Bohr) V0(Ry) ri (Bohr) Q(e)

s1ζ s2ζ p d1ζ d2ζ s p d s p d

H 7.50 1.85 4.75 — — 45.4 40.1 — 4.20 2.96 0.76857
C 6.50 2.86 8.50 2.95 3.70 39.4 95.7 62.5 3.61 4.31 0.66 0.074
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FIG. 2. Supercell of rubrene with definition of transfer integrals.
Rich colored (pale) molecules belong to the herringbone plane in the
foreground (background). The four molecules A and C (foreground)
and B and D (background) belong to a unit cell. εAC, εAD, εAB, εAA+b

are the four nearest-neighbor transfer integrals and εAA+2b is a second
neighbor transfer integral along lattice vector b.

electron-phonon coupling interactions in rubrene. Thereby, we
focus on the states derived from the HOMO of rubrene, i.e., the
valence band structure in the crystal. Such material parameters
are essential for simulating p-type charge transport.

We use a Holstein-Peierls model with the Hamiltonian

H = Hel + Hph + Hel-ph, (6)

which consists of an electronic part, a phononic part, and a
coupling part between electrons and phonons and explicitly
reads

H =
∑
M,N

εMNa
†
MaN +

∑
Q=(q,p)

h̄ωQ

(
b
†
QbQ + 1

2

)

+
∑

Q,M,N

h̄ωQg
Q
MN (b−Q + b

†
Q)a†

MaN, (7)

with εMN the transfer integrals between HOMO states M and
N. aM (a†

M ) and bQ(b†Q) are the annihilation (creation) operators
for electrons and phonons, respectively. Q is the coordinate of
the phonon Q = (q,p), where p is the mode index and q is
the wave vector. This model accounts both for intramolecular
(onsite/local) and intermolecular (nonlocal) electron-phonon
interaction effects by linear coupling to the phonon operators
(see below).

The electronic Hamiltonian [first term in Eq. (7)] depends
on the full set of transfer integrals εMN of molecules M

and N . Due to the high symmetry of the unit cell, however,
this set can be reduced such that the TB-model of rubrene
requires only few relevant transfer integrals. According to the
assignment of indices (A to D) to the molecules in Fig. 2,
the remaining symmetry-reduced electronic transfer integrals
are εAC, εAD, εAB, εAA±b, and εAA±2b. Here, b indicates a
lattice vector in vertical direction and A + b denotes the orbital
A in the neighbor unit cell. To find an analytically tractable

form of the band structure, we simplify the Bloch-Hamitonian
by assuming negligible coupling between molecules A and
D (see results section), i.e., εAD = 0). Taking into account
the remaining terms, the band energies in k-space have
the form

ε(k) = ε0 + 2 εAA+b cos(kyb) + 2 εAA+2b cos(2kyb)

± 4 εAC cos

(
kyb

2

)
cos

(
kzc

2

)

± 4 εAB cos

(
kyb

2

)
cos

(
kxa

2

)
. (8)

Each of the four sign combinations (+ + , + −, − +, − −)
in the second and third line of Eq. (8) gives rise to a band in
the rubrene band structure. The set of transfer integrals will be
determined by a least-squares fit to the ab initio band structure.

D. Electron-phonon coupling in rubrene

The electron-phonon coupling constants g
Q
MN ≡ g

p

MN (q) in
the model are defined as the linear changes of the electronic
matrix elements εMN with the amplitudes λ of the phonon
normal mode p with wave vector q and are calculated as

g
p

MN (q) = 1√
2h̄ω3

p(q)

∂εMN

∂λ
. (9)

In this definition, the coupling constants are dimensionless
and explicitly depend on the phonon wave vector q. Note
that a slightly different convention is used in a recent review
[54]. Given the large supercell and the small Brillouin zone,
this wave vector dependence, if necessary, can be captured
by a simple model and does not need to be calculated for the
large amount of modes. We are thus only interested in the
ab initio fits for the (q = 0) case, which effectively reduces
the computational effort.

