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An analytical theory, based on the perturbative treatment of the disorder and extended into a self-consistent set
of equations for the dynamical density correlations, is developed and applied to the prototype one-dimensional
model of many-body localization. Results show a qualitative agreement with the numerically obtained dynamical
structure factor in the whole range of frequencies and wave vectors, as well as across the transition to nonergodic
behavior. The theory reveals the singular nature of the one-dimensional problem, whereby on the ergodic side
the dynamics is subdiffusive with dynamical conductivity σ (ω) ∝ |ω|α , i.e., with vanishing dc limit σ0 = 0 and
α < 1 varying with disorder, while we get α > 1 in the localized phase.
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I. INTRODUCTION

Many-body localization (MBL) is a challenging phe-
nomenon involving the interplay of disorder and particle
interaction (correlations). In the fermionic systems it has been
proposed as an extension of the single-particle Anderson local-
ization [1,2], remaining qualitatively valid at finite interactions
[3,4] and at large enough disorder even at high temperature
T [5]. In contrast to normal (ergodic) systems, the MBL
state should reveal vanishing dc transport [6–12] as well as
a nonergodic time evolution of correlation functions and of
quenched initial states [13–20]. The vanishing of dc mobility
[21] and the nonergodic decay of the initial density profile
[22–24] have been the main experimental signatures of the
MBL in fermionic cold-atom systems.

The dynamical structure factor S(q,ω) is the obvious
observable to characterize the one-dimensional (1D) system
undergoing the ergodic-nonergodic (MBL) transition. The-
oretical studies so far concentrated mostly on the uniform
(wave vector q → 0) response, e.g., as contained in the
optical conductivity σ (ω) and its dc limit σ0 [6–12]. In
this connection, a challenging question is the possibility of
subdiffusive dynamics [8,9,24–28], which implies vanishing
dc transport, e.g., σ0 = 0, but anomalous low-ω dependence
of the optical conductivity σ ∝ |ω|α with α < 1. On the other
hand, in the cold-atom experiments so far more accessible are
density correlations with q = π [22,29,30], as measured via
the time-dependent imbalance [22–24].

In this paper we first present results for S(q,ω) within
the prototype disordered 1D model of interacting spinless
fermions, displaying the whole range of wave vectors q =
[0,π ], as obtained with a numerical calculation at T → ∞ on
small finite-size systems with up to L = 24 sites. We show that
it is convenient and informative to analyze the S(q,ω) spectra
in terms of memory functions, representing the corresponding
dynamical conductivity σ (q,ω) and even further, the current-
decay-rate function �(q,ω). Such quantities reveal more
clearly the transition to the MBL regime, as well as the
behavior in the case of subdiffusion.

We further introduce for the same model an analytical
theory based on the perturbative treatment of the current-
decay function �(q,ω) and extended to a self-consistent (SC)

evaluation of density-correlation function φ(q,ω). The theory
reveals the specific nature of the 1D problem, leading to a
singular coupling between q → 0 density and energy diffusion
modes. Still, the solution of the SC equations with an additional
cutoff simulating a finite system size L∗ shows qualitative
(and at weaker disorder even quantitative) agreement with
numerically obtained results for S(q,ω) and related σ (q,ω).
Moreover, the finite-size scaling of SC results reveals in
the ergodic phase the subdiffusive dynamics, consistent with
σ (ω → 0) ≈ |ω|α with α < 1. The MBL transition at critical
disorder W = Wc is thus determined by a dynamical exponent
α = 1, while the MBL phase is characterized by α > 1 and a
finite dielectric polarizability χd of the insulating system.

The paper is organized as follows: In Sec. II we present
the model and the general formalism for density dynamical
susceptibility χ (q,ω), which is related to generalized dynam-
ical conductivity σ (q,ω) and further to the current-decay-rate
function �(q,ω). In Sec. III we present results for S(q,ω),
obtained via the numerical exact-diagonalization technique for
T → ∞ on finite chains for all available q. Results of σ (q,ω)
and �(q,ω), obtained with help of formalism introduced in
Sec. II, are also presented. This allows for connection with
previous studies of, e.g., optical conductivity σ (ω) and also
motivation as well as a stringent test for the proposed analytical
theory. In Sec. IV we introduce analytical approximations,
based on the perturbative treatment of �(q,ω). Furthermore,
with some additional simplifications, the solution for �(q,ω) is
extended into a SC set of equations. Numerical results of these
equations are presented and commented on in Sec. V. Besides
the qualitative agreement with finite-size results, we put the
emphasis on the low-ω regime where the SC equations appear
to be singular in 1D. Scaling an effective chain length L∗ we
show that in the ergodic regime the solutions are consistent
with an interpretation in terms of a subdiffusion phenomenon.
Conclusions, critical reflections on the method, and results are
given in Sec. VI.

