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Photoinduced charge-order melting dynamics in a one-dimensional interacting Holstein model
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Transient quantum dynamics in an interacting fermion-phonon system are investigated with a focus on a
charge order (CO) melting after a short optical-pulse irradiation and the roles of the quantum phonons in the
transient dynamics. A spinless-fermion model in a one-dimensional chain coupled with local phonons is analyzed
numerically. The infinite time-evolving block decimation algorithm is adopted as a reliable numerical method for
one-dimensional quantum many-body systems. Numerical results for the photoinduced CO melting dynamics
without phonons are well interpreted by the soliton picture for the CO domains. This interpretation is confirmed
by numerical simulation of an artificial local excitation and the classical soliton model. In the case of large
phonon frequencies corresponding to the antiadiabatic condition, CO melting is induced by propagations of
the polaronic solitons with the renormalized soliton velocity. On the other hand, in the case of small phonon
frequencies corresponding to the adiabatic condition, the first stage of the CO melting dynamics occurs due to
the energy transfer from the fermionic to phononic systems, and the second stage is brought about by the soliton
motions around the bottom of the soliton band. The analyses provide a standard reference for photoinduced CO
melting dynamics in one-dimensional many-body quantum systems.
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I. INTRODUCTION

Ultrafast dynamics in correlated electron systems induced
by an intensive optical laser pulse have been widely accepted
as an attractive theme in recent solid-state physics [1,2].
The motivation here arises not only from the standpoint of
fundamental research in highly nonequilibrium many-body
systems but also from the potential applications to efficient
energy conversion and ultrafast optical switching. One of the
prototypical targets for nonequilibrium many-body systems
is the carrier doped and undoped Mott insulators. A variety
of exotic nonequilibrium phenomena emerge due to the spin
and orbital degrees of freedom [3–11], and a number of
theoretical studies have also been performed in the optical
induced nonequilibrium state in the Mott insulators [12–21].

Another promising target for photoinduced nonequilibrium
dynamics in correlated electron systems is the charge-ordered
(CO) state, in which the average electron density per site is 0.5
in most of the cases. The CO states, in which the translational
symmetry of the electronic charge distribution is broken, are
ubiquitously observed in a wide class of solids. On the verge
of the CO, several rich phenomena emerge, such as supercon-
ductivity, metal-insulator transition, ferroelectricity, colossal
magnetoresistance, and so on. Because the CO system is sus-
ceptible to external stimuli due to its small energy scale in com-
parison with the Mott insulator, this system is a plausible candi-
date for nonequilibrium electron dynamics research [22–31].
In fact, a variety of CO compounds have been investigated
by ultrafast optical pump-probe measurements as well as
several time-resolved experimental techniques. In contrast to
the Mott insulators, the spin degree of freedom is not expected
to play major roles. Instead, the lattice degree of freedom
plays crucial roles for equilibrium and nonequilibrium states
as follows: (i) The nonuniform electronic charge distribution
and the alternate lattice distortion are stabilized cooperatively,
(ii) different energy and time scales in the electronic and
phononic systems provide a rich variety of transient dynamics,
and (iii) energy transfer possibly occurs from the highly excited
electronic systems to phononic systems.

Among the several CO systems, the one-dimensional CO
insulator is a simple example for study of the nonequilibrium
dynamics induced by optical excitation. The organic molecular
solid (TMTTF)2X (X: monovalent anion) is a prototypical
one-dimensional CO compound, in which the number of holes
per molecular orbital is 0.5 [32–37]. The quantum fluctuation
in a low-dimensional lattice promotes strong competition
between the long-range CO insulator and the correlated metal
and governs the photoinduced transient dynamics between the
two states. The quantum nature of lattice vibrations is also
crucial for the energy transfer and the relaxation dynamics in
nonequilibrium transient states [38–44]. From the theoretical
viewpoint, several numerical algorithms have been applied
to one-dimensional quantum systems [45–49]. Reliable cal-
culations for one-dimensional systems may provide good
references for the highly nonequilibrium transient dynamics
in correlated electrons, in which the quantum effect, the many-
body effect, and the transient characters are appropriately
treated on an equal footing.

In this paper, we address the photoinduced CO melting
dynamics in a one-dimensional correlated electron system. In
particular, we focus on roles of the quantum fluctuations of
electrons and phonons on the transient dynamics. We analyze
the one-dimensional spinless fermion model at half filling by
using the infinite time-evolving block decimation (iTEBD)
method. This method is well accepted as a reliable highly
accurate numerical algorithm for the one-dimensional interact-
ing quantum model. In the model without the phonon degree
of freedom, CO melting is caused by soliton propagations,
corresponding to domain-wall motions in the CO state. In the
case of finite fermion-phonon coupling, the transient dynamics
depend qualitatively on the adiabatic parameter α ≡ ω0/t ,
where ω0 and t are the phonon frequency and the fermion
hopping integral, respectively. In the case of large α, the CO
melting occurs in the same way as the case without the phonon
degree of freedom and is induced by soliton motions in which
the velocity is renormalized by the polaronic effect. On the
other hand, in the case of small α, CO melting occurs by the
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energy transfer to the phononic system at the first stage and
subsequently by the soliton motion around the bottom of the
soliton band. The present comprehensive analyses provide a
standard reference for the photoinduced CO melting dynamics
in one-dimensional systems.

