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Thermal expansion coefficient of WRe alloys from first principles
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We calculate the coefficient of thermal expansion (CTE) in tungsten-rhenium random alloys for Re
concentrations between 0% and 50% and for temperatures up to 2400 K by employing the quasiharmonic
approximation within the ab initio framework of density functional theory. We treat chemical disorder by the
virtual crystal approximation and compute the phonon density of states at two levels of sophistication. While the
traditional Debye-Grüneisen (DG) model fails to account for the experimentally observed increase in CTE upon
Re addition for concentrations above 10% Re, explicit phonon calculations within density functional perturbation
theory lead to an overall good agreement with experiment. Thereby we identify the pronounced phonon softening
and anisotropy between transversal and longitudinal modes in W-Re to be responsible for the breakdown of the
DG model.
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I. INTRODUCTION

In this work we study the effect of alloying on the coefficient
of thermal expansion (CTE) in W-Re random alloys. This
system has been chosen because Re is an important alloying
element in W due to the well-known ductilization effect
induced by Re. For instance, it has been shown that Re leads
to a softening in shear modulus and alters phonon properties
[1], crystal lattice stability [2], as well as the dislocation
core structure [3,4] and the grain boundary segregation and
cohesion [5]. The effects of Re on the CTE are, however, still
poorly understood. Experimentally, the CTE of WRe alloys
is characterized by two important and unexpected features
[6–8] which we have illustrated in Fig. 1. First, there is an
overall increase in the CTE upon Re addition which appears
to be unexpected because it is known that the bulk modulus
increases with Re addition and the lattice parameter decreases
indicative of a stiffening of bonds [9]. Such behavior is,
however, generally accompanied by a decrease of the CTE.
Second, there is an anomaly in the CTE as a function of Re
content around 10% Re. This anomaly can be best seen at low
temperature as a nonmonotonic behavior of the CTE exhibiting
a local minimum around 12% Re. At 1000 K, only a remnant
of this anomaly is present, while at even larger temperatures a
monotonous increase of the CTE is found upon addition of Re.
Based on this observation, Andrianova et al. have attributed
the anomaly to short range order effects [7]. However, the role
of short range order appears questionable, since more recently
it has been shown that the ordering energy in W-Re is in the
order of 20 meV only [10]. Hence, WRe alloys are expected
to be disordered already at room temperature and therefore
cannot be made responsible for the anomaly between 400 and
1000 K. We rather propose that this anomaly can be accounted
for by the phonon properties of these alloys. In order to answer
the question which physical mechanisms are responsible for
(i) the overall increase in the CTE upon Re addition and (ii) the
anomaly, we calculate elastic constants, phonon spectra, and
mode Grüneisen parameters. Moreover, we present results
obtained with the traditional Debye-Grüneisen model [11,12].
Even though this model contains strong simplifications, it is

still widely used when it comes to predicting thermal properties
in high-throughput studies or complex structures, including
random alloys, where explicit phonon calculations are not
feasible [13–23]. By using this model we want to assess
whether a computationally less expensive approach can also
lead to satisfactory results for the studied alloying system.

The paper is organized as follows: In Sec. II we introduce
the basic theory of thermal expansion within the quasihar-
monic approximation (QHA) and present the approaches to
compute the phonon density of states used in this work,
namely the Debye-Grüneisen (DG) model and the explicit
phonon calculations using density functional perturbation
theory (DFPT). Section III presents the computational details
for the electronic structure and phonon calculations valid
throughout this paper. Section IV is dedicated to the results,
including elastic properties, phonons, and thermal expansion.

II. THEORY

To compute the CTE within the QHA, the volume (V ) and
temperature (T ) dependent free energy is considered:

F (V,T ) = U (V ) + Fvib(V,T ) + Fel(V,T ). (2.1)

Here U is the internal energy, Fvib is the vibrational, and
Fel is the electronic part of the free energy. Note that
we disregard the electronic free energy since the combined
effect of higher order anharmonic, vacancy, and electronic
contribution is considered to be small up to 1500 K due to
a fortunate error cancellation [24,25]. Thus we also neglect
anharmonic contributions beyond the volume dependence of
phonon frequencies included in the QHA. We note that the
treatment of such anharmonicity effects goes beyond the scope
of this work but would be desirable in future assessments of
the alloy system to make quantitative predictions of the CTE
above 1500 K.