II. DYNAMICAL DENSITY CORRELATIONS

We consider the prototype (standard) model of MBL, the
1D system of interacting spinless fermions with random local
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potentials,

H = −t
∑

i

(c†i+1ci + H.c.) + V
∑

i

ni+1ni +
∑

i

εini .

(1)

As usual, we assume quenched disorder with the uniform
distribution −W < εi < W and in the numerical analysis the
system at half-filling, i.e., n̄ = 1/2. We further-on use t = 1
as the unit of energy. While most numerical results so far are
for V = 2 (corresponding to the isotropic Heisenberg model
[6,8–12]), we use for the demonstration V = 1, enabling closer
comparison with the analytical theory. Since T should not play
an essential role in the MBL problem, studies are adapted to
the limit β = 1/T → 0, which simplifies the analytical as well
as the numerical approach.

Our analysis deals with dynamics of the density operator

nq = 1√
L

∑
i

eıqini, (2)

at arbitrary wave vector q, as defined by the dynamical
susceptibility χ (q,ω) and the related relaxation function
φ(q,ω),

χ (q,ω) = ı

∫ ∞

0
dτ eıωτ 〈[nq(τ ),n−q]〉,

φ(q,ω) = 1

ω
[χ (q,ω) − χ0(q)], (3)

with its static (thermodynamic) value χ0(q) (see formal
background and definitions in Appendix A), which in normal
ergodic systems satisfies χ0(q) = χ (q,ω → 0).

In a homogeneous system 〈..〉 denotes the canonical
thermodynamical average. In a disordered system we perform
in addition the averaging over all random configurations of
εi . We have to stress that nq is a macroscopic operator (not a
local one), and in the following analysis we study only such
quantities. This implies that dynamical correlations functions,
as defined by Eq. (3), are expected to be self-averaging, i.e.,
the configuration averaging is in principle not required in the
macroscopic limit of L → ∞. Here, we rely on a similarity
with the treatment of Anderson localization of noninteracting
(NI) electrons [31,32], as well on recent analysis of sample-
to-sample fluctuations of σ (ω) in the same MBL model [12].
Nevertheless, this aspect still has to be critically examined
when taking the limit ω → 0 since the fluctuations at larger
disorder can be singular (referred to in 1D as the Griffiths effect
of rare but large random deviations [8,9,33]). In particular, this
is the relevant question within the nonergodic (MBL) phase.

The advantage of the above formulations is that it re-
mains meaningful even in nonergodic cases where χ0(q) >

χ (q,ω → 0) [31,32,34,35], as expected within the MBL
regime. It is helpful to represent and analyze φ(q,ω) in terms
of complex memory functions [36] (see formal derivation and
relations in Appendix B),

φ(q,ω) = −χ0(q)

ω + M(q,ω)
,

M(q,ω) = ı
g2

q

χ0(q)
σ (q,ω), (4)

related to the q-dependent conductivity σ (q,ω) via the conti-
nuity equation [H,nq] = gqjq , where gq = 2 sin(q/2) and jq

is the current operator for given q. It should be noted that
σ (q,ω) has the usual meaning only in the limit q → 0, where
σ (ω) = Re σ (q → 0,ω) is the optical conductivity. We make
a further step and define the current relaxation-rate function
�(q,ω) as

σ (q,ω) = ıχ0
j (q)

ω + �(q,ω)
, (5)

where χ0
j (q) is the static current susceptibility. We note that

γ (q,ω) = Im �(q,ω) is (at β → 0) independent of β and has
the meaning of the effective current relaxation rate at ω → 0.

The limit β → 0 allows also for analytical evaluation of
static quantities, in particular,

χ0(q) = βn̄(1 − n̄) = χ0,

χ0
j (q) = β2t2n̄(1 − n̄) = χ0

j . (6)

With known static quantities [Eq. (6)], the relation between
φ(q,ω) and, e.g., �(q,ω) is thus unique and exact (not
depending on approximations introduced later) and can be
used in any direction provided that one of both quantities is
evaluated. It is worth mentioning that Eq. (4) together with
Eq. (5) resemble a continued fraction expansion of frequency
moments of complex correlation functions. Such an approach
was recently used in Ref. [37] to numerically evaluate optical
conductivity σ (ω) in a strong disorder limit. Here, we develop
analytical theory for the first three moments of such a series
(see Sec. IV).

