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Possible bicollinear nematic state with monoclinic lattice distortions in iron telluride compounds
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Iron telluride (FeTe) is known to display bicollinear magnetic order at low temperatures together with a
monoclinic lattice distortion. Because the bicollinear order can involve two different wave vectors (π/2,π/2) and
(π/2, − π/2), symmetry considerations allow for the possible stabilization of a nematic state with short-range
bicollinear order coupled to monoclinic lattice distortions at a TS higher than the temperature TN where long-range
bicollinear order fully develops. As a concrete example, the three-orbital spin-fermion model for iron telluride
is studied with an additional coupling λ̃12 between the monoclinic lattice strain and an orbital-nematic order
parameter with B2g symmetry. Monte Carlo simulations show that with increasing λ̃12 the first-order transition
characteristic of FeTe splits and bicollinear nematicity is stabilized in a (narrow) temperature range. In this new
regime, the lattice is monoclinically distorted and short-range spin and orbital order breaks rotational invariance.
A discussion of possible realizations of this exotic state is provided.
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I. INTRODUCTION

The theoretical understanding of high critical tempera-
ture superconductivity in iron compounds has evolved from
its early qualitative developments based on Fermi surface
nesting to more quantitative efforts incorporating the role
of electronic correlations [1–6]. In particular, experts have
focused on several complex regimes including electronic
nematicity [7–10], an interesting state observed in several
high critical temperature pnictide superconductors [11–14].
Upon cooling, this nematic phase is reached at a temperature
TS , concomitantly with a structural phase transition from a
tetragonal to an orthorhombic lattice. Upon further cooling, a
magnetically ordered phase is stabilized at a lower temperature
TN . The orthorhombic nematic phase between TS and TN

exhibits a reduced symmetry under rotations from C4 to C2.
This is also observed in the magnetic and orbital degrees of
freedom leading to nonzero magnetic and orbital “nematic”
order parameters. Experimental investigations have shown that
this nematic phase occurs in the parent compounds of the
1111 pnictides [11]. Since the orthorhombic lattice distortion
δO = |aO − bO |/(aO + bO) ∼ 0.004 [15] is small (aO and bO

are the lattice parameters in the orthorhombic notation), it is
often argued that the lattice plays the role of a “passenger”
in the nematic transition which is believed to be driven by
either the magnetic or orbital degrees of freedom. In addition,
it is interesting to notice that the structural transition occurs
simultaneously with the Néel temperature in several other
iron-based materials. For example, members of the 122 family
need to be electron doped, with the chemical replacement
occurring directly on the FeAs planes, to develop the nematic
phase [12–14]. Hole doping, or electron doping via chemical
substitution away from the FeAs planes, fails to establish
nematicity [16,17].

In the chalcogenides, the parent compound FeTe exhibits
an unexpected “bicollinear” magnetic state [18–20], shown in
panels (a) and (b) of Fig. 1, whose TN coincides with the
TS of a structural transition to a phase with a monoclinic
lattice distortion, as shown in panel (d) of the same figure.
This joint transition is strongly first order [18,21,22]. The

reported lattice distortions in Fe1.076Te and Fe1.068Te are
δM = |aM − bM |/(aM + bM ) ∼ 0.007 [18] (aM and bM are
the low-temperature lattice parameters in the monoclinic
notation). Replacing Te with Se, the bicollinear magnetic order
is eventually lost, the material becomes superconducting, and
it develops an orthorhombic nematic phase above its supercon-
ducting critical temperature. In recent theoretical work, using
a spin-fermion model, we explained the bicollinear magnetic
order using symmetry considerations as a consequence of the
monoclinic distortion [23,24]. Based on this reasoning, the
role of the lattice in the case of FeTe appears more important
than previously anticipated.

The aim of the present work is to argue that the pnictides and
chalcogenides could potentially behave more symmetrically
with regards to the presence of a nematic state. As expressed
above, the pnictides either already have nematicity without
doping, as in the 1111 compounds, or develop nematicity
after doping as in the Co-doped 122 compounds. Based on
symmetry arguments, the presence of a nematic regime is
theoretically understood as follows. In these materials, the
magnetic ground state has wave vector (π,0), with staggered
spins along the x axis and parallel spins along the y axis.
However, the (0,π ) state should have the same energy by
symmetry. In cases of twofold degeneracy in the ground
state, it was predicted that an Ising transition could occur
upon cooling [25], with an order parameter that breaks lattice
rotational invariance and involves only short-range magnetic
correlations. Upon further cooling, the O(3) full symmetry
breaking process is possible.