Within the QHA, the vibrational free energy is obtained
by integrating the volume dependent phonon density of states
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FIG. 1. Experimental measurements of the CTE of WRe alloys
as a function or Re concentration. Triangles refer to experiments
conducted by Plansee [6], solid and dashed lines to experiments
conducted by Andrianova et al. [7] and Zaichenko et al. [8]
respectively.

D(ε,V ) over all energy states ε [26]:

Fvib(V,T ) =
∫ ∞

0
dε D(ε,V )

×
{

ε

2
+ kBT ln

[
1 − exp

(
− ε

kBT

)]}
, (2.2)

where kB is the Boltzmann constant. To get accurate ab
initio phonon dispersion relations and the resulting phonon
density of states, we applied density functional perturbation
theory (DFPT) [27–29]. In this method, small perturbations
of the atomic positions are used to get an electron density
response. By using linear response theory, the dynamical
matrix is obtained on a grid of k points in the Brillouin zone.
The eigenvalues of the dynamical matrix yield the phonon
frequencies ωi(k) which are used to obtain the phonon density
of states (DOS) by numerically integrating over the Brillouin
zone. By computing the phonon DOS D(ε,V ) for a set of
volumes, the vibrational free energy Fvib(V,T ) is obtained
from Eq. (2.2).

For the sake of comparison, we also employ the classical
Debye-Grüneisen (DG) model as a greatly simplified approach
to obtain the phonon DOS. In the Debye model [11,12], the
phonon dispersion is simplified by assuming a single, linear
dispersion relation for both the longitudinal and the transverse
acoustic phonon branches, which leads to a simple parabolic
form of the phonon density of states which is cut off at the
Debye frequency. The volume-dependent Debye temperature

�D(V ) solely depends on the sound velocity, and thus on the
slope of the assumed dispersion relation. As a consequence,
�D may also be related to the bulk modulus in the following
manner [12,30]:

�D(V0) = h

kB

(
3

4πV0

)1/3

C

(
V

1/3
0 B0

M

)1/2

. (2.3)

Here M is the atomic mass, V0 and B0 are the equilibrium
volume and bulk modulus, respectively, and h is the Planck
constant. The factor C is a scaling factor which is, based on
experimental data from Ref. [31], set to 0.617 in the traditional
DG model as proposed by Moruzzi et al. [11]. The volume
dependence of �D(V ) arises via a volume dependence of the
bulk modulus. Within the Debye-Grüneisen approach, �D is
expanded around the equilibrium volume V0 via the expression

�D(V )

�D(V0)
=

(
V0

V

)γ

, (2.4)

where γ is the Grüneisen constant. Note that for a more
accurate low-temperature behavior, Moruzzi et al. proposed
a correction for γ based on Ref. [32], namely �γ =
γHT − γLT = 1

3 , which we also employ in this work. Within
the Debye-Grüneisen model, the low temperature Grüneisen
parameter is related to the pressure derivative of the bulk

modulus B ′
0 = dB

dp
|
p=0

via

γ D
LT = 1

2 (B ′
0 − 1), (2.5)

and can therefore be calculated directly from the EOS.

III. COMPUTATIONAL DETAILS

A. Density functional (perturbation) theory calculations

First-principles total energy calculations have been per-
formed employing the PBEsol form of the generalized gradient
approximation (GGA) [33]. The projector-augmented-wave
(PAW) [34,35] method as implemented in the Vienna ab
initio simulation package (VASP) [36,37] has been used with a
plane-wave energy cutoff of 223 eV. The convergence criteria
have been 10−6 eV for the total energy and 10−5 eV for the
maximum energy difference in ionic relaxation steps. The in-
tegration over the Brillouin zone in the electronic structure cal-
culations has been done using a 4 × 4 × 4 and 20 × 20 × 20
Monkhorst-Pack k grid [38] for the phonon supercell and the
elastic primitive cell calculations, respectively. A Methfessel-
Paxton [39] smearing of 0.2 eV has been used throughout
the calculations. Using the k-point mesh and the energy
cutoff mentioned above, the components of the elastic matrix
(C11,C12,C44) are converged within 1%.