III. NUMERICAL FINITE-SIZE RESULTS

We note the relation of the above quantities to the standard
dynamical structure factor S(q,ω), which is at β → 0 given
by

Im φ(q,ω) = πβS(q,ω). (7)

Before introducing the analytical method, we comment on
numerical finite-size results, which serve later as a test for the
proposed analytical theory. The dynamical quantity calculated
directly is S(q,ω), whereby we employ the microcanonical
Lanczos method (MCLM) on finite systems at β → 0 [38,39].
In Fig. 1 we present characteristic results for S(q,ω) for
L = 24, V = 1, W = 0,2,4 in the whole range of wave vectors
q = [0,π ]. They already allow for some rough distinction of
dynamical density correlations in three regimes: (a) at W = 0
S(q,ω) is the response of the homogeneous 1D chain of
interacting spinless fermions. Due to integrability of such a
model, even at β → 0 the response has a close analogy to NI
fermions (i.e., at V = 0) [40]. In particular, the S(q,ω) has no
diffusion pole and is quite featureless (at β → 0) in the interval
ω < 4 sin(q/2). (b) At weak disorder 0 < W = 2 < Wc ≈ 3.5
[10] an additional feature is a diffusion (or diffusionlike, as
discussed later in relation to subdiffusion) pole which has a
finite width δω ∝ q2 and is well visible at small q 
 π/2. (c)
For large disorder W = 4 > Wc the response becomes singular
at all q and S(q,ω ≈ 0) = Sqδ(ω) shows a finite stiffness
Sq > 0, being a hallmark of the MBL regime.
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FIG. 1. High-temperature β → 0 dynamical structure factor
S(q,ω) as calculated with MCLM for L = 24, V = 1, (a) W = 0,
(b) W = 2, and (c) W = 4 for all q = [0,π ].

Since S(q,ω) is a quite singular function (at least for q →
0), it is helpful to extract the corresponding σ (q,ω) and �(q,ω)
via Eqs. (4) and (5). To this purpose we first calculate complex
φ(q,ω) from S(q,ω). Next, with known χ0,χ0

j using Eqs. (4)
and (5) we evaluate σ (q,ω) and �(q,ω). In the numerical
procedure it is crucial to have high-frequency ω resolution of
MCLM results, which are obtained by employing NL ≈ 104

Lanczos steps in order to get δω � 0.003 of S(q,ω) spectra.
Characteristic results obtained for L = 24 and averaged

over Ns ≈ 100 random configurations are presented in Fig. 2.
Some generic features be inferred: (a) Consistent with previous
calculations of σ (ω) [7,9,11,12] our results indicate (for
all disorders W ) the maximum at ω = ω∗ > 0, and more
important, a nonanalytical low-ω behavior, i.e., σ (ω) ≈ σ0 +
ζ |ω|α . Here our numerical results in the ergodic regime,
W < Wc, imply an interpretation with σ0 > 0 and α ≈ 1
[7,11,12], while we comment later on the possibility of the
subdiffusion with σ0 = 0 and α < 1 [8,9,24,26]. (b) Within
our resolution σ0, but also general σ (q,ω → 0), vanishes for
W � Wc, consistent with the onset of the MBL phase and
nonergodicity at all q. This implies necessarily via Eq. (5) a
divergent γ (q,ω → 0) → ∞, as also evident on approaching
the MBL transition.

For comparison we present in Fig. 3 also corresponding nu-
merical results for V = 2, which corresponds to the isotropic
Heisenberg model with random magnetic fields and has been
in this connection studied more frequently. One can notice that
larger V does not change qualitatively results for both σ (q,ω)
as well as γ (q,ω), but rather additionally broadens spectra,
except the MBL singularity at ω ≈ 0 for W = 2.
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FIG. 2. (a1), (b1), (c1) Dynamical conductivity Re σ (q,ω) and
(a2), (b2), (c2) current relaxation-rate function γ (q,ω), obtained via
MCLM on L = 24 sites for fixed parameters V = 1, as compared
to the solution of SC equations (with effective length L∗ = 24) for
different q and two disorders: (a) W = 1 and (b) W = 2.

IV. ANALYTICAL APPROACH TO
CURRENT-DECAY-RATE FUNCTION

A. Effective force

The motivation for following an analytical approach and
approximations comes form the perturbation theory, which
can be performed for weak disorder W → 0 (and somewhat
more delicate for V → 0) on the level of the current-decay-rate
function �(q,ω), in analogy to the theory of current scattering
mechanisms in simple metals [41]. Such a theory has been
extended to the nontrivial problem of Anderson localization
by taking it beyond the perturbative approximation [31,32,35],
and we will partly follow an analogous treatment for the MBL
problem.