In Sec. II, the fermion-phonon coupled model is introduced,
and a numerical method based on the iTEBD algorithm is
briefly explained. In Sec. III A, the numerical results for
the ground state before photoexcitation are presented. The
transient dynamics without the fermion-phonon interaction are
introduced in Sec. III B, and the results with the phonon degree
of freedom are presented in Sec. III C. Section IV is devoted
to a discussion and summary. A detailed formulation for the
classical soliton model is given in Appendix.

II. MODEL AND METHOD

The model we use to analyze the photoinduced CO
dynamics is the interacting spinless-fermion model on a
one-dimensional chain coupled with local phonons. The
Hamiltonian is defined as

H = −
∑

i

(ti,i+1c
†
i ci+1 + H.c.)

+ V
∑

i

(
ni − 1

2

)(
ni+1 − 1

2

)

+ ω0

∑
i

a
†
i ai − g

∑
i

(ai + a
†
i )

(
ni − 1

2

)
, (1)

where ci(c
†
i ) is the annihilation (creation) operator of a

spinless-fermion at site i, ni(≡c
†
i ci) is the fermion number

operator, and ai(a
†
i ) is the annihilation (creation) operator of

a local phonon at site i. The first term (Ht ) and the second
term (HV ) represent the fermion hopping and the Coulomb
interaction between fermions in the nearest-neighboring sites,
respectively. The third term (Hph) and the last term (Hep)
represent the phonon energy and the Holstein-type fermion-
phonon interaction with a coupling constant g, respectively.
As already introduced in Sec. I, α = ω0/t is the adiabatic
parameter, and α � 1 and α � 1 are termed the adiabatic
and antiadiabatic limits, respectively. We also introduce the
dimension-less fermion-phonon coupling constant λ ≡ g/ω0,
which appears in the Lang-Firsov factor shown later.

A light pulse applied along a chain direction is introduced
as the Peierls phase in the hopping integral as

ti,i+1 → teiA(τ ), (2)

where the lattice constant, the light velocity, and the Planck
constant are taken to be 1. The vector potential for the pump
pulse at time τ is given as

A(τ ) = Ap√
2πτp

e−τ 2/(2τ 2
p ) cos(ωpτ ), (3)

where Ap, ωp, and τp are the amplitude, frequency, and pulse
width of the vector potential, respectively. The center of the
vector potential is set to τ = 0.

The wave functions for the fermions and phonons in
the ground state and the time-evolved states are calculated

using the iTEBD method [43,50–53]. The wave function is
represented in the matrix-product state form as

|�〉 =
∑

σ1,σ2,...

Tr(Bσ1Bσ2 · · · )|σ1,σ2, . . . 〉, (4)

where σi describes the local states for the fermion and phonon
at site i, and Bσi is a matrix with the dimension χ . The
ground-state wave function is obtained by the imaginary-time
evolution as

|�GS〉 ∝
N∏

n=1

exp(−Hδτ )|�0〉, (5)

where |�0〉 is the initial wave function and δτ is the small
difference of the imaginary time. Although it is known that
this method for searching the ground state is not so efficient
in comparison with the variational algorithms [54], this is
enough in the present examination. In the calculation for the
time-evolved states, |�(τ )〉, we use Eq. (5), in which the
imaginary time is replaced by the real time as δτ → iδτ .
To calculate the exponential factor in Eq. (5), we adopt the
second- and fourth-order Suzuki–Trotter decompositions for
the imaginary-time and real-time equations, respectively [55].
It is assumed that the wave functions are invariant under
shifts of the two sites in most of the calculations and have
a periodicity under shifts of 64 sites in the calculations for the
local excitations introduced later. In order to monitor the CO
state, we calculate the staggered CO parameter defined as

O = 1

N

∣∣∣∣∣
∑

i

(−1)i
(

〈ni〉 − 1

2

)∣∣∣∣∣, (6)

and the alternate ion displacement defined as

q = 1

N

∣∣∣∣∣
∑

i

(−1)i〈a†
i + ai〉

∣∣∣∣∣. (7)

Here, 〈· · · 〉 represents the expectation value with respect to
|�GS〉 in the ground state and that with respect to |�(τ )〉 for
the time-evolved state. We define that

∑
i implies a summation

up to the number of the inequivalent sites N . For each term of
the Hamiltonian in Eq. (1), we introduce the transient energy
per site at τ measured from the initial energy defined as