For DFPT calculations, we use VASP in combination with
PHONOPY [40]. The calculations have been done using 125-
atom supercells built by a (5 × 5 × 5) repetition of a primitive
unit cell of the bcc structure. For the plots of the phonon
dispersion a (4 × 4 × 4) supercell of the conventional cell
was used, which ensured to capture the features at the high
symmetry points and the crossing points in the band structure
more accurately. Convergence tests of the supercell size as
well as the k-point mesh have been carried out resulting in an
error of less than 5 meV in the vibrational free energy and a
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difference in CTE smaller than 0.66 × 10−6 K−1 at the melting
temperature. The integration over the phonon DOS is carried
out on a q-point mesh of 100 × 100 × 100.

Elastic constants are calculated using three independent dis-
tortion types (isotropic, tetragonal, and shear) as described in
Ref. [41] in more detail. For each distortion type, 21 distortions
in the range of ±5% physical strain are applied. The quality
of fitting is judged using the cross validation score, which
exhibited that—depending on the distortion type—the most
reliable results are obtained using maximal physical strains in
the range of 4%–5%, and polynomials of order 4 and 6.

B. Computation of thermal expansion coefficients

First, the internal energy contribution U (V ) of Eq. (2.1) is
computed for 11 volumes varying from −5% to +5% with
respect to the equilibrium volume. Second, the vibrational
contribution to the free energy as a function of volume
is calculated at a given temperature T . The considered
temperature range varies from 0 to 2400 K with a step size
of 10 K. Here two different models are used taking input
parameters from DFT, the phonon frequencies on the one hand,
and the bulk modulus and Grüneisen parameter on the other.
Third, for every considered temperature the minimum of the
free energy is found as a function of the volume to obtain
V0(T ). Finally, the CTE is obtained by numeric differentiation.

When employing the DG model, the thermodynamic
Grüneisen parameter γ D

LT is determined by a Birch Murnaghan
equation of state fit of the electronic ground-state energy as a
function of volume [42]. Using a parametric least squares fit of
21 energy-volume points equally distributed ±15% around the
equilibrium volume one obtains the zero pressure values for
bulk modulus B0, its pressure derivative B ′

0, and the minimal
energy E0 as well as the corresponding volume V0. The
Grüneisen parameter is then obtained using Eq. (2.5).

C. Treatment of chemical disorder

To perform DFT calculations for W alloys, we use the
virtual-crystal approximation (VCA). The alloy is modeled
on the basis of effective atoms with intermediate nuclear and
valence charge, so that the distribution of electronic charge is
homogeneous in the crystal. For example, a W-50% Re alloy
(all concentrations refer to at.%) is obtained with an atom
of nuclear charge Z = 74.5 and valence charge Zval = 12.5.
In this way, VCA calculations model spatially homogeneous
d-band depletion or filling, depending on the alloying element.

W-Re alloys are also well suited to be studied within the
VCA. Various structural and thermodynamic properties of
W-Re alloys have been successfully described within the VCA
[3–5]. This gives us confidence that also phonon properties of
W-Re can be accurately taken into account within the VCA
which allows us to compute the phonon density of states at var-
ious levels of sophistication at affordable computational cost.

IV. RESULTS

A. Elastic constants

As elastic constants provide important insights to the long
wavelength limit of the phonon dispersion and serve as input

TABLE I. Lattice parameter a, bulk modulus B, shear elastic
modulus G, elastic constants C ′, C11, and C44, the Grüneisen
parameter γHT , and the energy difference between fcc and bcc
structures �Ufcc-bcc for W and WRe alloys. Calculated lattice
parameters are given in Å at T = 0 K. The experiment was
conducted at room temperature. Elastic data are given in GPa for
the respective equilibrium volumes at T = 0 K, energies are given in
eV. Experimental elastic constants, lattice parameter, and Grüneisen
parameter are taken from Refs. [44,45].

a B G C ′ C11 C12 C44 �Ufcc-bcc γ D
HT

W (expt.) 3.165 310 161 164 532 205 162 . 1.6 (γLT )
W 3.156 327 145 148 524 229 143 0.4855 1.863
WRe03 3.154 328 150 149 527 228 151 0.4692 1.873
WRe06 3.151 331 156 155 537 227 156 0.4514 1.887
WRe09 3.148 334 165 170 560 220 161 0.4321 1.906
WRe12 3.145 336 172 182 578 215 166 0.4116 1.934
WRe18 3.140 338 162 156 546 234 166 0.3682 1.995
WRe25 3.134 345 160 147 541 247 169 0.3156 2.022
WRe50 3.115 363 152 120 523 283 173 0.1161 2.039

for the DG model, we investigate the impact of alloying on
the elastic constants. The impact of Re alloying on the lattice
parameter and on the elastic constants of W is quite well
established and it has been investigated both experimentally
and theoretically previously [3,4,43] as summarized in Table I.
The general trend is that, as a function of Re concentration,
the lattice parameter decreases and the bulk modulus B

increases indicative of a stiffening of the lattice with respect
to hydrostatic loading. For the shear resistance, however, the
picture is more complex. The concentration dependence of the
bulk modulus is shown in Fig. 2 alongside with the shear