The expression for �(q,ω) [see the formal derivation and
Eq. (B7) in the Appendix B] is the starting point for the
analytical approximations. The current scattering mechanism
is determined by the operator for the effective force Fq =
QLjq , with the Liouville operator Ljq = [H,jq] and Q

representing the operator [36,42] which projects into space
perpendicular to nq (see Appendix B for details). Ljq can be
evaluated explicitly from the model (1),

Ljq = tgqh
d
q − 1√

L

∑
k

gkεkh
k
q−k

− V√
L

∑
k

wknkh
k
q−k + 2t2gqnq, (8)

where wk = 2 sin(3k/2) and we define also (Fourier trans-
forms of) kinetic energy, potential, and next-nearest hopping
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FIG. 3. (a1), (b1) Re σ (q,ω) and (a2, b2) γ (q,ω) (MCLM,
L = 24) for fixed V = 2, few different q, and two disorders:
(a) W = 1 and (b) W = 2.

terms, respectively:

hk
q = − t√

L

∑
i

eıq(i+1/2)[c†i+1ci + H.c.],

hd
q = − t√

L

∑
i

eıqi[c†i+1ci−1 + H.c.],

εk = 1√
L

∑
i

eıqiεi . (9)

In the evaluation of Fq the last term in Eq. (8) vanishes due
to Qnq = 0. The other three terms remain unaffected by the
action of Q within the β → 0 limit. With such a force operator
Fq we can write

�(q,ω) = 1

χ0
j

�(q,ω),

�(q,ω) ≈ χF (q,ω) − χ0
F (q)

ω
, (10)

where χF (q,ω) are the generalized (force) susceptibilities,
defined for the operator Fq [compare with Eq. (3)]. In the
above expression, in analogy to weak scattering theory [36,41],
we have introduced the (straightforward with a perturbative
approach) approximation neglecting the projections onto nq

and jq space,LQQ′ → L, in the resolvent of Eq. (10) [compare
Eq. (B7)].

B. Perturbative approximation

Following Eq. (B8) in Appendix B, we are dealing with
force Fq = Fq1 + Fq2 + Fq3, representing different current
scattering mechanisms. Similarly as in the derivation of the

dynamical conductivity in metals [41], we represent �(q,ω)
as the sum of three contributions, neglecting possible mixed
correlations.

�1(q,ω) ∝ g2
q vanishes in the hydrodynamic regime q → 0

and can be approximated by the NI limit, i.e.,

�1(q,ω) = g2
q

2

1

L

∑
k

−f 2
k

ω+ + ek+q/2 − ek−q/2
, (11)

where fk = e2k and ek = −2t cos k is the NI fermion dis-
persion. It should be recognized, however, that even at
W = V = 0 the �1(q,ω) does not fully reproduce the NI
result for φ(q,ω) [due to simplification of the Liouville
operator in Eqs. (B7) and (10)]. This deficiency is easily
remedied by noticing that the correct NI result is obtained by
replacing fk = ek in Eq. (11). Still, for W > 0 single-particle
eigenstates do not have a well-defined wave vector k, so
a more reasonable approximation in this case is to assume
an additional broadening, i.e., δ = W/

√
3, corresponding to

the width of the random-potential distribution. These details
hardly influence any qualitative results further, since �1(q,ω)
does not contribute in the hydrodynamic regime q → 0.

By decoupling the static disorder and dynamical density
fluctuations in �2(q,ω), we get

�2(q,ω) = 1

L

∑
k

g2
q−k

〈
ε2
q−k

〉
φk(k,ω), (12)

where φk(q) is the relaxation function of the kinetic energy
hk

q [Eq. (9)], defined in analogy to φ(q,ω) [Eq. (3)]. In the NI
limit (but with disorder W > 0) Eq. (12) reduces to

�2(q,ω) = W 2

6t2L2

∑
k,k′

−g2
q−ke

2
k′

ω+ + ek′+k/2 − ek′−k/2
, (13)

which is the lowest-order scattering (Boltzmann-type) result
[41]; in particular, it gives a finite relaxation rate γ (q,ω) =
Im �(q,ω), also in the hydrodynamic (q,ω) → 0 limit.

The perturbative treatment of the interaction term is more
problematic. One can assume that the dynamical fluctuations
of density nk and kinetic energy hk

q−k are independent, which
leads to

Im �3(q,ω) = V 2

L

∑
k

w2
k

πβ

∫ ∞

−∞
dω′

× Im φ(k,ω′)Im φk(q − k,ω − ω′). (14)

When we insert the NI input for φ(q,ω) and φk(q,ω), the
interaction V > 0 leads to an additional current-decay channel,
even at (q,ω) → 0. While this is an effect generally expected
from the interparticle interaction, in our particular case it is
not fully justified since the pure (W = 0) model is integrable
and exhibits a dissipationless current and singular σ (ω ≈ 0) =
βDδ(ω) with D > 0 even at β → 0. Since we are interested
more in the role of disorder and in a generic interaction term,
where current dissipation should emerge from a term like
Eq. (14), we would here stay at this level of approximation.