Our main observation here is that the bicollinear state
shown in Fig. 1(a) with wave vector k1 = (π/2, − π/2) has
a partner, displayed in Fig. 1(b), with identical energy but
k2 = (π/2,π/2) [26]. Then, the same Ising-O(3) rationale
expressed above for the (π,0) − (0,π ) degeneracy can be
repeated for bicollinear states: starting at high temperature,
both spin structure factors S(k) will start growing with equal
strength upon cooling at the wave vectors k1 and k2. By
analogy with the pnictides, it is possible that at a critical
nematic temperature TS , an asymmetry develops such that
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FIG. 1. (a) The bicollinear antiferromagnetic spin order with
wave vector (π/2, − π/2). (b) Same as (a) but for the state lattice
rotated by 90 degrees with wave vector (π/2,π/2). (c) Schematic
drawing of an iron atom at site i (filled symbol) and its four Te
neighbors (open symbols), projected in the x − y plane in their
equilibrium position. The distances δi,ν between the irons at site i
and its four neighboring Te atoms are indicated as well. The localized
spin Si is also sketched. (d) Schematic drawing of the Fe lattice
equilibrium position in the tetragonal phase (black symbols and lines)
and in the monoclinic phase (red symbols and lines). Four Fe atoms
are indicated with filled symbols and labeled by their lattice site index.

S(k1) > S(k2), and then at a lower temperature TN , S(k2)
drops to zero while S(k1) grows like the volume.

While no nematic phase with these characteristics has been
reported yet in materials of the FeTe family with the bicollinear
spin order, the present study provides computational evidence
that there are Hamiltonians with spin- and orbital-lattice
coupling that display this new nematic behavior if the coupling
strengths are properly tuned. While our many-body tools do
not allow us to predict what specific material may display
this phenomenon, our symmetry arguments and concrete sim-
ulation results are offered as motivation for the experimental
search for this exotic bicollinear-nematic state.

Previous numerical studies of spin-fermion models for
pnictides with spin, orbital, and lattice degrees of freedom
provided indications that the structural transition is due to
the coupling between the lattice and spins [27]. Thus, in
these regards, the lattice follows the spins. But the spin-
lattice coupling leads to TS = TN and, then, the establishment
of a nematic phase with TS > TN requires a more subtle
mechanism. Investigations by our group have shown that
the nematic regime can be achieved by the addition of an
orbital-lattice coupling [27] (or by the introduction of in-plane
magnetic disorder, namely by replacing iron by nonmagnetic
atoms [28,29]). Based on this previous research, here a
coupling between the monoclinic lattice distortion and an
orbital nematic parameter with B2g symmetry will be added

to the spin-fermion model that already has the spin-lattice
coupling previously developed to study FeTe [23]. It will be
shown below that this addition generates the novel bicollinear
nematic state. This is not an obvious result because the
tight-binding term contains an intrinsic tendency towards
collinear magnetic order that could have affected the fragile
nematicity region that we are reporting here.

The publication is organized as follows. In Sec. II, the model
is described including the new term that must be incorporated
in order to stabilize a bicollinear-nematic state. In Sec. III,
we provide an explanation of the numerical approach that
allows for the parallelization of the Monte Carlo procedure
and the concomitant use of clusters of reasonable size for our
purposes. The main results showing the stabilization of the
new nematic state are presented in Sec. IV. The discussion,
including possible physical realizations, is in Sec. V, with
brief conclusions in Sec. VI.

II. MODELS

In the first section, we will discuss a general model that
addresses the interactions between electrons and the lattice
for the case of monoclinic distortions. In the second section,
the actual special case that was computationally investigated
in this publication will be presented. Our effort aims to
prove that there is at least one set of couplings for which,
varying temperature, a bicollinear nematic state is stabilized.
A more comprehensive analysis of phase diagrams varying
the many couplings in the generic model would demand
considerable computational resources and this task is left for
future investigations.

A. Generic model

The most general spin-fermion (SF) Hamiltonian discussed
here is an extension of the purely electronic model previously
introduced [30,31], supplemented by additional couplings to
the monoclinic lattice degrees of freedom [27,32,33]:

HSF = HHopp + HHund + HHeis + HStiff + HSLM + HOLM.