FIG. 2. Bulk modulus B and shear constants C ′ and C44 as a
function of Re concentration.
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FIG. 3. (a) Phonon dispersion for pure W (solid line) and W0.75Re0.25 (dashed line) calculated at the respective theoretical equilibrium
volume (T = 300 K). The black symbols show experimental values taken from Landolt-Börnstein [46] (measured using neutron scattering
at 298 K). The inset shows the dispersion in [110] direction (� → N ) in more detail. (b) Mode Grüneisen parameters for W (solid line) and
W0.75Re0.25 (dashed line) calculated from the logarithmic volume derivative of the respective phonon dispersion.

constants C ′ and C44. While the shear constant C44 also
increases monotonically with Re content, the tetragonal shear
constant C ′ first increases up to a Re content of 12% where it
has a maximum. Remarkably, at the same Re content, the dip
in the CTE (compare Fig. 1) is found. For higher Re content C ′
experiences a softening, which has been shown to eventually
lead to a negative C ′ for Re concentrations higher than 85
at.% [43]. On the basis of the Bain path, this softening can be
correlated with a decreased energy difference between the bcc
and fcc structure [43].

B. Phonons

A key to understanding the thermal expansion coefficient is
to capture the essence of the phonon dispersion and the phonon
density of states. In this section we will therefore compare
the phononic properties obtained from density functional
perturbation theory (DFPT) to those of the DG model.

Figure 3(a) shows the phonon dispersion calculated within
DFPT for pristine W (blue solid lines) and W0.75Re0.25 (red
dashed lines) together with results from neutron scattering
experiments (black symbols). Theory and the available exper-
iment for pure W show overall a very good agreement, both
quantitatively and regarding the detailed qualitative features
of the band structure. Re alloying changes the dispersion
quite significantly, most prominently, regarding two important
features: on the one hand, a general softening of the phonon

band structure is observed, while on the other hand, the slope
of certain phonon bands increases in the long wavelength limit
close to the � point.

We first focus on the long wavelength limit. Here the slope
of the phonon branches is directly connected with the elastic
constants via the Christoffel equations [47] summarized in
Table II for the relevant directions.

We observe the strongest influence of alloying along the
[110] direction for which a closeup is shown in the inset of
Fig. 3(a), where the slope of the longitudinal branch, which

TABLE II. Relation of elastic constants with the sound velocity
of longitudinal and transversal branches in different high symmetry
directions of the Brillouin zone.

v
[100]
L

√
C11
ρ

v
[100]
T 1 = v

[100]
T 2

√
C44
ρ

v
[110]
L

√
C11+C12+2C44

2ρ

v
[110]
T 1

√
C44
ρ

v
[110]
T 2

√
C11−C12

2ρ
=

√
C′
ρ

v
[111]
L

√
C11+2C12+4C44

3ρ

v
[111]
T 1 = v

[111]
T 2

√
C11−C12+C44

3ρ
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is proportional to
√

C11 + C12 + 2C44, grows. This is in line
with the stiffening of the bulk modulus B upon Re addition
mentioned above, since B = (C11 + 2C12)/3. Similarly, the
slope of the T1 transversal branch, related to C44, increases
slightly. On the contrary, the slope of the second transversal
branch T2, which is connected with C ′, decreases. All these
changes upon alloying observed in the long wavelength limit
of the phonon modes are in agreement with the alloying trends
already noted for the elastic constants in the previous section.