C. Self-consistent closure

At this stage we are not aiming to develop a more
detailed theory for kinetic-energy fluctuations φk(q,ω)
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entering Eqs. (13) and (14). It is, however, crucial to take
into account the fact that the kinetic-energy function has
an overlap with the energy-density relaxation function. In
a disordered system, the energy is, besides the number of
particles, the only conserved quantity. It is therefore essential
to take properly the q → 0 energy fluctuations, and we treat
these correlations in analogy to Eqs. (4) and (5) with the
role of σ (q,ω) replaced by the thermal conductivity κ(q,ω).
The latter has been found [43,44] to have similar behavior
close to the MBL transition, in particular, the vanishing of
the dc value κ0 and anomalous low-ω behavior. Taking into
account the sum rules η = χ0

k /χ0 = 2t2, we further work with
a simplification φk(q,ω) = ηφ(q,ω) representing an effective
Wiedemann-Franz relation, i.e., assuming the same relaxation
rates for density and energy currents.

Since � ∝ φ ∝ β, we now work with renormalized relax-
ation functions, i.e., φ̃ = φ/χ0,φ̃k = φk/χ

0. So the final SC
equations, besides �1(q,ω), where we do not correct Eq. (11),
are

�2(q,ω) = ηW 2

6t2L

∑
k

g2
q−kφ̃(k,ω), (15)

Im �3(q,ω) = ηñV 2

2πL

∑
k

w2
k

∫
dω′ Im φ̃(k,ω′)

× Im φ̃(q − k,ω − ω′), (16)

where ñ = n̄(1 − n̄). The MBL physics, in particular the
transition, is predominantly governed by �2(q,ω), while for
W > 0 the interaction-driven term �3(q,ω), due to convolu-
tions in (q,ω), yields rather a featureless function, leading to
the current decay at all q.

Due to the coupling to the q → 0 diffusion mode in
Eq. (11), it is evident that �(q,ω → 0) as well as the whole
SC set might be singular in 1D. In order to simulate finite-size
systems (as studied numerically) and explore the finite-size
scaling we introduce a finite cutoff km = π/L∗, in particular
in Eq. (15). It should be noted that after taking the mentioned
simplifications there are (at given model constants V,W ) no
free parameters in the SC theory apart from the cutoff km

(effective length L∗).
We note that the presented SC equations have an

analogy to simplified theories of Anderson localiza-
tion [35]. It has been, however, established that proper
SC localization theory for NI fermions [31,32] should
take into account the time-reversal symmetry of cor-
relation functions on a single-particle level. The latter
is, however, lost by including finite interaction V > 0.
As a consequence, Eq. (15) emerges as a nontrivial coupling
of the only remaining low-ω collective modes in the system,
i.e., the density and the energy diffusion mode.

V. NUMERICAL SOLUTIONS OF SC EQUATIONS

A. General features

Having a SC set of equations, Eqs. (4), (5), (11), (15),
and (16), it is straightforward to find solutions by numerical
iteration of coupled equations until convergence, whereby we
use at the initial step the NI input for φ(q,ω). In Fig. 2 we
present typical SC-theory results for Re σ (q,ω) and γ (q,ω)

0
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0.8
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4

0 1 2 3 4 5

(b)

R
e
σ
(q

,ω
)

MCLM
SC
W = 1
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W = 3
W = 4

γ
(q

,ω
)

ω

FIG. 4. Comparison between SC and numerical (MCLM) results
of (a) Reσ (q,ω) and (b) γ (q,ω) for q = π/12, L = L∗ = 24, and
various disorder strengths W = 1,2,3,4.

along with the MCLM numerical ones, whereby we use
L∗ = 24 corresponding to the size used in MCLM calculation.
Qualitative agreement is quite satisfactory for a modest value
of disorder strength W , in particular, the analytical theory
reproduces some essential features: (a) A maxima of σ (q,ω)
with ω∗ > 0 emerges also in SC solutions due to a nontrivial
maxima in γ (q,ω → 0). The maximum moves towards ω∗ ≈
0 for weaker disorder W < 0.8, which would be the signature
of a normal diffusion. (b) In the ergodic regime at W < W ∗

c ≈
1.6, low-ω SC results for small L∗ < 100 can be roughly
fitted to σ (ω) = σ0 + b|ω|α , with σ0 > 0 and α ≈ 1 close to
the MBL transition. (c) Due to a large increase of γ (q,ω → 0)
the conductivity σ (q,ω → 0) is strongly reduced for larger
W > 1. (d) Eventually, for W > W ∗

c the SC equations yield a
singular solution γ (q,ω ≈ 0) = γsδ(ω), which is the hallmark
of the nonergodicity and leads also to vanishing dc transport
σ (q,ω → 0) = 0.

The behavior with W varying across the MBL transition
is presented in Fig. 4, where we compare results for disorder
strength up to W = 4 � W ∗

c . We observe that the quantitative
agreement between SC and the numerical result is steadily
decreasing with increasing W > W ∗

c . This coincides with the
fact that the SC threshold W ∗

c ≈ 1.6 is significantly below the
numerical (at V = 1) estimate Wc ≈ 3 [10]. The origin of this
discrepancy in critical W ∗

c can be traced back to overestimated
coupling between density and the energy diffusion mode
enhancing the feedback (localization) mechanism in SC
equations via the γ (q,ω → 0) behavior. Still, the overall
qualitative change across the MBL transition follows the same
pattern as the numerical one.