To simplify the notation in Eq. (9), we introduce the
dimensionless Holstein coupling constants according to

g
p

0 = 1√
2h̄ω3

p

(
∂ε0

∂λ

)
, (10)

which are averaged over the four molecules in the unit cell.
Analogously, the nonlocal Peierls coupling constants,

g
p

i = 1√
2h̄ω3

p

(
∂εi

∂λ

)
, (11)

are defined with i ∈ {AA ± b,AB,AC}. In consistency with
the neglect of the transfer interal εAD, we set the corresponding
coupling constant gAD = 0. For similar reasons, gAA+2b, which
is much smaller (next nearest neighbor according to the lattice
vector 2b) will not be considered for simplicity.

To extract the full set of the above-defined electron-
phonon couplings with ab initio methods, we perform DFT
calculations in the frozen phonon geometry [Eq. (3)]. Clearly,
it would be too a formidable task to refit the band structure
for all vibrations as was done for the ground state (λ = 0).
We therefore take another route based on the Kohn-Sham
Hamiltonian. We employ a basis transformation from the

035202-3



P. ORDEJÓN, D. BOSKOVIC, M. PANHANS, AND F. ORTMANN PHYSICAL REVIEW B 96, 035202 (2017)

atomic orbital basis used in the SIESTA calculations into
the desired basis set of molecular orbitals. The Kohn-Sham
Hamiltonian Ĥ in the basis of atomic orbitals is described as

Hμν = 〈ϕμ|Ĥ |ϕν〉,
and the overlap matrix Sμν is

Sμν = 〈ϕμ|ϕν〉.
The transition from the basis sets used in DFT and the desired
orthogonal TB-model can be performed in two steps. First, we
project onto the molecular HOMO orbitals |ψHOMO

M 〉 known
from gas-phase calculations,

∣∣ψHOMO
M

〉 =
∑

μ

aμM

∣∣ϕM
μ

〉
,

where the index M indicates the molecule on which the HOMO
orbital is located. |ϕM

μ 〉 are the basis functions associated to
M and the coefficients aμM are easily obtained from SIESTA

calculations of single molecules. This allows expressing
the Hamiltonian in the nonorthogonal HOMO basis, while
neglecting other types of molecular orbitals. This first step
results in a Hamiltonian whose matrix elements are given as

HMN = 〈M |Ĥ |N 〉 =
∑
μ,ν

a∗
μMaνN

〈
ϕM

μ

∣∣Ĥ ∣∣ϕN
ν

〉
,

and

SMN = 〈M |N 〉 =
∑
μν

a∗
μMaνN

〈
ϕM

μ

∣∣ϕN
ν

〉
(12)

is the molecular overlap matrix. Coupling of the HOMO
orbitals to other molecular states is neglected as we are only
interested in the parameters of the HOMO-derived bands due
to their energetic separation to other bands.

The second step is the orthogonalization of the molecular
orbitals for which we chose the Löwdin orthogonalization
method [55] with the overlap matrix Eq. (12). We generate
a new set of HOMO-like orbitals | ′

M〉 from the given initial
set of normalized but nonorthogonal wave functions as

| ′
M〉 = |M〉 − 1

2

∑
N

SMN |N 〉.

This single step mixing can be repeated iteratively until
the wave functions are orthogonal to the sufficient degree
of accuracy. In the present case for the HOMO orbitals of
rubrene, a single step of orthogonalization turns out to be
sufficient as already the first iteration leads to negligibly small
overlap matrices. This orthogonalization procedure, applied
for undisplaced phonons, leads to the effective Hamiltonian
Hel in Eq. (6). By applying this approach for structures,
including the frozen-phonon distortion, we determine, by
finite differences, the linear changes in the transfer integrals
and obtain the Holstein and Peierls electron-phonon coupling
constants in Eq. (7). Consequently, this transformation yields
the coupling constants g

Q
MN in the orthogonal molecular

HOMO basis.