Beyond the long wavelength limit, i.e., the linear dispersion
regime, all phonon branches soften upon Re alloying with
pronounced effects appearing near the H point and towards
the P point. A similar effect has already been noted by
Persson et al. [1] who have also observed a phonon softening
in WRe alloys. However, in their work the softening is
most pronounced at the L( 2

3 , 2
3 , 2

3 ) point (between H and
P ), while no softening at the H point was observed. We
found this difference to originate mainly from the choice of
q-point mesh as shown in the appendix. We also note that
for pure Re assuming the bcc structure, Persson et al. [1]
have also observed a strong softening at the H point with a
local maximum between � and H , thus showing the same
trend as found in our calculations for W0.75Re0.25. Note that
we have computed the phonon dispersion also for other Re
concentrations, namely W0.97Re0.03, W0.94Re0.06, W0.91Re0.09,
W0.88Re0.12, W0.82Re0.18, W0.75Re0.25, and W0.50Re0.50, where
we consistently find a gradual softening of the high-k modes
as discussed above. Only for concentrations above W0.75Re0.25

the softening at L( 2
3 , 2

3 , 2
3 ) gets gradually more pronounced and

finally shows an instability for pure bcc Re.
In addition to the phonon dispersion, another quantity

directly related to the CTE is the Grüneisen parameter.
The thermodynamic definition of the Grüneisen parameter
traditionally obtained from the equation of state via Eq. (2.5) is
given in Table I. We notice a monotonous increase upon Re%
addition. Therefore, this is not able to explain the stiffening
related to the anomaly in the CTE. Furthermore, a relative
increase of γ D

HT of only 0.175 when comparing pure W and
WRe50 is not able to describe the increase in CTE as this is
counteracted by a strong decrease in the equilibrium volume.
Therefore we calculated the mode Grüneisen parameters
directly from the logarithmic volume derivative of the phonon
dispersion.

Figure 3(b) shows the mode Grüneisen parameters obtained
from the logarithmic volume derivative of the phonon disper-
sion curves. Also here we notice a significant increase for
W0.75Re0.25 especially at the H point. In order to be able
to draw conclusions on the CTE the quantity of choice is the
averaged Grüneisen parameter. It is directly related to the CTE
by [48]

α ∼ γ̄HT

BV
. (4.1)

The averaged mode Grüneisen parameter is shown in Fig. 4.
Here we can see a pronounced stiffening around 10% Re
which is already an indication that the anomaly in CTE can
be described by the explicit phonon calculations. Furthermore,
the overall increase when going to higher Re content is much
more pronounced as in the Grüneisen γ D

HT obtained from the
EOS.

FIG. 4. Grüneisen parameters γ̄HT and γ D
HT as a function of Re

content.

To narrow down the origin of the nonmonotonous behavior
of the Grüneisen parameter upon Re addition, we choose a
different representation. In Fig. 5 we show the mode Grüneisen
parameter averaged over spherical shells |q + δq| as a function
of q. With this representation we are able to investigate the
behavior of γ with Re addition with respect to the magnitude
of the q vector. The most interesting features are the sudden
decrease of γ in the long wavelength limit for concentrations
between 6% and 9% Re and the strong increase for larger |q|
for concentrations >12% Re.

The impact of Re alloying is also nicely seen in the
phonon density of states (DOS) shown in the bottom panel of
Fig. 6. Here the shaded areas correspond to the phonon DOS
obtained from DFPT for pristine W (blue) and for W0.75Re0.25

(red). Again, the main overall effect upon Re addition is to
lower the phonon frequencies as can be clearly seen by the
shift towards lower frequencies for the two main peaks of
the DOS, denoted as Mtrans and Mlong for transversal and
longitudinal phonons, respectively. This shift as a function
of Re concentration occurs monotonically and more strongly
for the transversal branch than for the longitudinal branch.
Only for small phonon frequencies corresponding to the limit
of very long wavelengths where the phonon DOS is parabolic,
the effect is reversed as can be seen from the inset. Here pure
W has a slightly larger DOS than W0.75Re0.25 (see inset Fig. 6).
However, the relative weight of this region in the integration
carried out to obtain the vibrational free energy from Eq. (2.2)
is small.

We now compare the ab initio phonon DOS obtained within
DFPT with the corresponding DOS from the Debye model
shown in the top panel of Fig. 6 for W and W0.75Re0.25.
In the long wavelength (low frequency) limit, the shape of
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FIG. 5. Averaged mode Grüneisen parameters γ for WRe as
a function of the norm of the q vector. The averaged Grüneisen
parameter is plotted for pure W (dark blue) and for WRe with Re
contents ranging up to 50% (dark red).

the Debye model is in qualitative agreement with the DFPT
results. As expected, beyond this limit the DOS is considerably
different. The success of the Debye model for many systems
relies on the fact that the vibrational free energy results from an
integration over the entire frequency axis. As a consequence,
integrated properties are often not so sensitive to the exact
structure of the DOS. However, at this point we can already
expect a shortcoming of the DG model when applied to WRe
alloys since it fails to capture the correct softening at high
frequencies. As can be seen in Fig. 6, the Debye frequency ωD

increases with Re alloying, while an overall phonon softening
upon Re alloying is found in the DFPT calculation.