�EX(τ ) = (〈�(τ )|HX|�(τ )〉 − 〈�GS|HX|�GS〉)/N, (8)

where X identifies the term of the Hamiltonian.
Accuracies in the numerical calculations are checked by

calculating the CO parameter and the ground-state energies
for various parameter sets. The present model at g = 0, i.e.,
the interacting spinless fermion model without phonons, is
equivalent to the S = 1/2 XXZ model in a one-dimensional
lattice, and V = 2t corresponds to the Heisenberg model
[56,57]. The exact ground state is obtained by the Bethe ansatz
[58]: a Luttinger-liquid state as the unique ground state in
V/t < 2 and the twofold degenerated CO states in V/t > 2.
Differences in the calculated ground-state energy per site (E0)
from the exact results (Eexa), i.e., |(E0 − Eexa)/Eexa|, are on
the order of 10−14 (10−9) at V/t = 6 (V/t = 3) for χ = 64.
The time dependencies of the CO parameter at g = 0 and
V/t = 6 are shown in Fig. 1(a) for various values of χ . It is
confirmed that the data for χ � 256 converge up to τ t 
 30.
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FIG. 1. (a) Time dependencies of the CO parameter for several
values of χ at V/t = 6 and g = 0. Other parameters are chosen
as ωp/t = 4, Ap = 0.1, and τp = 0.01. (b) Time dependencies of
�Eph for several vales of χ and Nph. Other parameters are chosen as
α = 3.2, λ = 1.6, ωp/t = 6, Ap = 0.1, and τp = 0.01. The shaded
areas represent the time interval during which the pump pulse is
introduced.

In the calculations for g �= 0, the maximum phonon number
per site (Nph) is truncated. In Fig. 1(b), �Eph are shown for
several values of Nph and χ . The calculated results almost
converge up to around τ t = 25 at Np = 5 and χ = 256. By
taking into account the above results, in most of the numerical
calculations for the transient states, we adopt χ = 512 for
g/ω0 < 0.5, χ = 384 for 0.5 � g/ω0 < 1, and χ = 256 for
1 � g/ω0 and Nph = 3−8.

The excitation spectra are calculated on the basis of the
matrix-product state formalism, in which finite size clusters
of Lc sites with the open boundary condition are adopted.
Here the spectral functions are expanded using the Chebyshev
polynomial [59]. We define the excitation spectra induced by
the operator A as

χAA(ω) = 〈�GS

∣∣A†δ(ω − H + E0)A
∣∣�GS〉. (9)

The spectral function is expanded as

χAA(ω) = 1

π
√

1 − ω2

[
g0μ0 + 2

Nch−1∑
n=1

gnμnTn(ω)

]
, (10)

where Tn(ω) is the nth Chebyshev polynomial, μn =
〈�GS|A†Tn(H)A|�GS〉 is the Chebyshev moment, and gn is

the correction factor defined by

gn =
(Nch − n + 1) cos πn

Nch+1 + sin πn
Nch+1 cot π

Nch+1

Nch + 1
. (11)

From the recursion formula for the Chebyshev vectors,
|tn+1〉 = 2H|tn〉 − |tn−1〉 with |t0〉 = A|�GS〉 and |t1〉 = H|t0〉,
these are calculated in the matrix-product state formalism.

III. RESULTS

A. Ground state

Before discussing the photoinduced dynamics in CO
systems, we introduce the ground-state properties as the initial
state. In Figs. 2(a) and 2(b), the CO parameter defined in
Eq. (6) and the lattice distortions in Eq. (7) for several values
of g are presented, respectively. Without the fermion-phonon
coupling (g = 0), the CO parameter tends to vanish at V/t = 2
with decreasing V/t as predicted by the exact solution. With
increasing g, the CO phase is strengthened. Alternate ion
distortion occurs in the CO phase, and the saturated values
of q increase with g.

The optical absorption spectra are shown in Fig. 2(c) for
several values of α as well as g = 0, and in Fig. 2(d) for several
values of λ. We define the optical absorption spectra as

χjj (ω) = 〈�GS|jδ(ω − H + E0)j |�GS〉, (12)

where j = ∑
i(itc

†
i ci+1 + H.c.) is the current operator along

the chain. The elementary excitations in the ordered phase of
the one-dimensional XXZ model are known as the domain
wall motions. The optical absorption spectra, in which the
net momentum transfer is zero, are ascribed to the kink and
antikink pair with opposite momenta [60,61]. The energy for a
pair of the noninteracting kink with momentum k and antikink
with momentum k′ is given by

E(k,k′) = εk + εk′ , (13)

with εk = −2t cos(2k) + V/2. This formula indicates that the
optical absorption spectra distribute in V − 4t � ω � V + 4t ,
which is consistent with the main part of the optical spectra
shown in Fig. 2(c), where V/t = 6. We have confirmed that
a weak hump structure below V − 4t , such as a small peak
at around ω/t = 1.9, reduces with increasing cluster size, and
this is an artifact due to the size effect. On the other hand, the
main structure does not depend sensitively on the cluster size.
The spectra in the antiadiabatic case (α = 3.2) are similar to
the spectra without the fermion-phonon interaction, and some
fine structures appear in the adiabatic case (α = 0.4). With
increasing λ, multiple peak structures appear above the main
absorption edge at around V + nω0 with an integer number n

as shown in Fig. 2(d). In the calculations of the photoinduced
dynamics shown in the following section, the pump-photon
frequency is chosen around the energy at which χjj (ω) is finite,
implying that the pump photon yields resonant excitations.

