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Quantum charge pumps with topological phases in a Creutz ladder
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The quantum charge pumping phenomenon connects band topology through the dynamics of a one-dimensional
quantum system. In terms of a microscopic model, the Su-Schrieffer-Heeger/Rice-Mele quantum pump continues
to serve as a fruitful starting point for many considerations of topological physics. Here we present a generalized
Creutz scheme as a distinct two-band quantum pump model. By noting that it undergoes two kinds of topological
band transitions accompanying with a Zak-phase difference of π and 2π , respectively, various charge pumping
schemes are studied by applying an elaborate Peierls phase substitution. Translating into real space, the
transportation of quantized charges is a result of cooperative quantum interference effect. In particular, an
all-flux quantum pump emerges which operates with time-varying fluxes only and transports two charge units.
This makes cold atoms with artificial gauge fields a unique system where this kind of phenomena can be realized.
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I. INTRODUCTION

Quantum charge pumping was one of the early exam-
ples of a counterintuitive one-dimensional (1D) transport
phenomenon as a result of the subtle interplay between
nontrivial band topology and quantum adiabatic transport [1].
It underpins the many facets of understanding topological
physics ranging from the integer quantum Hall effect [2,3]
to modern studies of electric polarization [4,5], and most
recently, topological Floquet physics [6–18]. Explicit models
of a quantum pump, however, are surprisingly rare [19–23].
The prototype of its realization is the one based on the
Su-Schrieffer-Heeger/Rice-Mele (SSH/RM) model [24–26]
for polyacetylene. It has generated renewed interest thanks to
various recent experimental realizations in ultracold atoms and
condensed matter systems, where the Zak phase [27], quantum
pumping phenomena [28–30], and chiral solitonic edge states
[31] are directly measured. In this paper, we present a
generalized Creutz scheme [32] as a distinct microscopic two-
band quantum pump model utilizing the quantum interference
effect. The model points to a new quasi-one-dimensional tight-
binding quantum pump displaying rich topological physics,
and realizable with artificial gauge fields in a cold atomic
setting.

In the SSH/RM quantum pump, the physical picture is one
based on confining a quantum particle in a periodic potential
that “slides” slowly in time [19,33]. Specifically, the sliding
potential interpolates the two possible alternations of bond
strength, such that two dimerization phases of the SSH are
realized in a time periodic manner.

In the quasi-1D Creutz model [Fig. 1(a) with φ = 0]
[32,34], there actually exist three distinct phases, a feature not
apparent by inspection of the tight-binding model. An intuition
is provided as follows. First, notice that cross-link hoppings
and external flux in the two-leg ladder lattice enhance the
quantum interference effect. As a result, a complete basis in
the topological regime, as found by Creutz [32], takes the
form of a plaquette state which spans two unit cells. This
renders a full nonoverlap covering of the lattice in two possible
ways [denoted as C1, C2, Fig. 1(c)]. These, together with a
trivial phase when the cross-linking is weak, form the basic
topological features of the Creutz model [35–38].

Turning to the associated quantum pump, a new element
is the introduction of an additional phase φ in the hopping
along the rung of the ladder [Fig. 1(a)] [39]. Due to the
cross-linking, the additional Peierls phase acquires a true
physical meaning [Fig. 1(b)]. It opens the door in the Creutz
model for various “adiabatic” connecting paths among the
distinct phases [44–46], which are separated a priori by band
crossing, thereby allowing the realization of various quantum
pumps. While some give pumping scenarios akin to the
SSH/RM, remarkably, a novel kind emerges in the parameter
plane of the two gauge-invariant fluxes wherein all bond
strengths are held fixed—an all-flux quantum pump [Fig. 1(d)].
It is associated with an accumulated Zak phase difference of
4π and a topological charge pumping of two units. This in turn
can be understood as a connection between the two plaquette
states coverings, a distinctive quantum interference feature of
the Creutz model.

