
PHYSICAL REVIEW B 96, 035149 (2017)

Robustness of symmetry-protected topological states against time-periodic perturbations
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The existence of gapless boundary states is a key attribute of any topological insulator. Topological band
theory predicts that these states are robust against static perturbations that preserve the relevant symmetries.
In this article, using Floquet theory, we examine how chiral symmetry protection extends also to states
subject to time-periodic perturbations—in one-dimensional Floquet topological insulators as well as in ordinary
one-dimensional time-independent topological insulators. It is found that, in the case of the latter, the edge
modes are resistant to a much larger class of time-periodic symmetry-preserving perturbations than in Floquet
topological insulators. Notably, boundary states in chiral time-independent topological insulators also exhibit an
unexpected resilience against a certain type of symmetry-breaking time-periodic perturbations. We argue that
this is a generic property for topological phases protected by chiral symmetry. Implications for experiments are
discussed.
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I. INTRODUCTION

A hallmark of a symmetry-protected topological (SPT)
phase of matter—topological insulators and topological super-
conductors being well-known examples [1,2]—is the presence
of gapless boundary states [3]. The very existence of these
states is a consequence of the nontrivial topology of the
bulk band structure (“bulk-boundary correspondence”), with
the symmetry protection ensuring their robustness against
static gap-preserving perturbations as long as the relevant
symmetries remain unbroken [4–6]. As is well known, this
robustness, along with other unique properties of the boundary
states, has raised the prospects for exploiting SPT phases for
future technologies—from applications in spintronics [7] to
topological quantum computation [8].

How does the symmetry protection play out when the
boundary states are subject to time-dependent perturbations?
While a comprehensive answer has to await further advances
in the theory of SPT phases, the case of time-periodic
perturbations can be addressed efficiently by using Floquet
theory [9,10]. In this work we exploit this advantage to answer
the question to what extent the midgap boundary states in
a SPT phase are robust against a time-periodic disordering
perturbation. While such perturbations may not occur naturally
in physical systems, they have recently been realized in highly
controlled experiments with cold atomic [11] and optical [12]
setups. As such, their study could open a new inroad to explore
the physics of SPT phases.

We focus on two typical brands of one-dimensional (1D)
SPT phases—Floquet topological insulators [13,14] and ordi-
nary time-independent insulators [1,2]—with boundary states
protected by chiral symmetry [3]. The first type—the Floquet
insulator—is obtained by driving a system with a time-periodic
field, resulting in symmetry-protected boundary states in
nonequilibrium [13–19]. The protection of the states comes
about as a feature of the time-evolution operator, implying
that robustness against added time-periodic perturbations can
be investigated within the same Floquet formalism which
describes the driving of the bulk. As noted by Asbóth et al. [20],
the robustness of boundary states in a chiral Floquet system
driven by two time-periodic fields of the same frequency

depends critically on the relative phase of the driving. By
a systematic study we here extend this picture to the case
where one field drives the bulk, with the other acting as a
time-periodic disordering perturbation. As one would expect,
we find that boundary states remain robust to time-periodic
perturbations that preserve chiral symmetry. In its turn, the
very existence of chiral symmetry in an unperturbed driven
system depends crucially on the phase of the bulk driving. It
follows that the states remain protected only when the phase
of the time-periodic disordering perturbation is properly tuned
to the driving in the bulk. This is explicitly shown analytically
and confirmed numerically.

Turning to the time-independent topological insulators,
we can again use Floquet theory to study the effect of
time-periodic perturbations. This is so, since any time-
independent Hamiltonian is trivially periodic in time. Our
analysis and findings here can be summarized as follows:
First, we make explicit how the freedom in choosing starting
point in the stroboscopic Floquet time evolution implies that
chiral time-independent systems actually possess an infinite
number of chiral symmetries. As a consequence, the edge
states are robust against a much larger class of symmetry-
preserving time-periodic perturbations compared with those
of a Floquet topological insulator. Second, we establish a
class of symmetry-breaking time-periodic perturbations for
which the boundary states display an unexpected resilience.
A detailed analysis reveals how this property is manifested
in Floquet perturbation theory: The effect coming from this
class of perturbations gets suppressed by the very structure
of the unperturbed chiral-symmetric spectrum, implying that
its expected leading-order contribution vanishes identically.
Such protection is a very interesting feature because it hints
that, even when the chiral symmetry is broken, a residue of it
can still have an effect on the system’s behavior.

For simplicity, our analysis proceeds by way of example,
with the Su–Schrieffer–Heeger (SSH) model [21] as a case
study. To cover the two classes of topological insulators—
Floquet and time-independent ones—we consider a periodi-
cally driven version of the SSH model as well as the original
time-independent variety. Our choice is motivated by the
fact that the SSH model serves as a prototype for band
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insulators exhibiting topological phases [22–25]. We should
point out, however, that our analysis can be carried over
to any 1D chirally symmetric topological phase (symmetry
classes AIII, BDI, DIII, and CII in the Altland–Zirnbauer
classification [26]).