B. Transient state without the fermion-phonon coupling

In this subsection, the photoinduced CO melting in the
case without the fermion-phonon interaction are introduced.
In Fig. 3(a), the time profiles of �EV (τ ) after the excitation
are shown for several values of ωp. We introduce the effective
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FIG. 2. (a) CO parameter and (b) alternate ion displacement for
several values of V/t and λ in the ground state. The other parameter
value is chosen as α = 1.6. (c) The optical absorption spectra at
λ = 0.25 for several values of α, and (d) the spectra at α = 3.2 for
several values of λ. The results at g = 0 are also shown in (c) for
comparison. Other parameters are chosen as V/t = 6 and Lc = 64
in (c) and (d).

FIG. 3. (a) Time dependence of �EV for several values of ωp .
The shaded areas represent the time interval during which the pump
pulse is introduced. (b) The effective absorbed photon number per
site at ωp/t = 4. Other parameter values are chosen as V/t = 6 and
g = 0.

absorbed photon number per site defined as np = Np(τ � τp)
with

Np(τ ) = �E(τ )

ωp

, (14)

where �E(τ ) is the change in the total energy per site. In
several cases of ωp employed in Fig. 3(a), np are unified to be
approximately 0.0005 by adjusting Ap. After introducing the
pump pulse, �EV (τ ) rapidly increases and settles at almost
time-independent values; the photoexcited state is stable after
turning off the pump pulse. In the case of small ωp, an oscilla-
tory behavior appears and is damped at around τ = 10/t . As
shown in Fig. 3(b), np increases quadratically as a function of
Ap. This is interpreted that the number of domain walls in the
CO states, i.e., the kinks and antikinks, increases with Ap.

The time profiles of the CO parameter are shown in
Fig. 4(a). Reduction in O(τ ) occurs monotonically for all
values of Ap. In contrast to the time dependence of �EV (τ )
shown in Fig. 3(a), the CO melting occurs in a long time scale
after turning off the pump pulse. In the case of large Ap, O(τ )
reaches zero, implying almost complete melting of the initial
CO. As shown in the semilogarithmic plot in Fig. 4(b), the
time dependencies of O(τ ) follow an exponential function as

O(τ ) = O0 exp(−γ τ ), (15)

where O0 is the CO parameter in the initial state, and γ is
the damping factor. We have confirmed that exponential de-
pendence of O(τ ) is commonly observed over wide parameter
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FIG. 4. (a) Time dependencies of the normalized O(τ ) and (b) the
semilogarithmic plot of O(τ ) for several values of Ap . The shaded
areas represent the time interval during which the pump pulse is
introduced. Other parameter values are chosen as V/t = 6, ωp/t = 4,
and g = 0.

ranges of ωp and V . The damping factor is calculated for
several values of Ap at fixed ωp(=4t) and is plotted as a
function of np in Fig. 5(a). It increases linearly for small np

and deviates upward with increasing np. As shown in Fig. 5(b),
the ωp dependence of γ shows a dome shape. These two
behaviors of γ are well explained by the results of the soliton
picture plotted by bold lines in Figs. 5(a) and 5(b), as explained
later.

The CO melting dynamics are analyzed by the following
artificial electronic excitation. The vector potential for the
pump pulse is applied at a specific site instead of the uniform
vector potential introduced in Eq. (2). This is termed “the local
excitation” from now on and is defined as

ti,i+1 →
{
teiA(τ ) (i = · · · − L,0,L, · · · )

t other sites,
(16)

where L is a periodicity of the sites in which the excitations
are induced, and the time dependence of A(τ ) is given in
Eq. (3). Responses to the local excitation are monitored by
the CO parameter defined at each site termed “the local CO
parameter” defined as

Oi(τ ) = (−1)i
(〈ni〉 − 1

2

)
. (17)

An intensity plot of Oi(τ ) induced by the local excitations in
a space-time plane is plotted in Fig. 6(a). The periodicity of
the local excitations is chosen to be L = 64. After introducing
the pump pulse, a CO domain characterized by the reduced

FIG. 5. (a) np dependence of γ at ωp/t = 4. Solid and broken
lines represent Eq. (18) and γ = 4vnp , respectively. (b) ωp depen-
dence of γ /(4np) at Ap = 0.1. A solid line represents Eq. (21). The
other parameter is chosen as V/t = 6.