(1)

HHopp represents the three-orbitals (dxz, dyz, dxy) tight-binding
Fe-Fe hopping of electrons, with the hopping amplitudes
selected to reproduce photoemission data (see Eqs. (1)–(3)
and Table 1 of Ref. [34]). In the undoped limit, the average
electronic density per iron and per orbital is set to n = 4/3 [34]
and a chemical potential in HHopp [33] controls its value. The
on-site Hund interaction is HHund = −JH

∑
i,α Si · si,α , where

Si are the localized spins at site i and si,α are spins corre-
sponding to orbital α of the itinerant fermions at the same site.
For computational simplicity, the localized spins are assumed
classical and of norm one [35]. HHeis contains the nearest
neighbor (NN) and next-NN (NNN) Heisenberg interactions
among the localized spins, with respective couplings JNN and
JNNN. As explained before [27,31], both NN and NNN could
be active because of the geometry of the problem, where in
each layer the Te atoms (or As, Se, P) are at the centers of iron
plaquettes as seen from above. However, in our previous study
of FeTe [23], we observed that the experimental value of TN

for FeTe could be obtained by simply setting JNN = JNNN = 0.
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This is due to the fact that the intersite spin-spin couplings
favor either checkerboard (JNN) or collinear (JNNN) magnetic
configurations and in order to obtain a bicollinear ground
state it is necessary to use a larger value of the spin-lattice
coupling g̃12, which, in turn, increases TN [36]. HStiff is the
lattice stiffness given by a Lennard-Jones potential to speed
up convergence [33] (full expression can be found in [27]).

Recently, an important novel term was introduced [23]
to describe FeTe properly. This term has the form HSLM =
−g12

∑
i �NNN (i)ε12(i) and it provides a coupling between

the localized spins and the monoclinic Mono lattice distortions
[37]. The coupling constant strength is g12 and the spin NNN
nematic order parameter is defined as

�NNN (i) = 1
2 Si · (Si+x+y + Si−x−y − Si+x−y − Si−x+y), (2)

where i ± μ ± ν indicates the four NNN sites to i, with μ =
±x and ν = ±y representing unit vectors along the x and y

axes, respectively. Note that �NNN (i) has the value 2 (−2)
in the perfect bicollinear states shown in Figs. 1(a) and 1(b),
respectively characterized by a peak at wave vectors (π/2,

− π/2) and (π/2,π/2) in the magnetic structure factor. ε12(i)
is the latticeMono strain defined in terms of the Fe-Te distances
δi,ν as

ε12(i) = 1
8 (|δi,2| + |δi,4| − |δi,1| − |δi,3|), (3)

where δi,ν = (δx
i,ν ,δ

y
i,ν) (ν = 1, . . . ,4) is the distance between

Fe at site i and each of its four Te neighbors (see panel (c) of
Fig. 1 and also Fig. S1, Supplemental Material of Ref. [23]).
As in previous simulations, the Te atoms are allowed to move
locally from their equilibrium position only along the x and
y directions because the z component of the position does
not couple to the monoclinic distortion. It is important to
notice that both �NNN (i) and ε12(i) transform according to
the B2g representation of the D4h symmetry group, which
means that the spin-lattice term of the Hamiltonian transforms
as A1g as expected. As the spin-lattice coupling g12 grows
and induces a monoclinic Mono distortion, �NNN develops a
nonzero expectation value leading to the bicollinear spin state
order as explained in [23].

The Hamiltonian described thus far [23] leads to a first-
order phase transition where both the monoclinic lattice and
the bicollinear spin orders develop simultaneously. Thus no
bicollinear-nematic state was reported in Ref. [23]. Based on
previous investigations of pnictides using the spin-fermion
model [27], it is natural to introduce a coupling between the
lattice and the orbital degree of freedom to favor nematicity
(note that adding this term does not imply immediately that
the bicollinear nematic state will be stabilized because there
are competing collinear tendencies in the tight-binding term;
a specific calculation is thus needed, as presented below).
For the new term, care with regards to the symmetry of the
operators used is required. The monoclinic orbital-nematic
order parameter is defined as

	B2g
(i) = ni,XZ − ni,YZ =

∑

σ

(c†i,xz,σ ci,yz,σ − c†i,yz,σ ci,xz,σ ),

(4)

where ni,β = ∑
σ c

†
i,β,σ ci,β,σ (β = XZ,YZ), and the B2g or-

bital basis is related to the B1g orbital basis by

ci,XZ,σ = 1√
2

(ci,xz,σ + ci,yz,σ ) (5)

and

ci,YZ,σ = 1√
2

(ci,xz,σ − ci,yz,σ ). (6)

Notice that the x and y axes point along nearest-neighbor
irons, i.e., along the sides of the plaquette formed by
four irons, while the X,Y axes point along next nearest-
neighbor iron, i.e., along the diagonals of the iron plaquette.
The Z and z axis coincide and they are perpendicular to the
plane formed by the iron layer.