The paper is planned as follows: In the next section, after
a brief introduction to Floquet formalism, we present the
harmonically driven SSH model and describe its topological
properties. We then discuss the topological protection of
the boundary states and explicitly identify the types of
time-periodic disorder in the presence of which the states
remain robust. In Sec. III we turn to the undriven (time-
independent) SSH model and describe first the symmetries
that the system possesses within Floquet theory. It is then
argued that the boundary states are robust to a much broader
class of time-periodic perturbations than in the driven case, and
this is verified numerically. Next, we present our perturbative
analysis revealing the enhanced resilience of the boundary
states for a certain type of symmetry-breaking time-periodic
perturbations. This is followed by a qualitative argument
why this property may hold also outside the perturbative
regime, supplemented by supporting data from numerical
computations. In the same section we discuss time-periodic
disorder in the chemical potential—an important type of
perturbation for making contact with experiments. Finally,
we comment on the feasibility to test our predictions in
an experiment using optically trapped cold atoms. A brief
summary and outlook is given in Sec. IV.

II. HARMONICALLY DRIVEN
SU–SCHRIEFFER–HEEGER MODEL

A. Floquet formalism

To set the stage, let us recall that the time evolution of
any quantum system driven by time-periodic fields can be de-
scribed using Floquet theory [9,10]. Within this formalism an
equivalent of energies, so-called quasienergies, can be defined
and one may consider the band structure of the system in terms
of its quasienergy spectrum. Specifically, the Schrödinger
equation with a time-periodic Hamiltonian H (t) = H (t + T )
has a complete set of solutions |ψn(t)〉 = exp(−iεnt)|un(t)〉,
commonly called steady states, where εn denotes the
quasienergies and |un(t)〉 = |un(t + T )〉 for all times t (with
h̄≡1). The quasienergies, defined modulo 2π/T , appear in
the dynamical phase acquired by the steady states, and in this
sense they are similar to ordinary energies. The quasienergy
spectrum can be found by using the fact that the states
|un(t)〉 are eigenstates of the evolution operator U (t,T + t)
associated with the eigenvalues exp(−iεnT ). To find the band
structure it is thus sufficient to diagonalize U (t,T + t) for
some conveniently chosen fixed time t . Alternatively, one can
Fourier transform the Schrödinger equation and perform the
calculations in the frequency domain [9,10].

B. Topological characteristics of the model

The SSH model consists of spinless fermions hopping
on a 1D staggered lattice [21]. Here we assume that the
hopping amplitudes have both static and time-dependent
harmonically modulated components as shown in Fig. 1.

A B A A B 

unit cell 

B A B 

FIG. 1. A schematic illustration of the harmonically driven SSH
chain, with hopping amplitudes γ1/2 ± v(t), where v(t) ∼ cos(�t).

Within a tight-binding approximation the Hamiltonian with
vanishing chemical potential can be written as [27]

H (t) = −
∑

j

(γ1c
†
A,j cB,j + γ2c

†
B,j−1cA,j + H.c.)

+
∑

j

(v(t)c†A,j cB,j − v(t)c†B,j−1cA,j + H.c.), (1)

where c
†
σ,j and cσ,j (σ = A,B) are creation and annihilation

operators, γ1 and γ2 are the static intracell and intercell
hopping amplitudes respectively, and v(t) = 2Vac cos(�t) is
the harmonically modulated component of the hopping.

The undriven SSH Hamiltonian H0 [defined by setting
v(t) = 0 in Eq. (1)] has chiral symmetry, implying the ex-
istence of a unitary operator � such that �H0� = −H0 where
�cA,j� = cA,j and �cB,j� = −cB,j . The representation [28]

� ≡ eiπ
∑

j c
†
B,j cB,j (2)

allows for an easy check of chiral symmetry in the second-
quantized formalism, more convenient than if one were to
directly use a representation of the second-quantized anti-
unitary chiral operator [26]. Clearly, the chiral symmetry here
reflects a sublattice symmetry, i.e., the property that the SSH
Hamiltonian H0 does not couple sites on the same sublattice.
As it turns out, the harmonically driven SSH model has a chiral
symmetry as well, but now given for the evolution operator.
This can be established by first noticing that H (t) in Eq. (1)
satisfies the relation

�H (t)� = −H (−t). (3)

As shown in Appendix A, this property is sufficient for
proving that the evolution operators F ≡ U (0,T /2) and
G ≡ U (T/2,T ) are related as F = �G†�. From this follows
immediately that the periodically driven model has chiral
symmetry, as expressed by �U (0,T )� = U−1(0,T ) [20].