FIG. 3. Valence band structure of rubrene. Main frame: Compar-
ison of DFT results (red) and TB-band structure (blue) obtained from
fitting with Eq. (8). Upper inset: Comparison of different fit functions
(see text). Lower inset: Brillouin zone and definition of special points.

III. RESULTS

A. Electronic band structure and transfer integrals

We first focus on the electronic properties of rubrene. The
DFT band structure together with the TB-model fit of Eq. (8)
are shown in the main frame of Fig. 3. The fit to the band
structure results in the transfer integrals compiled in Table II,
which reproduce the DFT band structure with good accuracy
(root mean square deviation of 4.0 meV on a regular k-point
grid). A comparison of the fits with and without the second
neighbor term εAA±2b in b direction shows slightly better
results when taking this term into account (see inset of Fig. 3).
This small change is consistent with an order-of-magnitude
smaller value of εAA±2b compared to εAA±b. This additional
parameter corrects the underestimation of the DFT-bands in
the �Y -direction.

Very similar values for the transfer integrals are obtained
directly from the Kohn-Sham Hamiltonian (described in
Sec. II D) by using the Löwdin orthogonalization of the
HOMO bands. Both methods deviate by only about 3–4 meV
and both sets of transfer integrals are consistent with the
experimental band dispersion in the direction measured by
ARPES experiments [21,56] and with theoretical calculations
reported in literature [29,42] as is summarized in Table II.

TABLE II. Transfer integrals and effective electron-phonon cou-
pling parameters EH, EP, ωH, and ωP (see definition in Sec. III C) of
the present work in comparison to literature values.

This work Ref. [29] Ref. [42]

εAA+b (meV) 134.0 143 125
εAC (meV) 28.9 23 −6
εAB (meV) 4.1 — —
εAA+2b (meV) −10.7 — —
EH (meV) 106.8 159 99
EP (meV) 21.9 — 20
ωH (cm−1) 1208.9 1400 1277
ωP (cm−1) 117.9 50 77
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TABLE III. Phonon frequencies in both approaches (see text)
with symmetry assignment and mode description with abbreviations:
translation (Taxis), rotation (Raxis), butterfly mode (B), torsion (tor),
and wagging (W).

ω(I) (cm−1) ω(II) (cm−1) Symm. Mode descr.

−19.9 17.0 B2g R|| tetracene

0.06 16.4 B2u Ty + Bmolecule

0.08 21.8 B1g R⊥tetracene

5.5 20.8 B1u Tz + Bphenyl

9.4 31.7 B1u Bmolecule

16.1 24.0 Au Tx + torphenyl

18.9 41.6 B3u Tx + torphenyl

21.4 41.6 B2g R⊥tetracene + torphenyl

22.2 46.8 B2u Bmolecule

29.5 43.5 B1g R⊥tetracene

30.1 37.7 Au Tx + Wphenyl

38.1 52.2 B2u Bmolecule

38.9 46.4 B1g R⊥tetracene + Wphenyl

42.7 47.7 B1g R||tetracene

44.4 59.6 Ag torphenyl

46.9 57.8 Ag torphenyl

47.4 60.3 B3u torphenyl

48.3 55.5 B2g R||tetracene

48.5 49.0 B1u Ty

48.6 55.0 B1u Ty + Bmolecule

B. Vibrational properties

We turn to the calculation of the dynamical properties.
By using Method I, we obtain all mode frequencies and
eigenvectors. A selected list of low-frequency modes with
ω(I) < 50 cm−1 is summarized in Table III. It turns out that
for some of the modes the standard diagonalization scheme
leads to some unrealistic small or even imaginary frequencies.
This general problem is due to residual numerical inaccuracies,
which may severely jeopardize the further calculation of
electron-phonon coupling constants [Eqs. (10) and (11)],
which requires division by the frequency.