The new term in the Hamiltonian HOLM that couples the
B2g orbital and lattice order parameters is given by

HOLM = −λ12

∑

i

	B2g
(i)ε12(i). (7)

Because the monoclinic lattice distortion ε12(i) transforms as
the B2g representation of D4h, it must be coupled to an orbital
order parameter that also transforms as B2g , which is why
	B2g

(i) was constructed. This ensures that HOLM is invariant
under the D4h symmetry group.

B. Parameter space studied

Although the model described thus far is generic for the
spin-fermion family of Hamiltonians, including Heisenberg
couplings as well as lattice-spin and lattice-orbital terms, in
practice we have setup to zero some of those couplings for
simplicity. The reason is that we aim to prove computationally
the existence of the novel proposed bicollinear nematic state at
least in the most optimal region of parameter space. In practice,
it would be impossible to establish the full phase diagram
varying every single parameter in the complete model, but as
experiments searching for the novel phase progress, we can
refine our analysis in future efforts.

HSF was studied here with the same Monte Carlo (MC)
procedure employed in Ref. [27], supplemented with the
recently developed “parallel travelling cluster approximation
(PTCA)” [38] described in the next section. The particular
values for the couplings JH = 0.1 eV, JNN = JNNN = 0, and
g̃12 = 2g12√

kW
= 0.24 were chosen because they provide TN =

TS = 70 K for λ12 = 0 [23], which is the transition temperature
experimentally observed in FeTe (note then that the Heisenberg
couplings are neglected in this first exploratory study, for
simplicity). The coupling strength g̃12 is the dimensionless
version of the spin-lattice coupling, employing W = 3 eV
as the bandwidth of the tight-binding term and k as the
constant that appears in HStiff [27]. Since these couplings
were discussed extensively before, in the present effort, we
will instead focus on a careful description of the new dimen-
sionless monoclinic orbital-lattice coupling λ̃12 = 2λ12√

kW
and its

effects.
During the simulation, the Te atoms are allowed to move

locally away from their equilibrium positions within the
x − y plane. The Fe atoms can move globally via a monoclinic
distortion Mono where the angle between two orthogonal
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CORE 1
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CORE 4
FIG. 2. Diagram of the PTCA setup used to sample the local spin

and lattice variables. The lattice is divided into four quadrants and
each of four processors generates traveling clusters (indicated with
8 × 8 squares) and proposes updates for the sites (indicated by small
open circles) inside one quadrant.

Fe-Fe bonds is allowed to change globally to 90◦ + θ with
the four angles in the iron plaquette adding to 360◦, so that
the next angle in the plaquette becomes 90◦ − θ , with θ as a
small angle [see Fig. 1(d)]. In addition, the localized spins Si
and atomic displacements (δx

i,ν ,δ
y
i,ν) that determine the value

of the local Mono lattice distortion ε12(i) [23] [see Fig. 1(c)]
are evaluated via a standard Monte Carlo procedure.

III. METHODS: THE PARALLEL TRAVELING
CLUSTER APPROXIMATION

To access the lattice sizes needed to study, the existence
of a monoclinic nematic phase we implemented the parallel
traveling cluster approximation (PTCA) [38], which is a
parallelization improvement over the traveling cluster ap-
proximation (TCA) previously introduced [39]. PTCA allows
parallelization in order to use multiple CPU cores and by this
procedure we can reach lattices as large as 32 × 32. To perform
a Monte Carlo update of one of the local variables—either the
localized spin Si at the iron site i or the local distortion of
the Fe-Te bonds joining the Fe atom at site i with its four Te
neighbors—an 8 × 8 traveling cluster is constructed around
site i and the Hamiltonian is diagonalized only inside that
cluster to decide whether the update is accepted. The algorithm
is parallelized by dividing the lattice into four quadrants with
16 × 16 sites, one per different CPU core. Then, each CPU
generates traveling 8 × 8 clusters around the sites belonging
to its quadrant, see Fig. 2 for an illustration, and these clusters
are then simultaneously diagonalized.