With chiral symmetry in hand, we refer to a general
result [20] to conclude that the topological phases of the
harmonically driven SSH model can be characterized by two
integer topological invariants, v0 and vπ . These invariants
count the number of SPT boundary states at each end of the
chain, corresponding to quasienergies 0 and �/2, respectively.
It has been suggested that both of them can be extracted from
the operator F defined above, after imposing spatially periodic
boundary conditions [20,29]. For the present problem we have
carried out the calculation numerically by discretizing the
time evolution into a large number of intervals and assuming
that the Hamiltonian H (t) is constant in each of them. The
values of the topological invariants for different static hopping
amplitudes are displayed in Fig. 2, in excellent agreement with
that obtained from an analysis of the Zak phase [27].
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FIG. 2. The topological invariants ν0 and νπ calculated for Vac =
0.2� and different values of γ1 and γ2. νπ/0 = 1(0) corresponds to a
topologically nontrivial (trivial) winding number.

C. Protection against symmetry-preserving
boundary perturbations

In exact analogy to the time-independent case, the sym-
metry protection of the topological invariants against time-
periodic perturbations comes from the restriction that the chiral
symmetry places on the quasienergy spectrum. For details, see
Appendix B. As a consequence, the boundary states in the
thermodynamic limit of the SSH model, Eq. (1), are expected
to be robust against gap-preserving time-periodic perturbations
V (t), which do not violate the chiral relation �V (t)�=
−V (−t). This condition is satisfied for any site-dependent
perturbation of the hopping amplitudes γ1 and γ2 that is even in
time (which, trivially, includes static perturbations). In contrast
to a disordering of the hopping amplitudes, a perturbation
from an added time-periodic staggered chemical potential 


(proportional to c
†
A,j cA,j − c

†
B,j cB,j ) has to be odd in time in

order to respect chiral symmetry [20].
In Fig. 3 we numerically examine the robustness of

the boundary states against various types of time-periodic
perturbations, here added to one of the boundary regions
(taken to extend over several sites near the left edge of
the chain) as a spatial disordering of the amplitudes of the
hopping (∼γ1,γ2) or the staggered chemical potential (∼
).
By confining the perturbation to a boundary region, we are
ensured that the quasienergy bulk gaps stay open for all
disorder realizations. In contrast, bulk perturbations may close
the gap for certain realizations of large-amplitude disorder,
removing the protection. The quasienergies were obtained
by truncating the Hamiltonian in the frequency domain [10]
and then diagonalizing it numerically. All perturbations were
chosen to be harmonic in time, however, our approach can be
generalized to any time-periodic perturbation. The numerical
results validate our predictions above: The midgap levels at
quasienergies 0 and �/2 (in red color in Fig. 3), corresponding
to the perturbed boundary states, are robust against perturba-
tions of hopping amplitudes (staggered chemical potential)
which are even (odd) in time, otherwise not. It is important to
realize that the zero reference time gets fixed by us when
we take the bulk driving to be proportional to cos(�t).
Thus, the phases of the allowed boundary perturbations for
which the midgap states remain robust are determined by
the phase of the bulk driving. We should also mention that
the hopping disorders were taken to be complex in the

     
 

 

 

 

 

     
 

 

 

 

 

     
 

 

 

 

 

     
 

 

 

 

 

     
 

 

 

 

 

     
 

 

 

 

 

FIG. 3. Quasienergy spectra of harmonically driven SSH chains
subject to time-periodic boundary perturbations, here realized as a
spatial disordering of the amplitudes for hopping (∼γ1,γ2) or of an
added staggered chemical potential (∼
). The chains have 80 sites,
with unperturbed γ1 = 0.15�, Vac = 0.2�, and with γ2 swapped
from 0 to 1.2�. The disorder is added over 20 sites from one of the
boundaries, with the disorder amplitudes varying randomly within the
interval [−0.2�,0.2�]. Here we display levels for bulk states (black),
perturbed (red), and unperturbed (green) edge states corresponding
to single disorder realizations. For each type of perturbation 100
different disorder realizations were considered, with the midgap
quasienergies always to be found confined to the corresponding pink
regions.

computations, thus disabling particle-hole symmetry to protect
the boundary states when the chiral symmetry is broken by
a perturbation.

It is interesting to note the appearance of additional edge
states in the topologically trivial regime of the harmonically
driven SSH chains, with values of γ2 near � (see Fig. 3).
Similar states have been seen also in other 1D Floquet
systems [30]. These boundary modes are not expected to be
of a topological origin. Still, such states are robust against
weak perturbations because they are separated from the
bulk modes by a finite gap. Intriguingly, the response of
these states to various time-periodic perturbations seems to
be correlated with the robustness of the topological edge
states: In Fig. 3 we see that the corresponding quasienergy
shifts are much more profound in the cases where chiral
symmetry is broken by the perturbation. This feature warrants
further study.
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III. TIME-INDEPENDENT SU–SCHRIEFFER–HEEGER
MODEL

A. Symmetry preservation in the model

Time-independent models can also be handled within the
Floquet formalism because any static Hamiltonian is periodic
in time for any frequency �. Thus, we may write the evolution
operator of a time-independent model as U (t0,t0 + T ),
where t0 is a fixed reference time and T is interpreted as
a period in the Floquet formalism. By this simple change
of perspective we can systematically explore the robustness
of the boundary states against time-periodic perturbations.
It should be stressed that once we enter Floquet theory the
notion of energy is replaced by quasienergy and this must be
carefully taken into account.