When we are comparing SC results for optical conductivity
σ (ω) = σ (q → 0,ω) with previous numerical studies (as well
as this study for q > 0) on finite systems [11,12,43], we should
use appropriate L∗ as well as corresponding δω. In Fig. 5 we
present a characteristic result for modest L∗ = 40 (and δω ≈
10−3) for σ (ω) across the transition to the MBL, i.e., 1.2 �
W � 2.0, together with the low-ω fit to σ̃ (ω) = a + b|ω|c. We
note that such a fit should be evidently restricted to the range
well below the maximum ω 
 ω∗ which is for W > W ∗

c at
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FIG. 5. Comparison of SC solution (solid line, L∗ = 40, δω =
10−3) with the fit σ̃ (ω) = a + b|ω|c (dashed line) with c =
0.8,1.0,1.5 for W = 1.2,1.6,2.0, respectively.

ω∗ ≈ 1, but for the lowest W = 1.2 moves down to ω∗ ≈ 0.2
[11]. Nevertheless, the overall behavior around the transition
W ≈ W ∗

c is is characterized by α ≈ 1 and a clear drop of σ0.

B. Subdiffusion and transition to MBL

While SC results in Fig. 2 (as well as Fig. 5) show an
overall behavior for W < W ∗

c and W ≈ W ∗
c , consistent with

numerical results at finite L∗, we further investigate in more
detail the consequences of the singular aspects due to 1D. In
order to explore the low-ω behavior, we concentrate on the
most interesting q → 0 results and present in Fig. 6 σ (ω)
as obtained with large frequency ω resolution (δω ≈ 10−4)
at several characteristic W and varying effective lengths
L∗ = 20–320. It should be realized that the choice of δω in
the numerical SC procedure is intimately related to L∗ and
we cannot get strictly σ0 = 0 at δω > 0. Nevertheless, the
scaling δω → 0, as shown in the inset of Fig. 6, is consistent
with vanishing σ0 = 0, at least for W > 1.2. This is also
presented in Fig. 7, which depicts the dependence of dynamical
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FIG. 6. Optical conductivity σ (ω) (in a log-log scale) as evaluated
from the SC theory at V = 1 for different W = 0.8,1.4,2.0, and
various effective lengths L∗ = 20– 320 with frequency resolution
δω = 10−4. Insets of (b,c): scaling of L∗ = 20 and L∗ = 320 with δω

used in SC equations.
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FIG. 7. (a)–(c) Frequency resolution δω dependence of σ (ω) for
fixed effective lengths L∗ = 640 (left column) and L∗ = 20 (right
column), and various disorder strengths W = 0.5,1.0,2.0.

conductivity Re σ (q,ω) on frequency resolution δω for fixed
cutoff L∗ = 20 and L∗ = 640 and various disorder strengths.

Taking this into account, we can distinguish three regimes
as already noted in numerical studies [8,9,26]: (a) At small
disorder W < 1 σ (ω → 0) is only weakly dependent on L∗,
and it is hard to detect signatures of a subdiffusion even at
extreme L∗ � 100. (b) At the intermediate 1 < W < W ∗

c we
confirm the steady decrease of σ0 with increasing L∗, and the
behavior can be well captured with subdiffusion form σ (ω) ∝
|ω|α with α < 1. (c) For W > W ∗

c results become again only
weakly L∗ dependent, while the dc value σ0 is vanishing.

To make the analysis of subdiffusion more objective, we
define the exponent via the maximum slope

α = d log σ (ω)

d log ω
(17)

in the range ω < 0.1. Results are shown in Fig. 8(a). It is
indicative that the subdiffusion with α 
 1 can be hardly
established for W < 1 since it requires L∗ � 100 [26]. On
the other hand, results with α > 0.3 are better resolved. The
crossing α = 1 marks the MBL transition to the nonergodic
phase, where for large W � W ∗

c we get α ≈ 2, as expected
deep inside the localized regime [2].

As a uniform (q → 0) order parameter within the MBL
(nonergodic) phase one can consider the current-relaxation
stiffness γs(q) > 0. More physical is the dielectric polariz-
ability

χd = 2

π

∫ ∞

0

σ (ω)

ω2
dω, (18)

whereby χd < ∞ implies that the system is dielectric, i.e., an
external field along the chain induces only a finite polarization.
It is evident that α > 1 is required for χd < ∞. In Fig. 8(b)
we present results for the inverse 1/χd vs W as evaluated for
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FIG. 8. (a) Dynamical exponent α and (b) the inverse dielectric
polarizability 1/χd vs W as evaluated at V = 1 and different L∗ =
20–320 and δω = 10−4. Note that the MBL transition is determined
by α = 1.

different L∗, revealing indeed its vanishing below the MBL
transition.