CORE 1

CORE 2

CORE 3

CORE 4
FIG. 3. Diagram of the PTCA setup used to sample the global

lattice distortion variables. The lattice is divided into sixteen clusters.
Each of the four processors diagonalizes four of the clusters.

To update the global monoclinic lattice distortion given by
the angles in the rhombus formed by the four irons shown
in Fig. 1(d) an extra new modification in the PTCA was
introduced. The 32 × 32 sites lattice was divided into 16
clusters with 8 × 8 sites each as shown in Fig. 3. Each of
four CPU cores was devoted to diagonalize four of the clusters
as indicated in the figure. The same update is proposed in all
the clusters, which are simultaneously diagonalized. Then, all
the eigenvalues are collected in one of the cores in order to
calculate the probability of the Monte Carlo update and decide
whether the update is accepted or rejected.

For thermalization typically 5 000 Monte Carlo steps
were used, while 10 000 to 25 000 steps were performed
in between measurements for each set of parameters and
temperatures. The spin-spin correlation functions in real space
were measured and the magnetic structure factor S(kx,ky)
was calculated via their Fourier transform. Notice that in
the bicollinear state the magnetic structure factor diverges for
(kx,ky) = (π/2,π/2) or (π/2, − π/2). The Néel temperature
TN is obtained from the magnetic susceptibility given by

χS(kx ,ky ) = Nβ〈S(kx,ky) − 〈S(kx,ky)〉〉2, (8)

where β = 1/kBT and N is the number of lattice sites. We
also calculated the numerical derivative of S(π/2,π/2) with
respect to temperature to double-check the value of TN . The
monoclinic structural transition temperature, TS , was obtained
by calculating the structural susceptibility given by

χδM
= Nβ〈δM − 〈δM〉〉2, (9)

where δM ≈ θ/2 and θ is the deviation from 90◦ of the angle
of the lattice plaquette as shown in Fig. 1(d) [23]. TS was also
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FIG. 4. Magnetic susceptibility χS (squares) and monoclinic lat-
tice susceptibility χδM

(circles) evaluated using the PTCA algorithm at
λ̃12 = 1 employing a 32 × 32 sites cluster. In this plot, and other plots
of susceptibilities shown below, the fluctuations between subsequent
temperatures are more indicative of the error bars than the intrinsic
errors bars of individual points, which for this reason are not shown.

obtained from the numerical derivative of δM as a function
of temperature and from monitoring the behavior of the
spin-nematic and orbital-nematic order parameters, �NNN (i)
and 	B2g

(i), respectively, introduced in the previous section
and their associated susceptibilities.

IV. RESULTS

As explained before, in previous work [23], we found
that the magneto-structural transition experimentally observed
in FeTe, with TS = TN = 70 K, was reproduced by setting
JH = 0.1 eV and g̃12 = 0.24, and by dropping the Heisen-
berg couplings, i.e., using JNN = JNNN = 0. In the present
study for simplicity, we keep fixed the values of all these
parameters while we only vary the orbital-lattice coupling
λ̃12 to investigate whether a nematic phase can be stabilized
in a range of temperature. Future work will address what
occurs in other portions of parameter space, such as with
finite Heisenberg couplings [some partial results are already
available (to be shown in future publications) and all indicates
that the bicollinear nematic state is still present at large λ̃12

even including nonzero JNN and JNNN].

A. Special case λ̃12 = 1

Similarly, as with the behavior reported before for the spin-
fermion model in the case of the pnictides with (π,0) spin order
[27], in the bicollinear case studied here it was also observed
that the novel bicollinear nematic region becomes stable by
increasing the value of the orbital-lattice coupling. This is not
obvious because of competing collinear tendencies, as already
explained. Another similarity with the case of the collinear
state [27] is that the addition of the orbital-lattice coupling λ̃12

turns the first order magnetic transition into a second order
one. The temperature width of nematicity remains narrow, as
in many previous investigations, and robust values of λ̃12 are
required. Nevertheless, this is sufficient to demonstrate the
matter-of-principle existence of the bicollinear-nematic state
discussed in this publication. For clarity, first let us address in

0.0

0.1

0.2

0.3

0.4

120 140 160 180 200 220

TN TS

O

T [K]

δM ×102

S(π/2, π/2)

FIG. 5. Magnetic spin structure factor S(π/2,π/2) (squares) and
monoclinic lattice order parameter δM (circles) evaluated using the
PTCA algorithm for λ̃12 = 1 on a 32 × 32 sites cluster.

detail the largest value of the coupling that we studied which
was λ̃12 = 1.