C. Thermal expansion

1. Debye-Grüneisen model (DG)

First, we address whether the evolution of the CTE with
alloying content can be reproduced using the DG model
which is computationally much less demanding. As shown
earlier in Fig. 2 and Table I, Re alloying increases both
B and γ D

HT . The two major driving forces for changing
the CTE, hence, counteract each other. The resulting CTE
is shown in Fig. 7 with solid lines. When comparing the
concentration dependence of the CTE at fixed temperature,
the agreement with experiment is quite poor. The absolute
values are considerably overestimated (about 20% for low
Re concentrations), and, more importantly, the CTE increases
only slightly with Re alloying below 20% and even decreases

FIG. 6. Phonon density of states (DOS) for W (blue) and WRe25
(red) obtained from different approaches: The upper panel shows the
DOS obtained using the DG model, and the lower panel the one
obtained from DFPT calculations, respectively. In the bottom panel
the labels Mtrans and Mlong indicate the maxima of the phonon DOS for
longitudinal and transversal phonons, respectively. A detail for small
wave vectors of the Debye-Grüneisen model (dashed lines) compared
to the phonon DOS obtained from DFPT (colored faces) is shown in
the inset. All DOS are calculated for the equilibrium lattice parameter
at T = 0 K.

FIG. 7. Thermal expansion coefficients of WRe alloys as a
function of the Re concentration for various temperatures. Dashed
lines are fits to the experimental data points from Ref. [7], while the
solid lines depict our results using the Debye-Grüneisen model.
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FIG. 8. Isotherms of the thermal expansion coefficient with
respect to Re content. Dashed lines are experimental measurements
[7]. Solid lines correspond to our results based on the ab initio phonon
DOS from density functional perturbation theory.

when going up to 50% Re content. We conclude that the DG
model fails to reproduce alloying trends correctly in the WRe
system. Thus, the assumption that the CTE in this material can
be derived from the equation of state only, appears to be too
drastic. The DG model misses both, the softening in shear and
the softening of phonon modes.

2. Ab initio phonon dispersion

In order to obtain the CTE from a more reliable description
of the vibrational free energy, we use explicit ab initio
phonon spectrum calculations by means of density functional
perturbation theory. As described in Sec. II, the phonon
spectrum is a decisive parameter that determines the accu-
racy of the phonon free energy and, subsequently, of the
CTE.

Figure 8 shows the thermal expansion coefficients of W
and WRe calculated in the QHA using DFPT in comparison
with experimental results [7]. The theoretical curves show a
nonmonotonous progression with alloying at all temperatures
(Fig. 8): Small Re additions induce a reduction of the CTE
followed by an increase for Re concentrations larger than 12%.
This is in good agreement with experiment, which equivalently
shows a local minimum of the CTE around 12% Re content for
temperatures up to 1000 K. Only for higher temperatures this
anomaly disappears in the experiment. Thus, for temperatures
up to 1000 K the DFPT calculations reproduce both, the
increase in CTE for large Re concentration as well as the
anomalous behavior of the CTE at low concentrations. For
temperatures above 1000 K, higher order anharmonic effects

FIG. 9. Thermal expansion coefficients of WRe alloys at different
Re concentrations as a function of the temperature calculated in
the QHA with explicit phonon calculations. Dashed lines show
experimental values from Ref. [7], where the colors correspond to
the same Re concentrations as in the theoretical results.

come into play [24,45]. Therefore, further investigations in-
cluding explicit anharmonicity become necessary to reproduce
the disappearance of the anomaly.

For the sake of completeness, in Fig. 9 we also show the
CTE as a function of temperature for all calculated alloy
compositions including experimental values.