The paper is organized as follows. In Sec. II, we clarify
the topological phases in the Creutz model with nontrivial flux
patterns, emphasizing band crossings, rather than gap closing,
which separates them. In Sec. III, we propose a generalized
scheme of the Creutz model, which opens the path for studying
various quantum pumps with the associated phases. In Sec. IV,
we discuss realization and detection schemes in cold atoms
with time-dependent artificial gauge fields [47,48], with details
given in Appendix. We conclude with summary and outlook
in Sec. V.

II. TOPOLOGICAL CHARACTERISTICS
OF THE HAMILTONIAN

The generalized Creutz scheme is described by

Ĥ = −
∑

j

(JXeiθ â
†
j+1âj + JXe−iθ b̂

†
j+1b̂j + JY e−iφ â

†
j b̂j

+ JDâ
†
j b̂j+1 + JDb̂

†
j âj+1 + H.c.), (1)

where â
†
j (âj ) and b̂

†
j (b̂j ) are creation (annihilation) operators

on site j , belonging to the upper and lower chains, respec-
tively. Compared with the usual ladder model, the additional
ingredients are the cross-link diagonal hopping JD and the
phase imprints θ , φ.
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FIG. 1. (a) Generalized Creutz scheme with cross-link hopping
JD and phase imprints θ and φ in a two-leg ladder lattice. (b) Physical
flux pattern given by two gauge-invariant fluxes α = θ − φ and β =
θ + φ. (c) Representatives of two plaquette coverings of the lattice in
the topological regime. The values indicated are the components of
the (unrenormalized) wave function. (d) A typical flux cycle for an
all-flux quantum pump.

The Bloch Hamiltonian is given by

H (k) = −
(

2JX cos(ka − θ ) 2JD cos(ka) + JY e−iφ

2JD cos(ka) + JY eiφ 2JX cos(ka + θ )

)
,

(2)

where a is the lattice constant, and for short, we introduce
the corresponding pseudospin components H (k) = h0(k) I +
h(k) · σ , where {I,σ } are the identity and the three Pauli
matrices, acting on the upper/lower chain space. It is a two-
band model with the energy spectrum E±(k; JX,Y,D,θ,φ) =
h0(k) ± |h(k)| [49].

The presence of the cross-link hopping alters the con-
nectivity of the lattice in an interesting way. In comparison
with a regular two-leg ladder (JD = 0), the physical flux
pattern is fixed by four distinct shortest closed paths in the
lattice (rather than one when JD = 0) and two gauge-invariant
fluxes α = θ − φ and β = θ + φ (rather than simply 2θ when
JD = 0) with a physical range −π < α,β � π , see Fig. 1(b).
In the convention chosen, therefore, the phase imprints θ and
φ take range in the shaded area in Fig. 2(b), the equivalent
of the “first Brillouin zone.” We now consider the bulk band
topology for the original (φ = 0) and the generalized (φ �= 0)
Creutz schemes with fixed JX,Y .

Case φ = 0. In the (θ,JD) plane, we identify three regions,
labeled as I, II, and III, as being characterized generically by
two energy bands with no band crossing for all quasimomenta
(the system need not be gapped at half filling), see Fig. 2(a).
The boundaries are given by a critical cross-link hopping
J c

D = JY /2 and the phase value θ = 0,π .
What is not apparent from the energy bands are the three

“phases” distinguished by their bulk band topology [50] as
characterized by the Zak phase ϕZak ≡ i

∫
1BZ dk 〈uk|∂kuk〉, i.e.,

the winding of the lower band two-spinor eigenstate |uk〉 of
H (k) on the Bloch sphere as the quasimomentum parameter
varies from k = −π/a to π/a in the first Brillouin zone (1BZ)
[51,52]. They are given by ϕ

I,II,III
Zak = 0, π,−π , respectively,

see Fig. 2(a) [35,36,38,53].
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FIG. 2. (a) (Left) Three phases of the Creutz model with finite
(JX,JY ) and φ = 0. Insets illustrate the generic two energy bands
with or without band crossings. The boundaries (solid and dotted
lines) are determined by the number of band crossings (two and
one, respectively). (Right) Lower band eigenstates (arrows) showing
different winding properties, described by the Zak phase. (b) The
phase diagram in the extended (θ,φ,JD)-parameter space. The shaded
region is the physical range for θ , φ. (c) Various pumping schemes
encircling the line degeneracies.