Having expressed the evolution operator for a time-
independent chirally symmetric model as U (t0,t0 + T ), it is
essential to note that within the Floquet formalism the model
actually supports an infinite number of chiral symmetries.
This is so because �U (t0,t0 + T )�=U−1(t0,t0 + T ) for any
choice of reference time t0. Since the effect of a time-periodic
perturbation is independent of the choice of t0, the perturbation
has to break all these chiral symmetries in order to kick
the quasienergies away from zero. Therefore, the symmetry-
protected boundary modes in static chiral models are expected
to be robust to a much broader class of time-periodic pertur-
bations in comparison with the Floquet topological insulators
discussed above.

In Fig. 4 we show numerical data for undriven SSH chains
[v(t)=0 in Eq. (1)] subject to the same time-periodic disorders
that we considered in Fig. 3 for the harmonically driven case.
The quasienergies corresponding to the symmetry-protected
states are seen to be completely unaffected by the harmonic
single-parameter disorders, independently of the phase of the
perturbative driving. This is in full agreement with the discus-
sion above because, in each of these cases, the chiral symmetry
is preserved for some t0. We briefly note that the band structure
now supports only a single gap, with all dynamical gaps being
closed because of the absence of bulk driving. Also, the edge
states for γ2 near � are not present anymore.

B. Resilience of the boundary states against
symmetry-breaking perturbations

In general, topological boundary states are not protected
against symmetry-breaking perturbations. Still, in what fol-
lows we show that boundary states of time-independent 1D
chiral systems inherit a residual protection also against a large
class of symmetry-breaking time-periodic perturbations. To be
more specific, we show that boundary states of these systems
show a resilience against perturbations of the form

V (t) =
∑

n

Vn cos (n�t + φn), (4)

where ∀ n ∈ N : �Vn� = ±Vn (± can depend on n) and
φn ∈ R. Importantly, this class of perturbations which in
general break chiral symmetry for all choices of reference time
t0, neither depends on the specifics of the model considered
nor on any spatial fine tuning. To analytically uncover this
surprising resilience of the boundary states we turn to Floquet

     
 

 

 

 

 

     
 

 

 

 

 

     
 

 

 

 

      
 

 

 

 

 

     
 

 

 

 

 

     
 

 

 

 

 

FIG. 4. Quasienergy spectra of time-independent SSH chains
[v(t) = 0 in Eq. (1)] under influence of various time-periodic
boundary perturbations. These perturbations were implemented as
a spatial disordering of the hopping amplitudes (∼γ1,γ2) or of an
added staggered chemical potential (∼
). The chains were taken
with γ1 = 0.15� and γ2 varying between 0 and 1.2�. Each chain
consists of 80 sites and is disordered over the first 20 sites from one
of the boundaries, with the corresponding disorder amplitudes chosen
randomly within the interval [−0.2�,0.2�]. Here we illustrate
quasienergies for bulk states in black and edge states in red,
respectively (the quasienergies of the perturbed and unperturbed edge
modes perfectly match in this case).

perturbation theory and establish that the expected leading-
order quasienergy correction vanishes identically.

Analogous to conventional perturbation theory, Floquet
perturbation theory allows us to estimate corrections to the
eigenvalues (quasienergies) in powers of the strength of
the time-periodic perturbation V (t). Within this formalism
the first- and second-order quasienergy corrections to any
nondegenerate level are given by

ε1
ψ = 1

T

∫ T

0
〈ψ0(t)|V (t)|ψ0(t)〉dt, (5)

ε2
ψ =

∑
β �=ψ

∣∣ 1
T

∫ T

0 〈β0(t)|V (t)|ψ0(t)〉dt
∣∣2

ε0
ψ − ε0

β

, (6)

where |ψ0(t)〉, |β0(t)〉 are unperturbed steady modes associ-
ated with quasienergies ε0

ψ and ε0
β , V (t) is a time-periodic

perturbation, and T is a driving period. The sum runs over
all steady modes |β0(t)〉 differing from the mode under
consideration |ψ0(t)〉. The corrections above are given by
the same expressions as in stationary perturbation theory but
modified in accordance with the Floquet formalism, with
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matrix elements of operators being replaced by their time
averages over the period T [10].

Let us now consider a 1D topologically nontrivial system
described by an unperturbed Hamiltonian H0(t). While we are
here primarily interested in time-independent nonperturbed
systems where H0(t) = H0, for now we keep the time argument
in the Hamiltonian which allows us to discuss both cases on
the same footing: driven and undriven nonperturbed systems.
We assume that the system is chirally symmetric, implying
that Eq. (3), �H0(t)� = −H0(−t), is satisfied. For simplicity
we suppress the reference time t0 in all formulas but keep
in mind its presence whenever relevant. Equation (3) restricts
the unperturbed steady modes to come in symmetry-bounded
pairs: |β0(t)〉 is a steady mode with quasienergy ε0

β if and
only if |β0(−t)〉 is also a steady mode but with quasienergy
−ε0

β . Also, it is assumed that in the thermodynamic limit
the zero-quasienergy level is nondegenerate at each of the
boundaries (with the zero-quasienergy boundary mode at the
left edge having vanishingly small overlap with the zero-
quasienergy boundary mode at the right edge), and therefore
we may apply nondegenerate perturbation theory separately
for each of the boundary modes. Without loss of generality we
focus on the symmetry-protected mode satisfying |ψ0(t)〉 =
�|ψ0(−t)〉. This is the time-dependent analog of the relation
|ψ0(0)〉 = �|ψ0(0)〉 discussed in Appendix B. Here, we focus
on 1D chiral systems with only one localized state per edge,
but our approach can be straightforwardly generalized to the
degenerate case, leading to the same result.