Oi(τ ) is generated, and the boundaries between the domains
propagate almost linearly with time. At τ ≈ 9/t , the domain
wall collides at i = ±32 with other domain walls that are
generated at i = ±L. After the collision, Oi reduces further.
The next collisions occur at approximately τ = 18/t and
i = 0. The velocity of the domain wall is approximately four
sites per unit time of 1/t . After the collisions, both the widths
and velocities of the domain walls are almost unchanged.
From these characteristics, the domain wall dynamics in the
photoinduced CO state are identified as the soliton motions. As
plotted in Fig. 6(b), the CO parameter O(τ ) calculated from
the data of Oi(τ ) shows the exponential decay in the same way
as the results in Fig. 4. We conclude that the soliton motions
are responsible for the photoinduced CO melting.

Next, we derive the damping factor based on the soliton
picture. We set up a model in which the photogenerated
solitons are treated as classical particles. A photoinduced
fermionic excitation is simulated by a stochastic generation
of solitons. We assume that the soliton velocity is constant
at v, and the collisions between the solitons are elastic. The
details are presented in Appendix. We obtain an expression for
γ as

γ = −2v ln(1 − 2Lnp)

L
, (18)

which is approximately γ = 4vnp in the limit of np � 1. The
soliton velocity in Eq. (18) is evaluated from the effective
Hamiltonian derived from Eq. (1) in the limit of V � t . There
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FIG. 6. Numerical results induced by the local excitation. (a) An
intensity plot of Oi(τ )/Oi(τ � 0) in the space-time plane. (b) A
semilogarithmic plot of the time profile of

∑
i[Oi(τ )/Oi(τ � 0)].

The shaded areas represent the time interval during which the pump
pulse is introduced. The other parameter values are chosen as V/t =
6, g/t = 0, ωp/t = 6, Ap = 0.8, τpt = 0.2, and L = 64.

is assumed to be one soliton-antisoliton pair. The effective
Hamiltonian is given as [61]

Heff = −t
∑
i=odd

(b†i bi+2 + d
†
i di+2 + H.c.) + V

2
, (19)

where b
†
i (bi) and d

†
i (di) are the creation (annihilation) oper-

ators of the hard-core bosons for the soliton and antisoliton,
respectively. A summation with respect to i is taken for odd
integers. The interaction between the soliton and antisoliton
given by the second order of t is not included. The eigenstates
are classified by the momenta of the soliton k and antisoliton
k′, and the eigenenergy coincides with Eq. (13). The group
velocity of the soliton is obtained as

vk = |4t sin 2k|. (20)

The factor 2 in the sine function is attributed to the fact
that fermion hopping between the nearest neighbor site corre-
sponds to soliton hopping between the next-nearest-neighbor
sites. In the case where the photon momenta are zero and
the resonant excitation is induced, i.e., ωp = E(k,−k), the

velocity is represented as a function of ωp as

vωp
=

√
(4t)2 − (ωp − V )2. (21)

The maximum group velocity is given as 4t , which is consistent
with the results in Fig. 6(a).

The analytical expression for the damping factor in Eq. (18)
with Eq. (21) is compared with the numerical data. Here, L in
Eq. (18) is treated as a fitting parameter and is determined to be
approximately L = 6.5. It is shown that the np dependence of
γ plotted in Fig. 5(a) reproduces the calculated data well. As
shown in Fig. 5(b), γ as a function of ωp exhibits a dome-
shaped structure that takes its maximum at approximately
ωp = V . This behavior is confirmed by the numerical data
for several values of V . The analytical formulation deviates
only a little from the numerical data for small V , in which the
higher-order quantum fluctuation neglected in Eq. (18) might
be important.

C. Effect of the fermion-phonon coupling

In this subsection, the numerical results in the case of
g �= 0 are presented. In some numerical calculations, we
chose α = 3.2 as a typical antiadiabatic limit, in which the
iTEBD method provides good efficiency due to the localized
characters of phonons. Figure 7(a) shows the time profiles of
O(τ ) for several values of α at λ = 0.25. For comparison,
we also present the results at g = 0, where O(τ ) decreases
exponentially as a function of time as explained previously.
With the introduction of the fermion-phonon coupling, the
reduction of O(τ ) is suppressed. The exponential decay
of O(τ ) remains in the case of large phonon frequencies
(α = 3.2), but the time profiles of O(τ ) deviate from the
exponential decay with decreasing α. To clarify the change
in the CO melting dynamics by brought about the fermion-
phonon coupling, the concept of the soliton velocity introduced
previously is extended to the transient state. From Eqs. (15)
and (18) under the conditions γ τ � 1 and np � 1, we
have O(τ ) ∼ e−γ τ ∼ 1 − 4vnpτ . Thus, the transient soliton
velocity at time τ is introduced as

v∗(τ ) = − 1

4Np(τ )

dO(τ )

dτ
, (22)