A nontrivial Zak phase, in II and III, signifies the existence
of edge states in a finite-sized system [32]. The reversal in the
winding between II and III can already be inferred from H (k)
being invariant under (k,θ ) → (−k,−θ ). The two nontrivial
phases are reminiscent of the two dimerization phases, the
so-called D1 and D2 phases, of the SSH model [27].

In one sense, both the Creutz and SSH models are
(quasi-)one-dimensional models exhibiting nontrivial band
topology and the existence of edge states. On the other hand, in
the SSH model, there exist only two phases, both topologically
nontrivial with ϕ

D1,D2
Zak = ±π/2, separated by gap closing

at a single quasimomentum at the Brillouin zone edge. In
the Creutz model, it features three distinct phases, with the
possibility of band crossings at either one or two inequivalent
quasimomenta. This leads to differences in the acquired Zak
phase in the Creutz model.

Moreover, as already noted by Creutz [32], the phase values
θ = ±π/2 are special in that the spectrum becomes particle-
hole symmetric. When JY = 0, a complete basis takes the
form of plaquette states [Fig. 1(c)] and flat band physics is
also expected to be dominant here.

To further characterize the physical distinction among the
Creutz phases (besides the existence of edge states), a direct
consequence that follows is that the Zak phase differences
δϕA-B

Zak = ϕA
Zak − ϕB

Zak are

δϕII/III−I
Zak = ±π and δϕII−III

Zak = 2π. (3)

These are experimentally measurable quantities [4,27,52].
Case φ �= 0. A nonzero φ diminishes the band crossing,

except for φ = π , Fig. 2(b). The physical motivation for
introducing φ as an additional phase follows from inspecting
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the topological part of the pseudospin Hamiltonian Htopo(k) =
h(k) · σ . With φ = 0, the band eigenstates, as a function of
k, are determined by (hx,0,hz), are thus strictly planar, see
right panel of Fig. 2(a). The quantized Zak phase jumps
discontinuously across the phase boundary. To establish an
adiabatic connection between any two distinct phases (more
precisely, to relate the two phases without encountering
band crossing), we require a nonvanishing third pseudospin
component in the Bloch Hamiltonian. With a broken inversion
symmetry, it merely renormalizes hz while keeping hy = 0.
We therefore introduce a phase imprint φ in the hopping
along the rung direction giving hy �= 0. Crucially, due to the
cross-link connectivity, this extra phase cannot be absorbed
into a redefinition of θ but acts as an independent phase degree
of freedom [54]. The resulting model contains two gauge-
invariant fluxes (α,β), both defined modulo 2π , and thereby
giving way to an extended multiply connected parameter
space [Fig. 2(b)]. We emphasize that with the network of line
degeneracies it shows a topological scenario distinct from the
SSH/RM.

III. QUANTUM PUMPS AND PHYSICAL OBSERVABLES

Following on the Introduction, two elementary pumping
schemes are associated with closed trajectories enclosing the
two kinds of boundary lines. They are trajectories connecting
II-III phases and I-II/III phases, labeled, respectively, as γ1,2

in Fig. 2(c). The γ1 pump turns out to be a novel kind, and in
the following we will focus on its properties. At the end of this
section, we comment on the other pumps.

First, the γ1 trajectory lies on the (θ,φ) plane in the
topological regime JD > J c

D , with all hopping strength JD,X,Y

held fixed. On this plane, γ1 encircles one of the band crossing
points given by (0,0) or (π,0). For simplicity, we parametrize
γ1 as θ (t) = cos(ωt) + π , φ(t) = sin(ωt), encircling (π,0)
with a time period T for the Hamiltonian to return itself,
i.e., H (t + T ) = H (t), ω = 2π/T is the driving frequency
[Fig. 1(d)]. The chosen parameters JX,Y,D are such that the
instantaneous energy band is well separated between the upper
and lower branches during the time evolution. The energy
gap �g together with the driving frequency constitute an
adiabatic condition, a condition easily met as we will show.
The band topology characterizations are then given in terms
of the Zak phase ϕZak(t), the Berry curvature 
(k,t), and the
Chern number C associated with the evolving band.