We are interested in the leading-order correction to the zero-
quasienergy level ε0

ψ = 0 associated with the state |ψ0(t)〉 =
�|ψ0(−t)〉 under influence of the time-periodic perturbations
V (t) introduced in Eq. (4). According to Eq. (5), the first-order
correction is generally nonzero for a driven state |ψ0(t)〉;
however, it does vanish in the case when |ψ0(t)〉 = |ψ0〉 is
a stationary state, i.e., an eigenstate of a time-independent
system [H0(t) = H0]. This is so because of the integration
over the period T . This result is not surprising because the
first-order correction represents energy-conserving transitions
disallowed in time-independent systems by requiring the
perturbative driving to have zero time average.

Given that the first-order correction vanishes identically
when the unperturbed system is time independent, we now
consider the second-order correction (6) for this case. The
unperturbed modes |β0(t)〉 are given now by |β0(t)〉 =
ein�t |β0〉, with n ∈ N and |β0〉 being eigenstates of the static
Hamiltonian. By this, we can split the sum in Eq. (6) into a
sum over quasienergy phases ein�t and eigenstates |β0〉, with
ε0
β → ε0

β + n�. By using that ε0
ψ = 0, we thus obtain

ε2
ψ =

∑
β �=ψ, n

∫∫ 〈β0|V (t)|ψ0〉〈ψ0|V (t ′)|β0〉ein�(t−t ′)

−ε0
β − n�

=
∑

β �=ψ, n

〈β0|V (−n)|ψ0〉〈ψ0|V (n)|β0〉
−ε0

β − n�
, (7)

where t and t ′ are both integrated over one period T and then
time averaged (divided by T ). Also, in the second line we intro-
duced the Fourier components V (n) ≡ 1

T

∫ T

0 e−in�tV (t)dt . It is
easy to verify that these satisfy the relation V (±n) = e±iφnVn/2
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FIG. 5. Scaling of maximum zero-quasienergy shifts with
maximum disorder amplitude for time-independent (panels with
subindex 1) and harmonically driven (panels with subindex 2)
SSH chains with γ1 = 0.15� and γ2 = 0.5�. The chains consist
of 80 sites and in the driven case the harmonic modulation was
fixed to v(t) = 0.4 cos(�t). The added time-periodic boundary
perturbation, extending over 20 sites from one of the edges, was
implemented as a spatial disordering of two independent parameters:
(a) γ1,j cos(�t) + 
j cos(2�t), (b) γ2,j cos(�t) + γ1,j sin(2�t), (c)

j sin(�t) + γ2,j sin(2�t) with j = 1,2, . . . ,10. In red we plot the
largest zero-quasienergy shift ε[�] maximized over 100 disorder
realizations versus the largest allowed disorder site amplitude,
denoted by V [�]. The blue curve represents smoothed data obtained
by replacing every 20 points by their average.

in accordance with the assumed form of perturbations, Eq. (4).
Together with the property �Vn� = ±Vn and the chiral
symmetry of the unperturbed Hamiltonian, implying that the
unperturbed eigenmodes |β0〉 with ε0

β always come paired to
|β0

�〉 ≡ �|β0〉 with ε0
β�

≡ −ε0
β , this relation allows us to derive

ε2
ψ =

∑
β �=ψ

∑
n

〈β0|V (−n)|ψ0〉〈ψ0|V (n)|β0〉
−ε0

β − n�

=
∑
β �=ψ

∑
n

〈β0|��V (−n)��|ψ0〉〈ψ0|��V (n)��|β0〉
−ε0

β − n�

=
∑
β �=ψ

∑
n

〈
β0

�

∣∣V (−n)|ψ0〉〈ψ0|V (n)
∣∣β0

�

〉
ε0
β�

+ n�
= 0. (8)

The correction ε2
ψ vanishes because the first and last

expressions in Eq. (8) are the same but with opposite signs
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

(e1) (e2)

(f1) (f2)