where Np(τ ) is defined in Eq. (14). The calculated results of
v∗(τ ) are shown in Fig. 7(c). In the case of large α (α = 3.2),
v∗(τ ) is almost independent of time after turning off the
pump pulse in the same way as for g = 0. The oscillatory
behaviors seen in τ � 10 are suppressed with increasing χ

and are attributed to a numerical artifact. On the other hand,
for small α (α = 0.4 and 0.8), v∗(τ ) changes remarkably in
a short time scale and tends to be saturated in a long time
scale. This characteristic time scale in the adiabatic case
(α = 0.4 and 0.8) will be discussed later. The time profiles
of O(τ ) for several values of λ are presented in Figs. 7(b)
and 7(d), where α is fixed to be 3.2, i.e., the antiadiabatic
condition. The exponential time dependence of O(τ ) and an
almost constant v∗(τ ) are observed for 0 � λ � 3.2, and v∗(τ )
monotonically decreases with increasing λ. The detailed CO
melting dynamics in the cases of the adiabatic and antiadiabatic
conditions are explained in the following two subsections.
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FIG. 7. Time profiles of O(τ ) and v∗(τ ) for [(a) and (c)] several
values of α at λ = 0.25 and ωp/t = 4 and [(b) and (d)] several values
of λ at α = 3.2 and ωp/t = 6. Results at λ = 0 are also plotted for
comparison in (a) and (c). The shaded areas represent the time interval
during which the pump pulse is introduced. The oscillatory behaviors
which are remarkable in τ � 10 in (c) and (d) are attributed to a
numerical artifact. The other parameter values are chosen as V/t = 6,
and τpt = 1.

1. Antiadiabatic case (α � 1)

First, we focus on the dynamics in the antiadiabatic case at
α = 3.2 (>1), where the CO parameter decays exponentially.
The time profiles of �Et (τ ) and �Eph(τ ) + �Eep(τ ) are
shown for several values of λ in Figs. 8(a) and 8(b),
respectively. Except for a small dip and hump structure just
after turning off the pump pulse at α = 2.4 and 3.2, both of
the energies do not show remarkable time dependencies. In
the case of λ = 1 in Fig. 8(b), the energy relaxation occurs
at τ t ∼ 5 from �Eph(τ ) + �Eep(τ ) to �EV (τ ) (not shown).
With an increase in λ, the saturated value of �Et (τ ) decreases
monotonically. The intensity plots in the space-time plane for
Oi(τ ) induced by the local excitation are presented in Fig. 9.
For all cases of λ, the soliton motions are stable. As λ increases,
the velocity decreases, which is consistent with the results in
Fig. 7(d).

From the numerical data shown in Fig. 7(b), the normalized
damping rate γ /(4npt) corresponding to the soliton velocity
is plotted as a function of λ in Fig. 10. The velocity decreases
monotonically with increasing λ. The bold line in the figure
represents the equation given by

γ /(4npt) ∝ e−g2/ω2
0 , (23)

which is expected from the renormalized carrier hopping in
the polaronic state based on the Lang-Firsov theory [62]. The
analytical formula fits the numerical data well even in the
region of small λ, implying that the coherent soliton motion
associated with the ion displacement occurs from weak to
strong coupling regimes. This is termed the polaronic-soliton
picture from now on, and is consistent with the fact that
�Eph(τ ) does not show a remarkable change after turning
off the pump pulse (not shown). We conclude that, in the
antiadiabatic case, the CO melting dynamics is caused by the
soliton motion renormalized by the polaron formation.

2. Adiabatic case (α � 1)

Next, we focus on the CO melting dynamics in the adiabatic
case, α < 1, where the time dependence of O(τ ) deviates from
the exponential decay as shown in Fig. 7(a). The time profiles
of �Et (τ ) and �Eph(τ ) + �Eep(τ ) are shown for several
values of α in Figs. 8(c) and 8(d), respectively. It is confirmed
that �EV (τ ) suddenly increases by pulse irradiation and does
not show a remarkable time dependence after turning off the
pump pulse (not shown). The time profiles of �Et (τ ) are
clearly different from those in the antiadiabatic case presented
in Fig. 8(a); �Et (τ ) gradually decreases after turning off the
pump pulse and is saturated at approximately τ t = 10 and
15 for α = 0.8 and 0.4, respectively. Contrary behaviors are
observed for �Eph(τ ) + �Eep(τ ), which increases gradually
with time. We also confirm that �Eep(τ ) is one order smaller
than �Eph(τ ). The interpretation of these results is that the
excess energy due to the pump excitation is transferred from
the fermionic to phononic systems, and the charge distributions
are compatible with the ion displacements.