From Fig. 3(a), we see that γ1 results in an absolute change
of 4π in the Zak phase, twice that of δϕII-III

Zak . An understanding
can be drawn from the modern electric polarization theory
by relating a 2π Zak-phase difference as unit shift (in
lattice constant unit) in the center-of-mass position of the
Wannier states [4,19]. In this way, the 4π difference is
related to twice the translation between the representative
C1 and C2 coverings [Fig. 1(c)], a 2a shift, around which
γ1 traverses over one cycle. On the other hand, the Berry
curvature 
(k,t) associated with the evolution of the 1D
energy band following γ1 can be computed showing a definite
sign throughout the 1BZ, see Fig. 3(b). When integrated over
one full cycle for each momentum state, it gives the Chern
number |C| = 2, consistent with the integrated Zak phase
value.
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FIG. 3. (a) Zak phase as a function of θ and φ where the line
of discontinuity (white line) is dependent on the choice of the
eigenstate. The directed circle corresponds to the γ1 trajectory. (b)
Evolution of the energy spectrum over a cycle. The density plot at the
bottom is the Berry curvature associated with the lower energy band.
(c) Time evolution of the current density j (t) (blue line). The pumped
charge up to time t (red line). (Inset) Adiabatic vs nonadiabatic charge
transport (dash line). Chosen parameters: JY /JX = 2, JD/JX = 1.8,
and h̄ω/JX = 0.1 (adiabatic),6.0 (nonadiabatic).

On transport properties, we consider spinless fermions with
the lower band fully filled [50]. The time evolution of the cur-
rent density j (t) ≡ (1/2π )

∫
1BZ dk vk(t) can be computed in a

numerically exact way, following the full evolution of states
according to the time-dependent Schrödinger equation for the
two-band model. Here, vk(t) = 〈ψk(t)|∂H (k,t)/∂(h̄k)|ψk(t)〉
is the expectation value of the instantaneous velocity operator
[19] with the initial conditions |ψk(0)〉 = |uk(0)〉, where k

remains a good quantum number. Results for small driving
h̄ω/JX = 0.1 are shown in Fig. 3(c) over several cycles (blue
curve), where �g = O(JX). Then, the pumped charge is ob-
tained by integrating the current density �n(t) = ∫ t

0 dt ′ j (t ′)
(red curve) [19]. In agreement with the adiabatic transport
theory, the pumped charge over a full cycle in the limit
of small driving gives the Chern number of the evolving
band. In the inset we show the breakdown of adiabaticity
with h̄ω/JX = 6.0, where �n(t) is no longer related to the
band topology. We emphasize that topological charges only
appear at multiple of complete cycles, while within a cycle
the instantaneous charge pumping depends on the specific
geometry of the trajectory. For example, at half cycle, it needs
not, contrary to the one shown, be half the pumped charge of
the full cycle.

To sum up, the γ1 quantum pump is remarkable because
the effect of quantum interference (due to nontrivial lattice
connectivity and fluxes) is only apparent in the structure of the
complete basis, rather than in the Hamiltonian or the confining
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FIG. 4. (a) Proposed cold atomic setup with two-electron atoms
trapped in a spatially shifted optical zigzag lattice [57]. The interstate
conversions are induced by additional resonant lasers with tunable
phases. (b) Spatially-dependent energy levels in a rectified optical
superlattice (staggered in magnitude in the upper/lower chains) with
two characteristic onsite energies V1,2 [58]. Various laser frequencies
are indicated with ω1-ω7.

potential. It operates with time-varying fluxes only, without
any “sliding” in the potential.