FIG. 6. Quasienergy spectra obtained from disordering the first 20 sites of 80-site SSH chains with unperturbed γ1 = 0.15� and γ2 swapped
from 0 to 1.2�. The levels for bulk states, perturbed and unperturbed edge states are displayed in black, red, and green, respectively. The
panels having subindex 1 or 2 correspond to the time-independent or harmonically driven [with v(t) = 0.4 cos(�t)] cases, respectively. The
disorder is here added as a time-periodic spatial disordering of the amplitudes for hopping (∼γ1,γ2) and/or a staggered chemical potential
(∼
): (a) γ1,j cos(�t) + γ2,j sin(2�t), (b) γ2,j cos(�t) + γ1,j sin(2�t), (c) 
j sin(�t) + γ1,j sin(2�t), (d) γ1,j cos(�t) + 
j cos(2�t),
(e) γ2,j cos(�t) + 
j cos(2�t), (f) 
j sin(�t) + γ2,j sin(2�t) with j = 1, . . . ,10. The maximum disorder strength was taken to be 0.5�

in each of the disordering parameters. The pink areas define the regions to which the shifted midgap quasienergies were found to be confined
after collecting data from 100 distinct disorder realizations.

(only the terms in the summations are ordered differently). As
follows from the derivation, the vanishing of the second-order
correction for this class of perturbations crucially hinges on
the chiral symmetry of the unperturbed Hamiltonian.

In Fig. 5 we numerically verify the scaling of the
quasienergy shifts when perturbed by various driven disorders,
again employing the SSH model. To test our prediction we
choose to disorder two independent parameters and drive the
corresponding perturbations periodically in time by using a
superposition of a first and second harmonic. Such pertur-
bations may be less accessible experimentally but represent
well the class of perturbations assumed in the calculation
above. In agreement with our perturbative prediction, in the
undriven case the leading-order scaling is indeed only cubic
in the disorder strength (see Fig. 5). The deviations from
cubic scaling come from subleading terms, which, as expected,
grow with the disorder strength. For comparison, we have
also considered harmonically driven chains under analogous
disordering perturbations and found that the leading-order
scaling is here linear, as anticipated.

C. A reduced effect of symmetry-breaking perturbations
outside the perturbative regime

The analysis above indicates that the quasienergy shifts
in chiral time-independent systems are typically small in
the perturbative regime for all time-periodic disorders with

vanishing static components. This is so since at least the
first-order correction vanishes in this case. Here we present
a qualitative argument why one should expect a reduced effect
also for strong disorders.

We recall that time-independent chiral systems possess
a chiral symmetry for any choice of reference time t0.
Decomposing a generic time-periodic perturbation as V =
VS + VnS, where VS (VnS) preserves (breaks) chiral symmetry,
t0 can then be chosen so as to minimize VnS; denote it by
V min

nS . In general, the picked reference time changes as we
vary the time-dependence of V. Inasmuch as a quasienergy
shift is insensitive to the choice of reference time, it then
has to remain small whenever V min

nS is small (since the
symmetry-preserving component by itself does not affect
the midgap quasienergy). It is essential to point out that the
minimized symmetry-breaking part V min

nS can be small even
when the total perturbation V is large. By this, one expects
that the redundancy of possible symmetry-respecting reference
times intrinsically bolsters an enhanced resilience of the
boundary states compared with systems without this degree of
freedom. This makes static chiral systems under time-periodic
perturbations special, different from chiral Floquet systems
(with the symmetry-respecting reference time fixed by the
driving in the bulk) and time-independent systems under static
perturbations (where the symmetry-breaking component of the
perturbation does not at all depend on the reference time).
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To assess this statement, we present numerical results
performed on the strongly disordered time-independent and
harmonically driven SSH models. In all cases considered
the quasienergy shifts in the time-independent SSH chains
are found to be suppressed compared with those in the
harmonically driven case (see Fig. 6). Notably, in several of the
cases the suppression is dramatic, implying extremely resilient
boundary levels.

D. Time-independent Su–Schrieffer–Heeger model
under time-periodic disorder in chemical potential

In the numerical studies of the time-independent SSH
model we have so far examined two types of boundary
perturbations: time-periodic spatial disordering of the hopping
amplitudes (∼γ1,γ2) and of an added staggered chemical
potential term (∼
). Both of these perturbations are probably
difficult to implement in an experimental setup. A boundary
perturbation which is expected to have greater potential to be
realized in an experiment is that of a time-periodic spatially
disordered chemical-potential term. Adding it to the time-
independent SSH model, we have the Hamiltonian

H (t) = −
∑

j

(γ1c
†
A,j cB,j + γ2c

†
B,j−1cA,j + H.c.)

+
∑
σ,j

μσ,j (t)c†σ,j cσ,j . (9)

Here the first sum represents the time-independent SSH
chain, while the second term, with σ = A,B, is the added
chemical potential, disordered in a boundary region by allow-
ing the time-periodic amplitudes μσ,j (t) to vary randomly for
lattice sites j in some neighborhood of one of the edges of
the chain. For the rest of the chain the chemical potential is
set to zero. It is interesting to note that the disorder in the
chemical potential can be eliminated at the cost of introducing
a time-periodic disordering of the hopping amplitudes (see
Appendix C). It follows that a perturbation from a time-
periodic disordered chemical-potential term results in the
same physics as we uncovered above when considering time-
periodic disordering of the hopping amplitudes.