VI. CONCLUSIONS

The presented analytical theory is a SC extension of
the perturbative evaluation of the current-decay-rate function
�(q,ω). The disorder effect is reproduced within the lowest
order (Boltzmann-type) scattering, while the interaction is
treated only within a decoupling approximation. In analogy
to the SC theory of the single-particle Anderson localization
[31,32,35], the theory is closed beyond the weak scattering
approximation, where the crucial assumption (at the present
level of the theory) is that density and energy dynamical
correlations are related, in particular at small (q,ω), and both
simultaneously undergo a MBL transition.

Although the theory starts from the lowest-order calculation
of the current-relaxation function �(q,ω) its extension into
a SC scheme goes well beyond the perturbative approach.
A SC determination of �(q,ω) leads, on approaching the
MBL transition, to enhanced low-ω density and energy-density
fluctuations, which finally lead to the freezing of the low-ω
dynamics at the W = W ∗

c . Beyond this disorder correlation
functions are nonergodic and characterized by a singular
contribution in S(q,ω) ≈ Sqδ(ω) with Sq > 0. One might
question the particular validity and the form of the SC loop;
however, the freezing of low-ω dynamics is well visible in the
numerical results and consistent with analogous phenomenon
in the theory of Anderson localization [31,32,35].

In the presented theory there are no free parameters except
the cutoff km = π/L∗, which simulates the finite-size system
and allows for the finite-size scaling. The importance of
cutoff and corresponding sensitivity of SC solutions on the
frequency resolution δω appears to be a singular property of
1D and makes the proper convergence of solutions of coupled
analytical equations nontrivial. In spite of simplifications, the
presented SC theory yields several nontrivial conclusions,
consistent with numerical results obtained in this paper

via the MCLM method but also with previous numerical
investigations on finite systems:

(a) When simulating numerically reachable finite-size
systems by taking the cutoff L∗ ≈ 20–40 (as well as the
corresponding finite-frequency resolution δω ≈ 10−3), our SC
results appear to be consistent with the dynamical conductivity
σ (ω) ≈ σ0 + b|ω|α with α ≈ 1 and vanishing σ0 near the MBL
transition [11,12,43].

(b) However, careful scaling beyond L∗ > 100 and δω 

103 of SC solution indicates on vanishing σ0 = 0 in the ergodic
regime W < W ∗

c (at least for W > 1.2 at V = 1). Within the
present SC theory this emerges due to the disorder-induced
coupling between the density and the energy diffusion mode.
As a consequence of 1D, in the ergodic regime the transport
is subdiffusive [8,9,24,25,27], i.e., for large enough systems
dc transport coefficients are expected to vanish, e.g., σ0 → 0.
Still, for modest disorder W effective sizes to detect such
anomalies could be huge, e.g., L∗ � 100 [26,27], and there-
fore hard to detect in numerical and even experimental studies.

(c) The transition to the nonergodic MBL regime W > Wc

appears in the theory via the onset of the current-decay stiffness
γs > 0, which coincides with the condition for the dynamical
exponent α > 1 and the dielectric polarizability χd < ∞.

(d) Theoretical results for dynamical correlations show
an overall qualitative agreement with numerical ones (at
corresponding effective length L∗) in the whole (q,ω) range.

When we discuss the validity and restrictions within the
presented theory, there are several aspects in which should be
considered:

(a) Since the theory is an extension of the perturbative
treatment of disorder starting at modest W , it is plausible that
we cannot claim a quantitative agreement for larger disorder
with W ≈ W ∗

c or even more within the MBL regime W > W ∗
c .

The reason is mainly twofold: At W > 3 single-particle
states are already well localized. Still, more problematic
seems to be the overestimated coupling between density
and energy diffusion modes, which leads to overestimated
feedback in SC equations and consequently to the transition
at critical W ∗

c being substantially smaller than emerging from
numerical studies (e.g., at V = 1 W ∗

c ≈ 1.6 instead of the
numerical estimate Wc = 3). This can be improved by taking
both relevant hydrodynamic modes, i.e., density and energy
diffusion, on an equal footing into the analysis. In this work we
skip this aspect in order to make our SC theory as transparent
as possible.

(b) The current-decay rate due to interaction V > 0 is taken
very crudely, in particular since the actual model without
disorder (at W = 0) is integrable and V > 0 itself does lead to
dc conductivity σ0 < ∞. Nevertheless, a generic interaction
term is expected to lead to the scattering of dc current
(at T � 0). Moreover, �3(q,ω) seems to be less critically
dependent on the dimensionality of the system, as appears to
be the case for �2(q,ω) emerging from disorder.

(c) The assumption that the dynamical quantities are self-
averaging is inherent in the SC approach, although this aspect
should be further critically examined due to possible role of
rare large disorder fluctuations [8,9].