Using the same characterization, the γ2 trajectory can be
realized in the (φ,JD) plane by encircling (0,J c

D) point with
fixed θ �= 0,π . It results in the Zak phase difference of 2π ,
the Chern number |C| = 1, and unit charge pumping. The
pattern should now be clear: the topological charge pumping
is related to the nature of the boundary line (i.e., the number of
band crossing), its direction of encircling and in observing the
adiabatic condition. As an illustration, we envisage a loop γ3

encircling (θ,φ) = (0,0) and (0,π ) in the topological regime,
see Fig. 2(c), resulting in a |C| = 4 quantum pump.

IV. COLD ATOM REALIZATION SCHEME

We consider a quantum degenerate mixture of ground
and long-lived excited states, denoted as {|g〉,|e〉}, realized
with alkaline-earth atoms, such as ytterbium or strontium
[55,56]. They form a basis for the two-dimensional atom-laser
coupling Hamiltonian [47]. As a first step, following standard
interferometric means for realizing flexible lattice geometry
[57], we consider trapping the two states separately in two
spatially shifted optical zigzag lattices, see Fig. 4(a). The
second step follows the proposal of Ref. [58] by imposing
an additional optical superlattice along the chain and shining
resonant laser beams to induce |g〉 ↔ |e〉 transitions. The
superlattice lifts the spatial energy degeneracy on even-odd
sites, see Fig. 4(b), resulting in the requirement of seven
resonance frequencies. By absorbing the appropriate photons,
the laser-induced complex hoppings, JXeiθ , JY eiφ can be
engineered in a site-resolved manner, see Ref. [59]. We require
the superlattice of Ref. [58] to be staggered in between the

upper and lower chains, and a definite control of the phase
locking among the laser beams. The final step involves setting
the complex hoppings to be time-dependent on the adiabatic
time scale, which can be achieved, for instance, by controlling
the phase delay between the various lasers. As for physical
observables, an in situ imaging of the atom cloud, for example,
measures the center-of-mass movement [28–30], from which
the pumped charge can directly be inferred [60].

V. CONCLUSION AND OUTLOOK

We have studied the full topological features in the Creutz
model as a distinct tight-binding model for realizing quantum
charge pumping phenomenon. We applied the Peierls phase
substitution in the cross-link ladder giving way to an unique
flux pattern with two gauge-invariant fluxes. The elementary
quantum pumps are associated with either one or two units
pumped charge |C| = 1,2, a result of encircling the line
degeneracy characterized by two kinds of band crossing. The
|C| = 2 quantum pump emerges as a novel all-flux pump,
suggesting a way to manipulate matter waves by combining
the quantum interference effect and band topology. A cold
atomic platform with tunable artificial gauge fields is shown
to be a good candidate system for its realization. Serving as
a microscopic chain to building higher-dimensional systems,
novel bulk and surface properties [61,62] are expected to be
uncovered.
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APPENDIX: LASER SCHEME FOR THE CREUTZ MODEL

In this Appendix, we give a description of the cold atomic
proposal. Consider atoms with two internal long-lived states
{|g〉,|e〉} trapped in optical zigzag lattices [57] that are spatially
displaced horizontally by the lattice constant a between the g

and e states. The spatial overlap between nearest-neighbor
orbital wave functions (within the single band approximation)
gives rise to the following tight-binding model:

Hzz = −JD

∑
m∈Z

(|m + 1,1〉g g〈m,2|

+ |m + 1,2〉e e〈m,1| + H.c.), (A1)

where |m,1〉g denotes an atom in the internal g state at the
position m in the lower chain (e.g., |m,2〉e denotes internal
state e, position m and in the upper chain.) and JD is
the hopping strength set by the optical lattice depth, see
Fig. 5(a). In addition, we impose a superlattice potential [58]
to modify spatially the on-site energies of {|g〉,|e〉}, with three
characteristic energy parameters V1,V2,V1 + V2, and they are
staggered in between the upper and lower chains, resulting in
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the energy level diagram shown in the main text Figs. 4(b) and 5(b). The various energy differences are given by

ω1 = E0 + V1 + V2, ω2 = E0 + V1 + 2V2,

ω3 = E0 + V1, ω4 = E0 + 2V1,
(A2)