The reason for this behavior originates from slightly noisy
force constants that lead to the difficulties in the description
of collective crystal vibrations in soft materials like organic
crystals. These vibrations involve the motion of many atoms
(at least for collective molecular modes such as libration modes
or translations), which means that many force constants enter
in the resulting vibrational frequency, as opposed to, e.g., a
CH-stretch mode, where the force constant related to the
CH bond will mostly define the frequency. Considering that
the forces �Fiα for displaced atom i may have some small
numerical error, this error can accumulate in a quantity like ωp

that results essentially from all forces. If the mode frequency
is low, the relative error can then be very large for such modes.

On the other hand, by inspecting all low-frequency modes in
rubrene, we find that they show correct vibration patterns (e.g.,
for translation and libration modes) and are also orthogonal,
which gives us confidence in the mode vectors ζ in contrast
to the vibration frequency. Therefore, we apply them as
frozen modes in Method II for the recalculation of the
mode frequencies ω(II) and recalculated the changes in the
total energy �E around the equilibrium configuration for
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FIG. 4. Main frame: Change of the total energy of the system (per
unit cell) with the amplitude of the phonon. Inset: Relative frequency
change and corresponding median value.

different normal mode amplitudes λ according to Eq. (5)
for all vibrations. Figure 4 shows an example to illustrate
the difference of both methods for a particular mode (main
frame). This specific vibration is an Ag symmetric torsional
mode of the phenyl rings. The energy obtained from the direct
diagonalization of Diαjβ is h̄ω(I) = 5.5 meV (44.4 cm−1),
while the quadratic fit to the total energy in Method II yields
the corrected mode energy h̄ω(II) = 7.4 meV (59.6 cm−1). This
value is increased by about 34% compared to the original
frequency and is a typical example of the general behavior
of low-frequency modes. Table III compares a larger set of
low-frequency modes in the two approaches and shows how
strongly the frequencies can be corrected by Method II. A
full overview over all modes (except the highest-frequency
CH-stretch modes) is provided in the inset of Fig. 4. In this
figure, we plot the relative frequency differences:

�ωrel = ω(II) − ω(I)

ω(II)
.

Apparently, with Method II we obtain a trend toward systemati-
cally higher energies, especially for the low-frequency modes,
which are corrected by up to 50% (with few exceptions of
even higher values). The median value for �ωrel is increased
by 0.724%, indicating that the upper half of the frequency
spectrum experiences only slight changes. This indicates
that mainly collective modes are affected and should be
corrected regarding their frequency, whereas ω(I) ≈ ω(II) for
high-frequency modes, whose frequencies are described well
by the initial diagonalization of the dynamical matrix. In the
following, we will only use the corrected frequencies ω(II) for
the calculation of the electron-phonon coupling parameters.

C. Electron-phonon coupling

The calculation of the electron-phonon coupling in rubrene
is performed with the frozen phonon approach. The effect
of a specific mode ζp on the band structure is visualized
in Fig. 5. The HOMO bands are shifted proportional to the
amplitude λ. This example illustrates the impact of a vibration
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FIG. 5. Illustration of the changes in the band structure of rubrene
with distorted geometry, namely without phonon (red) and with
phonon (black).

of frequency 1593.3 cm−1, for which we found a strong
impact on the HOMO bands. This mode is an intramolecular
C–C stretch mode and as such strongly changes the onsite
energy. The changes in the band structure for different
amplitudes λ would in principle enable the extraction of the
electron-phonon coupling constants from the linear slope of
the changes in the electronic energies (see, e.g., inset of Fig. 5)
[57,58]. In the considered case, the averaged electron-phonon
coupling constant for the � point results in g1593.3

0 = 0.21.
The practical calculation of the electron-phonon couplings

of all phonon modes, however, is performed in the way
described in Sec. II D, which avoids manual fits to the band
structure for all modes. To present an overview over the total
strength of the Holstein and Peierls coupling for all modes,
we define the polaron binding, i.e. its energy contributions EH

and EP, according to

EH =
∑

p

E
p

H =
∑

p

h̄ωp

(
g

p

0

)2
,

EP =
∑

p

E
p

P =
∑
p,i

h̄ωp

(
g

p

i

)2
,

where E
p

H and E
p

P are the mode-resolved Holstein (H) and
Peierls (P) contributions and EP consists of all Peierls-coupling
constants for all nearest neighbors of a specific molecule.