A perturbation in the chemical potential commutes with �

and therefore it has to be odd in time for some reference time
t0 in order to respect chiral symmetry and by this robustness
of the SPT states. Accordingly, whereas a static disorder in
a chemical potential kicks the symmetry-protected boundary
states away from zero quasienergy, any harmonically driven
disorder will preserve a chiral symmetry at a certain reference
time and have no effect on the corresponding quasienergies.
Things change if adding a second driving harmonic. If it is
out of phase with the first harmonic then all chiral symmetries
get broken and the midgap states are no longer protected. The
numerical data in Fig. 7, obtained for an SSH chain with 80
sites, fully support this picture.

In Fig. 7 we also numerically verify the scaling of the
quasienergy shifts when perturbed by a disordered chemical-
potential term driven by sin(�t) + cos(2�t), a perturbation
belonging to the class defined by Eq. (4). In good agreement
with theory, the obtained leading-order scaling is only cubic
in the disorder strength. As in Fig. 5 the deviations from cubic
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(c) (d)
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FIG. 7. Numerical data obtained from time-independent SSH
chains [v(t) = 0 in Eq. (1)] with 80 sites subject to static and time-
periodic boundary perturbations, here realized as a spatial disordering
of an added chemical-potential term (∼μ) and extending over 20 sites
from one of the boundaries. Panels (a)–(d) illustrate quasienergy
spectra for the chains with unperturbed hopping amplitudes γ1 =
0.15� and γ2 varying from 0 to 1.2�. The boundary perturbations
were considered to be of the form (a) μσ,j (static disorder),
(b) μσ,j sin(�t), (c) μσ,j cos(�t), and (d) μσ,j [sin(�t) + cos(�t)],
with σ = A,B and j = 1, . . . ,10. The disordered site amplitudes
μσ,j vary randomly in the interval [−0.1�,0.1�] ([−1.0�,1.0�])
in the static (time-dependent) cases. The levels for the bulk states
and perturbed and unperturbed edge states are colored black, red, and
green, respectively. 100 disordering configurations were checked,
with the midgap quasienergies always found to be within the
corresponding pink areas. In panel (e) we present the scaling of
the midgap quasienergy shifts in the time-independent SSH chains
(γ1 = 0.15� and γ2 = 0.5�) perturbed by time-periodic boundary
disorder in chemical potential ∼μ[sin(�t) + cos(�t)]. Here the
largest midgap quasienergy shift ε[�] maximized over 500 disorder
realizations is plotted in red versus the upper limit of the on-site
perturbation amplitude in the chemical potential, denoted by μ[�].
The blue curve represents smoothed data obtained by replacing every
20 points by their average.

scaling are result of subleading terms, which become larger
with the disorder strength.

E. Experimental test

Most ingredients needed to experimentally test our predic-
tions have already been realized in optically trapped cold atoms

035149-7



OLEKSANDR BALABANOV AND HENRIK JOHANNESSON PHYSICAL REVIEW B 96, 035149 (2017)

[31–33]. Starting with the realization of the time-independent
(undriven) SSH model, it has recently been simulated by
trapping atoms in a specially designed 1D optical lattice
[34,35]. As for imaging states in cold-atomic setups, there
now exists a number of proposals how to do this [31,36–39],
and quite recently SSH boundary modes were observed in
an experiment using optical real-space imaging [35]. Time-
dependent driving of optical lattices has also been carried out
in the laboratory [40,41]. Moreover, an experimental design
for realizing the harmonically driven SSH model using cold
atoms trapped in a dynamic optical lattice has recently been
put forward [27], awaiting practical implementation. Finally,
efficient means of producing and studying static [42–44]
and time-periodically driven [11] disorder in cold-atomic
simulations are by now routine. In light of these advances,
an experimental test of our results appears fully viable.

IV. SUMMARY

In this article, using Floquet theory and with the SSH model
as a touchstone, we have carried out a systematic study of
how the chiral symmetry protection in a topological insulator
extends to states subject to time-periodic perturbations—with
the topological phase realized either as a Floquet topological
phase or as a conventional time-independent one. Intriguingly,
in a time-independent topological phase we found that the
edge states exhibit an unexpected resilience against a large
class of symmetry-breaking time-periodic perturbations as a
result of the very structure of the unperturbed chiral-symmetric
spectrum. This outstanding feature should be possible to test in
an experiment with cold atoms. The extension of our analysis
to other classes of symmetry-protected topological phases
remains an interesting open problem.
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APPENDIX A: CONSERVATION OF CHIRAL
SYMMETRY IN FLOQUET SYSTEMS

Here we prove that, in order for chiral symmetry to
be preserved in a Floquet system, it is sufficient that the
relation �H (t)� = −H (−t) is satisfied, where H (t) is a
time-dependent Hamiltonian with period T and � is the
corresponding unitary operator dictated by chiral symmetry.