V. CONCLUSION

We have investigated the alloying effect of Re on the elastic
properties, phonons, and thermal expansion of W. We have
found that Re addition affects different elastic constants in a
different way, i.e., B and C44 are increasing, while C ′ shows a
nonmonotonous behavior with a maximum at 12%. We have
analyzed the effect of Re on the phonon dispersion and have
found that Re generally reduces the vibrational frequencies,
while only the longitudinal modes close to the � point are
slightly increased. Regarding the thermal expansion coeffi-
cient of WRe, we have used two approaches with different
complexity, namely the traditional DG model [11] and the
QHA including explicit linear-response phonon calculations.
We have investigated the atypical concentration dependence
of the thermal expansion coefficient observed in experiment,
showing a decrease for low Re content (9%) but an increase
for higher concentrations. We have shown that the anomalous
decrease for low Re content originates from a decrease of the
averaged Grüneisen parameter for long wavelength phonons.
For the same Re content C ′ shows a maximum. The increase
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of the CTE for higher Re contents originates from a strong
phonon softening at smaller wavelengths accompanied by an
increase of the Grüneisen parameter.

The Debye-Grüneisen model fails for two reasons. First,
elastic anisotropy is not taken into account and second,
the thermodynamic Grüneisen parameter determined by the
equation of state neither shows a decrease for low Re content
nor does it show an increase for higher Re contents strong
enough to counteract the isotropic stiffening.

We conclude that in order to describe the thermal expansion
of WRe appropriately, explicit phonon calculations are needed
which take into account both the phonon softening beyond
the long wavelength limit and the anisotropic behavior of the
phonon branches close the the � point. To account for the
disappearance of the anomaly observed in experiment above
1000 K further investigation is necessary also accounting for
higher order anharmonic effects.
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FIG. 10. Phonon dispersion of WRe25 shown for different super-
cells of the primitive cell. Dashed lines indicate supercells constructed
with an odd number of primitive cells in each direction and solid lines
such with an even number of primitive cells.

TABLE III. Comparison of computational methods and param-
eters used for calculating the phonon dispersion of W and WRe by
Persson et al. [1] and in our work.

This work Ref. [1]

Reference cell conventional cell primitive cell

Supercell size or q-mesh 4 × 4 × 4 5 × 5 × 5

k-point mesh for
electronic structure

5 × 5 × 5
Monkhorst-Pack

(equiv. to
20 × 20 × 20)

16 × 16 × 16
Monkhorst-Pack

Method to calculate
phonons

Gamma point
DFPT + supercell

method

DFPT

APPENDIX: PHONON DISPERSION OF WRE:
CHOICE OF q-POINT MESH

The importance of the choice of q mesh for obtaining a good
phonon dispersion of W0.75Re0.25 becomes clear when looking
at the convergence with respect to the supercell size. Figure 10
shows the results for different supercells sizes n × n × n for
supercells constructed from the primitive cell (P-SC). Note that
an n × n × n P-SC is equivalent to an n × n × n q-point mesh
for a primitive cell and the comparison of the two methods used

FIG. 11. Comparison of phonon dispersions of WRe25 calculated
using different supercells with the phonon dispersion published by
Persson et al.: Solid red lines represent the results for a 4 × 4 × 4
supercell of the conventional cell (C-SC), solid black lines represents
our calculation using a 5 × 5 × 5 supercell of the primitive cell (P-SC)
and the dashed line the results of Persson et al. The green marker
indicates the position of the fully converged frequency at the H point
which is considered as reference here.
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by Persson et al. and in our work is therefore straight forward
(see Table III). At the H point the influence of the mesh on the
convergence is specially pronounced: While even the smallest
even meshes (or supercell sizes) capture this point very well,
odd meshes converge extremely slowly. We confirmed this
also using a different VSC potential with QUANTUM ESPRESSO

[49]. The distinct convergence behavior of odd and even
meshes at the H point is due to the fact that this point, which
has reciprocal primitive coordinates ( 1

2 , 1
2 , 1

2 ), is explicitly
contained in any even mesh, while it is not there in odd ones.

To get reliable reference values for the frequencies at the
H point, also convergence studies with respect to the k mesh

used for the electronic structure calculations were carried out.
To do so we used the 2 × 2 × 2 P-SC, which is the smallest
supercell containing the H point explicitly. Convergence for
the H point was reached for a 24 × 24 × 24 k mesh within
0.1 THz, giving a frequency at the H point of 2.75 THz.
The main results are given in Fig. 11. If using a 5 × 5 × 5
P-SC we get similar results as Persson et al. who used a 5 ×
5 × 5 q-point mesh but are far from the converged reference
frequency at the H point. The 4 × 4 × 4 C-SC used in this
work, in contrast, contains the H point explicitly and naturally
describes its phonon eigenvalues, as well as the features of
other high-symmetry points, very well.
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