The large number of electron-phonon coupling parameters
is summarized in Fig. 6 by plotting E

p

H (red bars) and E
p

P
(blue bars). Although the majority of the 840 modes have
vanishing electron-phonon coupling, we identify a broad
distribution of the remaining coupling modes over the plotted
frequency spectrum. Modes with mainly nonlocal couplings
dominate the low-frequency part (<150 cm−1) with E

p

P values
of up to 5 meV from strongly coupled B3g modes. Local
couplings dominate the high-frequency part with a few strong
coupling modes around 1600 cm−1. This is consistent with
gas-phase molecule simulations where the largest values of
E

p

H are 15.45 meV, 7.24 meV, and 3 meV for the vibrations
at 1588 cm−1, 1007 cm−1, and 602 cm−1, respectively (green
bars in Fig. 6). We also observe at low energies that the
strong-coupling modes from gas-phase are splitted in energy
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FIG. 6. Spectrally resolved polaron binding energy (red bars),
lattice distortion energy (blue bars) of crystal, and polaron binding
energy in gas phase (green bars).

in the crystal phase and the distribution of the respective
electron-phonon coupling is strongly broadened. A selected
list is contained in Table IV and compared to literature values.

From our results only inversion symmetric modes with
either the Ag or B3g symmetry contribute to g

p

H and affect
the onsite energies of the molecules. Our data suggest that
antisymmetric modes in general play a subordinate role re-
garding electron-phonon interaction in rubrene in accordance
to general symmetry arguments.

All coupling parameters are comparable to Ref. [42] (see
Table IV); i.e., most of the strongly coupled modes are in
agreement with the literature values. Only in the low-frequency
range, we observe some deviations between the literature and
our results for the electron-phonon coupling constants. On the
other hand, when comparing the integral quantities EH and
EP, including all 840 modes, to those derived in Ref. [42] in
Table II, we find rather good agreement. Despite the deviations
of the coupling strengths of single modes in the low-frequency
range, which might be explained by the different treatment of
the intermolecular interaction, the polaron binding energy and
the lattice distortion coincides well with Refs. [29] and [42].
Further useful quantities for comparison with literature values
are effective mode frequencies either of Holstein type (ωH) or

TABLE IV. Comparison of electron-phonon coupling strength for
several phonon modes.

This work Ref. [42]

ωp ωpg
p

0 ωpg
p

i ωp ωpg
p

0 ωpg
p

i

(cm−1) (meV) (meV) (cm−1) (meV) (meV)

57.8 −1.7 0.85 37.4 −0.9 3.4
59.6 1.4 −0.83 66.6 1.6 −6.6
89.0 1.6 −4.8 86.7 −0.6 −9.3
107.3 −0.14 2.8 106.3 0 −4.4
139.1 −2.3 −3.7 125.1 1.4 −4.7
639.1 −7.5 1.0 631.2 −10.8 1.3
1011.2 −3.6 −0.04 1002.3 24.6 0
1344.7 19.8 0.04 1348.6 49.9 0
1593.3 −42.0 −0.12 1593.8 −45.6 1.6
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of Peierls type (ωP),

h̄ωH =
∑

p

(
h̄ωpg

p

0

)2

EH
,

h̄ωP =
∑

p,i

(
h̄ωpg

p

i

)2

EP
.

The larger effective Peierls mode frequency ωP is a result
from the observed difference of our low-frequency electron-
phonon coupling constants and the reference values. From
the given mode patterns of relevant modes, we observe that
the intermolecular electron-phonon coupling is associated with
the motion of the phenyl rings. In particular, modes with
torsion of the phenyl rings contribute here (e.g. mode from
Fig. 4 with ωp = 59.6 cm−1 with dimensionless coupling
constants of g

p

0 = 0.19 and g
p

AA±b = 0.12). On the other
hand, phenyl ring wagging (or flipping) modes that move
perpendicular to the tetracene plane, couple only weakly to
the HOMO. The impact of those flipping motions, which has
been discussed in literature [59] is investigated in the following
section.