We start by defining evolution operators for consequent
halves of the period T , F ≡ U (0, T

2 ) and G ≡ U ( T
2 ,T ). Then,

directly from the definition,

F ≡
∑

n

(−i)n
∫ T

2

0
dt1 · · ·

∫ tn−1

0
dtn H (t1) · · · H (tn),

G ≡
∑

n

(−i)n
∫ T

T
2

dt1 · · ·
∫ tn−1

T
2

dtn H (t1) · · · H (tn). (A1)

The Hamiltonian H (t) is periodic in time and therefore G

also equals U (− T
2 ,0). We then use the substitution ∀ i ∈ N :

τi = −ti and the condition �H (t)� = −H (−t) to obtain a
relation between F and G,

F =
∑

n

(i)n
∫ − T

2

0
dτ1 · · ·

∫ τn−1

0
dτnH (−τ1) · · · H (−τn)

=
∑

n

(−i)n
∫ − T

2

0
dτ1 · · ·

∫ τn−1

0
dτn�H (τ1)� · · ·�H (τn)�

= �U

(
0, − T

2

)
� = �G†�. (A2)

The chiral symmetry condition �U (0,T )� = U−1(0,T )
[20,29] then follows immediately from U (0,T ) = FG =
�G†�G.

APPENDIX B: PROTECTION BY CHIRAL SYMMETRY

The symmetry protection of the edge states originates from
the necessity of the eigenstates to come in pairs whenever the
relation �U (0,T )� = U−1(0,T ) is fulfilled. More precisely,
the state |u(0)〉 is an eigenstate of U (0,T ) with eigenvalue
exp(−iεT ) if and only if the state �|u(0)〉 is also an eigenstate
but with eigenvalue exp(iεT ). By unitarity of U (0,T ), any
eigenvectors with different eigenvalues are orthogonal and
therefore each pair of the symmetry-controlled states corre-
spond to two distinct steady states except when the quasienergy
ε is 0 or �/2. For these two quasienergies the eigenvectors
|u(0)〉 and its complement �|u(0)〉 have the same eigenvalues
and therefore can be combined to form the states PA|u(0)〉 and
PB |u(0)〉, where the orthogonal sublattice-projecting operators
are defined as PA = (1 + �)/2 and PB = (1 − �)/2. Thus, we
can always consider the 0 and �/2 quasienergy modes to have
support on only one sublattice, and, as a consequence, being
identical to their chiral-symmetry partners. It follows that in the
thermodynamic limit any symmetry-preserving perturbation
of U (0,T ) which leaves the spectral gaps open, cannot change
the difference NA,ε − NB,ε, where NA,ε and NB,ε are the
number of states, localized at one of the edges, at quasienergy
ε = 0 or �/2 with support on sublattices A and B, respectively.
This is simply because, after any such perturbation, the states
may come or leave the quasienergies 0 or �/2 only in
pairs (as dictated by the chiral symmetry), and therefore in
the thermodynamic limit the difference NA,ε − NB,ε cannot
change. These differences in edge-state numbers are exactly
the topological invariants ν0 and νπ calculated in Fig. 2, using a
sublattice polarization argument as elaborated in Refs. [20,29].
To summarize, any gap-preserving perturbation of U (0,T )
respecting chiral symmetry cannot change the number of
symmetry-protected states at quasienergies 0 and �/2. This
implies that any periodically driven boundary perturbation
that does not break the chiral symmetry of U (0,T ) leaves
the eigenvalues of the protected edge states unaffected.

APPENDIX C: GAUGING OUT THE PERTURBATION
OF THE CHEMICAL POTENTIAL

The time-independent SSH model disordered in the chemi-
cal potential is described by Eq. (9). In the following it is shown
that we can drop the disordering term in Eq. (9) at the cost of
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introducing some extra disorder in the hopping amplitudes.
For this purpose we define the unitary operator

U (t) = e−i
∑

σ,j Mσ,j (t)c†σ,j cσ,j , (C1)

where d
dt

Mσ,j (t) = μσ,j (t). By working out the commutation
relations between U (t) and the disordered SSH Hamiltonian
H (t) given in Eq. (9), we arrive at the following transformed
Hamiltonian H ′ ≡ U †HU − iU † d

dt
U , with

H ′(t) = −
∑

j

[ei(MA,j (t)−MB,j (t))γ1c
†
A,j cB,j

+ ei(MB,j−1(t)−MA,j (t))γ2c
†
B,j−1cA,j + H.c.]. (C2)

The transformed Hamiltonian H ′(t) describes the same
system as H (t) and it has the form of an SSH Hamiltonian but
with disordered hopping amplitudes. Moreover, if all Mσ,j (t)
are periodic in time then H ′(t) can also be handled within the
Floquet formalism, yielding the same quasienergy spectrum
as the original system. In order for Mσ,j (t) to be periodic in
time, all the time-periodic disorder amplitudes μσ,j (t) must
have vanishing zeroth components in their Fourier series
decompositions (the static components). This calculation
explicitly reveals the equivalence of time-periodic disorders
in the chemical potential and a certain type of disorders in the
hopping amplitudes.
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