In order to analyze the energy transfer, the time profiles
of �Eph(τ ) + �Eep(τ ) are fitted by a function C(e−τ/τr − 1),
where τr is the energy relaxation time and C is a numerical
constant. In Fig. 11, the energy relaxation times calculated
for several values of α(<1) and λ are plotted as a function
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FIG. 8. Time profiles of �Et (τ ) and �Eph(τ ) + �Eep(τ ) for [(a)
and (b)] several values of λ at α = 3.2 and ωp/t = 6 and [(c) and (d)]
several values of α at λ = 0.25 and ωp/t = 4. Results at λ = 0 are
also plotted for comparison in (a) and (c). The shaded areas represent
the time interval at which the pump pulse is introduced. The other
parameter values are chosen as V/t = 6.

of g2/(ω0t). An almost linear dependence is observed until
g2/(ω0t) ∼ 0.16, implying that the energy relaxation is in

FIG. 9. Intensity plots of Oi(τ ) in the space-time plane for several
λ at α = 3.2 induced by the local excitations. The other parameter
values are chosen as V/t = 6, ωp/t = 6, and τpt = 0.2.

accordance with the Fermi golden rule through the fermion-
phonon coupling [38–41]. Above g2/(ω0t) = 0.16, the width
of the pump pulse chosen to be τp = 1/t is comparable
to the energy relaxation time, and the relaxation occurs
before turning off the pump pulse. In Figs. 11(b) and 11(c),
respectively, intensity maps of Oi(τ ) in the space-time plane
after the local excitation are presented for α = 0.4 and 0.8
at λ = 0.25. It is shown that the wave fronts of the domain
walls become broad and the averaged velocities decrease with
time. This is clearly in contrast to the case of large α (see
Fig. 9), in which the soliton velocities are almost independent
of time. The reduction of the soliton velocity is explained by
the soliton model in Eq. (19): As shown in Eq. (20), the soliton
velocity is minimum (maximum) at the bottom (middle) in
the soliton band. Thus, the energy relaxation from fermionic
to phononic systems leads to the reduction in the velocity,
implying a suppression of the CO melting.

Finally, characteristics in the damping factor are sum-
marized; γ /(4npt) are plotted as a function of the inverse
of α in Fig. 12. The damping factors are obtained from

FIG. 10. The normalized damping factor γ /(4np) as a function
of λ at α = 3.2. A solid line represents Eq. (23). The other parameter
values are chosen as V/t = 6, ωp/t = 5, and τpt = 1.
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FIG. 11. (a) The inverse of the energy relaxation time as a
function of g2/(ω0t). Data are obtained by fitting �Eph(τ ) + �Eep(τ )
for several values of α using the equation C(e−τ/τr − 1). Other
parameters are chosen as V/t = 6, ωp/t = 4, and τpt = 1. The solid
straight line is for a guide for the eye. [(b) and (c)] Intensity plots
of Oi(τ ) in the space-time plane induced by the local excitation at
α = 0.4 and 0.8 with λ = 0.25. The other parameters are chosen as
V/t = 6, ωp/t = 6, and τpt = 0.2.

the time profiles of O(τ ) at a time when v∗(τ ) is fully
saturated. With increasing α, the numerical data approach a red
broken line, which represents the damping factor without the
fermion-phonon coupling multiplied by the polaronic factor
e−(g/ω)2

. Below α ∼ 1, the reduction of the calculated results

FIG. 12. The normalized damping constant plotted as a function
of 1/α at λ = 0.25. Black and red straight lines represent the results
at g = 0, and g = 0 multiplied by exp−(g/ω0)2

. The other parameters
are chosen as V/t = 6, ωp/t = 4, Ap = 0.1, and τpt = 1.

from the red broken line is remarkable and is attributable to
the energy relaxation from fermionic to phononic systems.

IV. DISCUSSION AND SUMMARY

We present in this paper a comprehensive analysis of
the photoinduced melting dynamics of the one-dimensional
CO state interacting with the local phonons. By using the
iTEBD method, we obtain reliable numerical data for the
time dependencies of the CO parameter, the electronic and
phononic energy, and so on. We also analyze the CO melting
dynamics in the system in which the artificial local photoex-
citation is introduced. As is well known, the excited state in
the one-dimensional CO state without the electron-phonon
coupling is described by the soliton and antisoliton picture.
This is directly confirmed by calculations of the local CO
parameter induced by the local excitation shown in Fig. 6; the
domain-wall motions collapse the CO structure and give rise
to the exponential time dependence of the CO parameter as
O(τ ) ∝ e−γ τ . The characteristic CO melting induced by the
local excitation is reproduced by the classical soliton picture
presented in Appendix, in which the solitons are treated as
classical particles. We have an expression for the damping
constant γ in Eq. (18), showing it is proportional to the soliton
velocity in the limit of the weak photoexcitation.