D. Flipping motion of phenyl groups

In this section, we analyze if the dynamics of the phenyl
groups may be stronger than suggested by the weak electron-
phonon coupling associated to these vibrations. Motivated by
the work of Kloc et al. [59], we performed MD simulations
as described in Sec. II A. The authors of Ref. [59] suggested a
model where two phenyl groups from the same side of rubrene
change their positions relative to the tetracene backbone from
above to below the tetracene plane and vice versa. Indeed,
phenyl groups are very flexible and they vibrate around their
equilibrium positions, which are either below and above the
backbone plane on each side due to mutual repulsion. We
investigate this situation by calculations with a supercell,
which is twice the original cell (i.e., consisting of eight
molecules of rubrene). For one of the eight molecules in the
supercell we changed positions of the phenyl rings to the other
side of the tetracene backbone. We let the structure relax its
energy in the DFT simulations and observed that this starting

FIG. 7. Definition of the two angles between phenyl groups
perpendicular to the tetracene backbone plane in schematic and
perspective views.
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FIG. 8. Phenyl group dynamics measured with angles α1 and α2

at T = 500 K.

configuration is not a stable minimum. Indeed the phenyl group
moved back to their original position of the undistorted crystal.

To analyze the impact of finite temperature on the question
of the phenyl group dynamics, we studied their motions with
MD simulations. We expected that with increasing temperature
the phenyl groups would vibrate so much that they would be
able flip to the other side of the tetracene plane. To analyze
such events in these simulations, we define the bonding angles
α1 and α2 according to Fig. 7 and follow the change of the
angles over time for various temperatures up to 500 K.

Figure 8 shows the dynamics of the phenyl groups for the
largest temperature and all eight molecules. While the phenyl
groups are vibrating strongly, there are no changes in the
sign of angles which would indicate that the phenyl groups
flipped to the other side of the tetracene plane. The fact that
we do not observe such flipping even at such large temperature,
suggests that they are likely unable to cross the backbone plane
at ambient temperatures (or below) in a comparable time.
The possible influence on transport properties conjectured
in Ref. [59] could therefore not be corroborated in our
simulations.

For smaller temperatures, curves similar to Fig. 8 but with
weaker oscillations in the dynamics of α1 and α2 were obtained
(not shown as plot), thus confirming the qualitative results.
The analysis of the average angles by interpreting the MD
trajectory as statistical ensemble and averaging over α1 and
α2, is summarized in Table V for all temperatures. While the

TABLE V. Temperature-dependent mean value and standard
deviation of the angular difference αi averaged over each molecule
and each side i.

Temperature (K) ᾱ (deg) σ (α) (deg)

100 25.6 3.0
200 25.3 4.3
300 24.9 5.4
500 25.8 7.6
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average angle is rather independent of T , its standard deviation
increases with T and reaches 22% at 300 K. Finally, we note
that we do not discard that these flipping processes happen
at larger time scales, but we do not observe them in the time
scale of one picosecond, and we never found such flipping
configurations to be a (meta)stable minimum.

IV. CONCLUSIONS

A protocol for reliable but efficient calculations of material
parameters from DFT has been introduced and applied for
rubrene. In particular, we have used DFT-based methods
to compute all relevant electronic, phononic, and electron-
phonon interaction parameters of rubrene, which serves as a
prototype of a complex organic material build from a molecular
core and functional side groups. More specifically, we have de-
termined tight-binding parameters for a Holstein-Peierls–type
Hamiltonian for electron-phonon coupling, which is directly
applicable for charge transport modeling or, more generally,
for studies of macroscopic material specific properties, such
as density of states, conductivity, carrier mobility, etc. The
comparison of the parameters with other work shows good

agreement. The accurate treatment of electrons and phonons
in organic small-molecule systems together with sophisticated
macroscale simulations is the basis for advancing the level of
transport modeling in these systems [60].
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