In Fig. 4, the magnetic susceptibility χS(π/2,π/2) versus
temperature is shown. A clear maximum at TN = 165 K
indicates the magnetic transition to the bicollinear state with
long-range order. The monoclinic lattice susceptibility is also
shown. Interestingly, this quantity has a sharp peak at a clearly
larger temperature TS = 193 K where the structural transition
from tetragonal to monoclinic takes place, indicating that a
bicollinear-nematic state does indeed occur.

In Fig. 5, the magnetic structure factor at wave vector
(π/2,π/2) is displayed. The TN from the susceptibility, shown
with a dashed line, should occur when the rate of increase
of the order parameter is maximized. This has been verified
by performing a spline fit of the S(π/2,π/2) points obtained
from the Monte Carlo simulation and taking the numerical
derivative. The monoclinic lattice order parameter δM is also
presented in Fig. 5. The structural transition temperature is
displayed with a dashed line as well. We also verified that the
maximum in the lattice susceptibility from Fig. 4 coincides
with the maximum rate of change in the lattice order parameter
via a spline fit of the Monte Carlo data.

In between the two transition temperatures TN and TS , a
nematic phase is stabilized. In this phase both short-range or-
bital and spin-nematic order develop as it can be seen in Fig. 6,
where in panel (a), the susceptibilities associated with various
order parameters are presented. It can be observed that the
orbital-nematic and spin-nematic susceptibilities have maxima
at TS as does the structural susceptibility. This confirms the
presence of a monoclinic nematic phase characterized by
orbital-nematic and spin-nematic orders. These properties are
also reflected in the behavior of the respective order parameters
shown in panel (b) of the figure.

Performing spline fits of the order parameters and taking
numerical derivatives, the critical temperatures obtained from
the susceptibilities were reproduced. It is important to notice
that the lattice distortions δM ∼ 10−3 are quantitatively similar
to those reported in FeTe experiments while, as shown in
Fig. 6(b), the orbital and spin-nematic order parameters
develop values an order of magnitude larger. Thus the strength
of the orbital-lattice coupling used still leads to small lattice
distortions but appears to generate robust magnetic and orbital
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S(π/2, π/2)
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FIG. 6. (a) Magnetic susceptibility χS(π/2,π/2) (red squares) with
a maximum at TN = 165 K (dashed line), and the monoclinic lattice
susceptibility χδM

(blue circles), spin-nematic susceptibility χ�

(orange diamonds), and orbital-nematic susceptibility χ	 (green
triangles) all with a maximum at TS = 193 K. The susceptibili-
ties were calculated at λ̃12 = 1 using 32 × 32 lattices. (b) Monte
Carlo measured order parameters associated to (a). Shown are the
magnetic structure factor S(π/2,π/2) (red squares), monoclinic
lattice distortion δM (blue circles), spin-nematic order parameter
�NNN (orange diamonds), and orbital-nematic order parameter 	B2g

(green triangles). The transition temperatures were obtained from
the susceptibilities in (a) and via numerical derivatives in (b). Both
procedures give the same result.

short-range order inducing substantial anisotropic effects in
these observables.

B. Special case λ̃12 = 0.85

As the value of the orbital-lattice coupling is reduced the
separation between the magnetic and the structural transitions
decreases. In panel (a) of Fig. 7, the magnetic and structural
susceptibilities at λ̃12 = 0.85 obtained from Monte Carlo
simulations are presented. In this case TN = 145 K, while TS =
147 K. The orbital- and spin-nematic order parameters also
have a maximum susceptibility at TS (not shown for simplic-
ity). The magnetic and structural order parameters are shown in
panel (b) of Fig. 7 and their qualitative behavior is in agreement
with panel (a). The indicated transition temperatures have been
obtained from numerical fits of the order parameters and their
derivatives as described in the previous subsection. This case
λ̃12 = 0.85 is close to the limit of our numerical accuracy.
In principle, it is possible that simulations using larger
systems and with far more statistics may unveil a very narrow
bicollinear nematic state even for small values of λ̃12. However,
for our qualitative purposes, simply showing the stability of
the new proposed phase in any range of λ̃12 is sufficient.
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FIG. 7. (a) Susceptibilities associated with the magnetic spin
structure factor S(π/2,π/2) (squares) and with the monoclinic lattice
distortion (circles) using λ̃12 = 0.85 and a 32 × 32 cluster. Solid lines
are guides to the eye. (b) Spin structure factor S(π/2,π/2) (squares)
and monoclinic lattice order parameter δM (circles) for the same λ̃12