The roles of the quantum phonons in the CO melting
dynamics are characterized by the dimensionless adiabatic
parameter α = ω0/t . We perform numerical analyses in a
wide parameter region of α. In the case of the antiadiabatic
region (α � 1), the CO melting dynamics are caused by
the polaronic soliton picture. The stable propagations of the
domain walls survive even when the fermion-phonon coupling
is taken into account, but the soliton velocity is renormalized.
The damping constant γ decreases with increasing fermion-
phonon coupling. This reduction of γ in a wide region of the
coupling constant (0 < λ = g/ω0 < 1.25) is well fitted by the
expression for the polaronic state deduced by Lang and Firsov,
[62] which is known to be derived in the strong-coupling
regime. This implies that the solitons and ionic displacements
propagate coherently even in the case of small g. This might be
attributed to the fact that the ions are distorted cooperatively
in the CO ground state even for small g, where incoherent
motions of electrons and ions produce an energy loss on the
macroscopic order.

On the contrary, in the adiabatic case (α � 1), the CO
melting in the early stage of the photoexcited transient state
is not induced by the propagations of the solitions but by
their relaxations. The photogenerated solitons have a band
energy of εk = −2t cos 2k and a velocity v = 4t sin 2k, where
the interaction with phonons and that between solitons are
neglected. Through the fermion-phonon coupling, the kinetic
energy of the solitons is dissipated to the phononic system, and
the soliton velocity is reduced. The solitons settle down around
the bottom of the band, where they cannot be relaxed further
by the emission of the quantum phonons. After the relaxation,
CO melting is induced by the soliton propagation in the same
way as in the antiadiabatic case. This scenario is confirmed
by the calculation of the transient electron energy and phonon
energy, in which the relaxation time is scaled by g2/(ω0t).
The change in the time dependence of the CO parameter,
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that is, the nonexponential decay in the early stage and the
exponential decay after the energy relaxation, is understood in
this scenario.

Beyond the present calculations in the one-dimensional
lattice, the photoinduce CO melting in the two- and three-
dimensional CO systems is expected to be caused by the
individual electronic motions instead of the soliton motions. It
is shown in the two-dimensional lattice that the time profiles
of the CO parameter after photoirradiation do not follow
simple exponential dependencies, and there are threshold
fluorescences which increase with increasing the electron-
phonon coupling [30,31]. Further reliable analyses are re-
quired to clarify the common and different points between the
photoinduced CO dynamics in one- and higher-dimensional
systems.
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APPENDIX: A CLASSICAL SOLITON MODEL

In this Appendix, we introduce a classical model for the
photoinduced soliton and antisoliton in order to derive an
analytical expression for the damping factor given in Eq. (18).
We introduce a classical particle model in a one-dimensional
chain, in which hard-core particles (antiparticles) correspond
to the solitons (antisolitons) in the CO state. We assume that
the (anti)particle velocity is constant at v, and elastic collisions
occur between the (anti)particles. Pump-photon irradiation is
simulated by a stochastic generation of the particle-antiparticle
pairs in the bonds connecting the nearest-neighboring sites
with a periodicity L and probability n. We assume a π phase
shift for CO and a step-function-like CO parameter across the
(anti)soliton as shown in Fig. 13(a). The local CO parameter
is calculated in this model and the intensity map of Oi(τ )
in the space-time map is shown in Fig. 13(b). The result
reproduces the numerical results shown in Fig. 6(a) well.
At time τm = Lm/(2v) when the m-time collision occurs
as indicated by broken lines in Fig. 13(b), the local order
parameters are spatially uniform. We confirm at least up to
m = 5 that the amplitude of the CO parameter at time τm

is given approximately by O(τm) = (1 − 2n)m. This result is

FIG. 13. (a) A schematic picture of a soliton and an antisoliton in
the CO state. (b) An intensity map of Oi(τ ) in the space-time plane
obtained by the classical soliton model.

interpreted as follows. Let us consider the state at τ1 = L/(2v),
until when the (anti)solitons propagate independently. The
local CO parameters at the sites that the (anti)soliton passes
over and does not pass over are 1 and −1, respectively. Because
the probability of the photogeneration of solitons is n, the CO
parameter at this time is obtained by averaging as O(τ1) =
1 × (1 − n) + (−1) × n = 1 − 2n. At time τ2 = 2L/(2v), the
second collision occurs between the soliton and antisoliton
generated at i = 0 and L. Four photoinduced states are
possible: The (anti)soliton is generated at both the sites of i = 0
and L, at either the i = 0 site or the i = L site, and at neither
of the sites. Because these probabilities are n2, n(1 − n),
n(1 − n), and (1 − n)2, respectively, the CO parameter is
obtained by their average as O(τ2) = 1 × n2 + (−1) × n(1 −
n) + (−1) × n(1 − n) + 1 × (1 − n)2 = (1 − 2n)2. The order
parameters at τm with m � 3 are obtained in the same way.
By using the relation n = npL where np is the effective
photon number introduced in Sec. III B, the CO parameter
is given as O(τm) = (1 − 2n)m = exp[2vτm ln(1 − 2Lnp)/L].
This expression can be extended to continuous time. By
comparing this result with Eq. (15), the damping factor for
the CO parameter is identified as γ = −2vL−1 ln(1 − 2Lnp),
which is Eq. (18).
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