The presented SC scheme is more generic and can be
generalized into different directions. Analogous treatment of
higher dimension is rather straightforward, especially since
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some anomalies such as, e.g., the subdiffusion are not expected
there, at least not to such extent. One could treat also separately
the density and energy dynamical correlations, whereby the
latter are much less investigated so far. On the other hand,
for experiments on MBL in cold-atom systems [22–24] the
relevant model is the disordered Hubbard model, which does
reveal a disorder-induced spin-charge separation [45], which
might also be approached in a similar way.
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APPENDIX A: CORRELATION FUNCTIONS

Since the system under consideration can be nonergodic,
one should be careful with the definitions of correlation and
response functions. In our analysis we define the dynamical
susceptibility (response functions) χA(ω) and corresponding
static (thermodynamic) response χ0

A for arbitrary operators A

in the standard way,

χA(ω) = −ı

∫ ∞

0
dt eiω+t 〈[A†(t),A]〉, (A1)

χ0
A =

∫ β

0
dτ 〈A†A(iτ )〉 = (A|A), (A2)

where ω+ = ω + iδ with δ → 0 and β = 1/T . Equation
(A2) introduces the scalar product [36,42], convenient for
formal representation and derivation of memory functions,
even for nonergodic systems. Above 〈..〉 denotes the canonical
thermodynamical average and in a disordered system addi-
tional averaging over all random configurations of εi [see the
comment in the main text after Eq. (3)].

In the analysis, instead of susceptibilities χA(ω), we mostly
use related relaxation functions,

φA(ω) = χA(ω) − χ0
A

ω
=

(
A

∣∣∣∣ 1

L − ω

∣∣∣∣A
)

, (A3)

where the second representation in Eq. (A3) in terms of
the resolvent with Liouville operator LA = [H,A] is a
standard one allowing formal steps further-on. The nonergodic
behavior is in this framework characterized by the behavior
χ0

A > χA(ω → 0), leading to a singular low-ω contribution
[31,32,34,35],

Im φA(ω ∼ 0) = πDAδ(ω), DA = χ0
A − χA(ω → 0),

(A4)

where DA is the corresponding stiffness.
Finally, since we are dealing only with the case of high

T , i.e., β → 0, there are convenient simplifications following
from Eqs. (A2) and (A3),

χ0
A = β〈A†A〉, φA(ω) = −ıβ

∫ ∞

0
dt eıω+t 〈A†(t)A〉,

(A5)

and in particular, a simplified relation to the general dynamical
structure factor Im φ(ω) = πβSA(ω).

APPENDIX B: MEMORY-FUNCTION REPRESENTATION

We use the definitions above for several operators A of
interest. The starting point is the density relaxation function
with A = nq . The memory-function (MF) representation of
φ(q,ω) follows from the continuity equation,

Lnq = gqjq, jq = t√
L

∑
i

eıq(i+1/2)(ıc†i+1ci + H.c.),

(B1)

where gq = 2 sin(q/2). By defining the projection projector P

and its complement Q,

P = |nq)
1

χ0(q)
(nq |, Q = 1 − P, (B2)

where χ0(q) = (nq |nq), we can express relaxation function,
Eq. (A3), in the form of MF representation,

φ(q,ω) = −χ0(q)

ω + ıg2
qσ (q,ω)/χ0(q)

, (B3)

with

σ (q,ω) =
(

Qjq

∣∣∣∣ −ı

LQ − ω

∣∣∣∣Qjq

)
=

(
jq

∣∣∣∣ −ı

LQ − ω

∣∣∣∣jq

)
,

(B4)

where LQ = QLQ is the projected Liouville operator and
Qjq = jq by symmetry. It should be noted that σ (q,ω) is in
general not equal to standard conductivity σ̃ (q,ω), evaluated
directly by replacing the reduced dynamics in Eq. (B4) with
the full one, LQ → L. Still, both quantities merge in the
hydrodynamic limit q → 0 [36,41].

In the next step we express σ (q,ω) in terms of the current
relaxation-rate function �(q,ω),

σ (q,ω) = ı
χ0

j (q)

ω + �(q,ω)
, (B5)

where χ0
j (q) = (jq |jq). While such a possibility follows

directly from the analytical properties of φ(q,ω) and σ (q,ω),
the formal expression (used further-on as the starting point for
analytical approximations in Sec. IV) can be given, introducing
an additional projector

P ′ = |jq)
1

χ0(q)
(jq |, Q′ = 1 − P ′, (B6)

so that

�(q,ω) = 1

χ0
j (q)

(
Fq

∣∣∣∣ 1

LQQ′ − ω

∣∣∣∣Fq

)
= 1

χ0
j (q)

�(q,ω),

(B7)

where (formally) LQQ′ = Q′LQQ′ and

Fq = QQ′Ljq = QLjq. (B8)
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