and cluster size as in (a).

C. Phase diagram

The phase diagram obtained as a function of the orbital-
lattice coupling λ̃12 and temperature is presented in Fig. 8.
It can be seen that the region with B2g nematicity can be
stabilized at robust values of the orbital-lattice coupling.
While a very narrow nematic phase may exist at smaller
values of this coupling, numerically we have been able to
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FIG. 8. Phase diagram varying temperature and λ̃12, for g̃12 =
0.24, JH = 0.1 eV, and JNN = JNNN = 0.0. Note the narrow temper-
ature width of stability of the bicollinear-nematic state, similarly as
it occurs for the more standard (π,0) − (0,π ) nematic state [27]. For
values of λ̃12 smaller than 0.75, our numerical accuracy does not
allow us to distinguish between TN and TS .
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resolve the separation between the two critical temperatures
only for λ̃12 � 0.75. As described in the previous sections,
the separation between TN and TS monotonically increases
with λ̃12.

V. DISCUSSION AND POSSIBLE
PHYSICAL REALIZATIONS

Our results have illustrated the possible existence of a
nematic phase involving bicollinear short-range order, using
as explicit example a computational study of the spin-fermion
model incorporating the lattice distortions corresponding to the
iron telluride family. Previous investigations [23] showed that
the addition to the electronic spin-fermion model for pnictides
of a coupling between a spin-nematic order parameter with
B2g symmetry and the monoclinic distortions of the iron
lattice does induce the low-temperature monoclinic and spin
bicollinear state experimentally observed in FeTe. That result
was remarkable because the spin-fermion model contains a
tight-binding term that favors the (π,0) and (0,π ) collinear
states that arise from the nesting of the Fermi surface in
weak coupling. However, the g̃12 spin-lattice interaction,
when sufficiently strong, can overcome these tendencies and
stabilize the monoclinic bicollinear state.

Here, we have included an additional orbital-lattice term
with coupling strength λ̃12, involving the monoclinic lattice
strain coupled to an orbital order parameter with B2g symme-
try. By this procedure, we have shown that a novel nematic
phase characterized by the breakdown of the lattice rotational
symmetry between the two possible diagonal directions of the
spin bicollinear state can be induced. In this new nematic
phase, short-range spin- and orbital-nematic order develop
accompanied by a lattice monoclinic distortion.

The model Hamiltonian studied here only allows us to show
explicitly, as a matter of principle, that indeed the bicollinear-
nematic state described above does occur in computational
studies once all of the many degrees of freedom and couplings
are properly incorporated. But it is difficult to predict on what
specific material this subtle state will be realized in practice,
thus we can only discuss some scenarios qualitatively. The
possible splitting of TN and TS by electron doping was raised
in [9]. However, spin-fermion model studies including doping
but not quenched disorder (i.e., in the “clean” limit) did not
detect such a split, at least in the doping range studied (Fig. 2 of
Ref. [28]). Another generic qualitative observation is that in the
pnictides nematicity is observed for the 1111 compounds even
in the undoped limit [11]. Thus, to find the B2g nematic phase
discussed here, it may be necessary to synthesize materials
with intercalated FeTe planes.