ω5 = E0 + 2V2, ω6 = E0 + 2V1 + 2V2,

ω7 = E0,

and denoting the eight energy levels as {|gi〉,|ei〉} for i = 1 − 4. By turning on the laser couplings |g〉 ↔ |e〉 (with the Rabi
frequency set to unity, for simplicity in notation), the atom-light coupling Hamiltonian [47], including the onsite energy shifts,
in the rotating-wave approximation is

Ha−l = e−iω1t−iφ1 |e1〉 〈g1| + e−iω2t−iφ2 |e1〉 〈g2| + e−iω1t−iφ1 |e2〉 〈g2| + e−iω3t−iφ3 |e2〉 〈g1|
+ e−iω1t−iφ1 |e3〉 〈g3| + e−iω2t−iφ2 |e4〉 〈g3| + e−iω1t−iφ1 |e4〉 〈g4| + e−iω3t−iφ3 |e3〉 〈g4|
+ e−iω4t−iφ4 |e3〉 〈g1| + e−iω5t−iφ5 |e1〉 〈g3| + e−iω6t−iφ6 |e4〉 〈g2| + e−iω7t−iφ7 |e2〉 〈g4| + H.c.

+ (−V1)|g1〉 〈g1| + (E0 + V2)|e1〉 〈e1| + (−V1 − V2)|g2〉 〈g2| + (E0)|e2〉 〈e2|
+ (E0 + V1)|e3〉 〈e3| + (−V2)|g3〉 〈g3| + (V1 + V2)|e4〉 〈e4| + (0)|g4〉 〈g4|. (A3)

The phases φj for j = 1–7 are associated with the initial seven resonance lasers. We now perform the following unitary
transformations on the internal states:

|g1〉 → e−iV1t |g1〉; |g2〉 → e−i(V1+V2)t |g2〉; |e1〉 → ei(E0+V2)t |e1〉; |e2〉 → eiE0t |e2〉;
|g3〉 → e−iV2t |g3〉; |g4〉 → e−i0t |g4〉; |e3〉 → ei(E0+V1)t |e3〉; |e4〉 → ei(E0+V1+V2)t |e4〉; (A4)

and arrive at a time-independent atom-light coupling Hamiltonian:

Ha−l = e−iφ1 |e1〉 〈g1| + e−iφ2 |e1〉 〈g2| + e−iφ1 |e2〉 〈g2| + e−iφ3 |e2〉 〈g1| + e−iφ1 |e3〉 〈g3| + e−iφ2 |e4〉 〈g3|
+ e−iφ1 |e4〉 〈g4| + e−iφ3 |e3〉 〈g4| + e−iφ4 |e3〉 〈g1| + e−iφ5 |e1〉 〈g3| + e−iφ6 |e4〉 〈g2| + e−iφ7 |e2〉 〈g4| + H.c. (A5)

We demand the laser phases to be locked at φ1 = −φ2 = −φ3 = −θ , φ4 = −φ5 = φ6 = −φ7 = −φ. To take advantage of the
gauge freedom, we note that there are actually four observable gauge-invariant phases given

�1 = 2φ1 − φ4 − φ5, �2 = 2φ2 − φ5 − φ6,

�3 = 2φ1 − φ6 − φ7, �4 = 2φ3 − φ4 − φ7. (A6)

The phase locking condition amounts to two further conditions on the gauge-invariant phases �1 + �2 = �3 + �4 = 0. The
latter can facilitate in the design of the coupling of the various laser phases.

By controlling the Rabi frequencies and taking into account the finite spatial overlap between the single-band wave functions,
we finally obtain the Hamiltonian for the generalized Creutz scheme:

Hzz + Ha−l = Hzz + h̄
1

∑
m∈Z

(eiφ|m,1〉e g〈m,2| + H.c.) + h̄
2

∑
m∈Z

(eiθ |m + 1,2〉e g〈m,2| + e−iθ |m + 1,1〉g e〈m,1| + H.c.).
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