However, in our opinion, the most likely scenario to
stabilize the proposed bicollinear-nematic regime in variations
of the FeTe compound is by the chemical replacement of
iron by other transition metal elements, thus simultaneously
modifying the electronic density as well as the amount of
quenched disorder. In pnictides, replacing Fe by Co, Ni, or
Cu indeed leads to a wide nematic region. Our previous
computational investigations using the spin-fermion model
with doping and disorder [28] clearly showed that indeed
by this procedure a (π,0) nematic temperature range can be
induced even in cases where TN and TS coincide in a first-order

transition for the undoped parent compound, as in the 122
family. Disorder plays a more important role than doping in
this split [28], as observed experimentally as well [40]. To our
knowledge, the experimental investigations of (Fe,X)Te, with
X another transition metal element, are very limited. We are
aware of three main lines of investigations and conclusions:

(i) Copper doping of FeTe was studied in Refs. [41,42]
for two Cu concentrations using single crystals. For the case
Fe1.06Cu0.04Te, the presence of strain was detected at 41 K
upon cooling [41]. At lower temperatures, approximately 36 K,
nearly commensurate long-range bicollinear magnetic order
occurs. The presence of two transitions seems in agreement
with our prediction of bicollinear nematicity. However, in
Ref. [41], it was argued that between 36 and 41 K, the lattice
distortion could be orthorhombic as in pnictides. The possible
competition with orthorhombic tendencies was theoretically
addressed and reported in Ref. [23]. This competition adds
an extra complication to the detection of the here predicted
bicollinear-nematic state. For the case FeCu0.1Te, only cluster
glass behavior was found below 22 K, presumably due to
disorder [41]. Note that this glassy state could be nematic.

(ii) The case of Ni doping was reported for the compounds
Fe1.1−xNixTe with x = 0,0.02,0.04,0.08, and 0.12 [43]. Mag-
netization studies show that TN decreases with increasing x up
to 0.04, while for x = 0.08,0.12 a possible spin glass transition
was reported. In fact, neutron diffraction at x = 0.12 found
neither structural nor magnetic transitions at low temperatures.
Since this study focused on long-range magnetic order, the
presence of bicollinear nematicity is still possible.

(iii) Cobalt doping has also been recently studied via single
crystals of Fe1+y−xCoxTe with x = 0,0.01,0.04,0.07,0.09,

and 0.11 [44]. In the range up to x = 0.07, the antiferromag-
netic transition systematically decreases. For x = 0.09 and
larger, the long-range-order transition disappears.

As a partial summary, the available experimental literature
on (Fe,X)Te does not conclusively show neither the presence
nor absence of bicollinear-nematicity, and more work is
needed to clarify this matter now in the light of our present
study. For example, in the context of pnictides the pioneering
studies of Ba(Fe1−xCox)2As2 [7] reported the resistivities vs.
temperature along the a and b axes, highlighting their different
behavior and substantial differences particularly below x =
0.07. Similar careful studies in the (Fe,X)Te context must
be performed but focusing on the temperature evolution of
the resistivities along and perpendicular to the main spin
diagonals in the bicollinear state, as already performed for
FeTe [45,46]. In addition, recent inelastic neutron scattering
studies of nematicity in BaFe1.935Ni0.065As2 [47] focused on
the temperature dependence of the intensity of the peaks at
(π,0) and (0,π ), reporting their split at TS with cooling,
followed by a collapse to zero of the (0,π ) intensity at TN .
Similar studies for X-doped FeTe (X = Cu,Ni,Co) should
be carried for the temperature dependence of the neutron
intensities corresponding to the (π/2,π/2) and (π/2, − π/2)
wave vectors.

We also would like to point out that our work confirms that
magnetoelastic effects tend to estabilize the bicollinear state,
while in the absence of this kind of coupling Q plaquette or
orthogonal double stripe order could be stabilized, which may
be the case in FeTe with excess iron [48,49]. In addition, in a
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recent publication [50] a double-stage nematic bond-ordering
above the bicollinear state was proposed, but this effect would
be difficult to study numerically due to the narrow range of the
nematic phase.

VI. CONCLUSIONS

In this publication, based on simple symmetry observations
and a concrete model Hamiltonian numerical simulation, we
have argued that the exotic bicollinear state known to be stable
in FeTe admits a possible nematic state above the antiferro-
magnetic critical temperature. In other words, as discussed in
the previous section, via chemical substitution it is conceivable
that a split of the first-order transition of FeTe could be gener-
ated. Upon cooling, this would induce first a TS , where
the B2g monoclinic distortion is stabilized and short-range

spin and orbital order develops breaking the lattice rotational
invariance, and second a TN at a lower temperature, where
long-range bicollinear order is fully stabilized. Experimentally
finding this new exotic state not only would confirm the
theoretical prediction outlined here, but it would allow us to
investigate to what extend nematic fluctuations are needed to
induce superconductivity.
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