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Quantum Monte Carlo simulation of a two-dimensional Majorana lattice model
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We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice
in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab initio
quantum Monte Carlo simulation to the Majorana fermion system in which the path-integral measure is given by
a semipositive Pfaffian. We discuss spontaneous breaking of time-reversal symmetry at finite temperatures.
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I. INTRODUCTION

Realization of Majorana fermions, which are exotic
fermions that behave as their own antiparticles (holes), has
intensively been discussed in condensed-matter systems, such
as fractional quantum Hall (Moore-Read) states [1], topolog-
ical superconductors (superfluids) [2–5], and surface states
of topological insulators under the proximity effect between
trivial superconductors [6] (for reviews, see e.g., Refs. [7–9]).
In these materials, Majorana fermions emerge as collective
excitations localized at surfaces or defects (quantum vortices).

Majorana zero modes or Majorana bound states localized
at quantum vortices cost zero energy and lead to large
ground-state degeneracy [1–3]. The degenerate ground-state
wave function has the non-Abelian Berry phase. When the
positions of two vortices are rearranged adiabatically, it results
in the so-called braiding statistics [10], which is considered to
be potentially useful for quantum computation [11–13].

As the number of vortices increases, the vortices form lattice
structures, such as the Abrikosov lattice. Low-energy dynam-
ics of such a vortex lattice in topological superconductors is
described effectively as a many-body system of Majorana zero
modes. The system obeys the lattice Hamiltonian describing
the intervortex tunnelings and interactions of them, which is
similar to the Hubbard Hamiltonian. Revealing the ground-
state property of such a many-body Majorana system is
important not only for applications of the vortex lattices to
quantum computation, but also for understanding new phases
of strongly correlated electron systems where the fundamental
degrees of freedom are Majorana zero modes.

However, previous studies have mostly focused on one-
dimensional Majorana chains, which can be solved by field-
theoretical techniques, such as bosonization, or by numerical
techniques, such as exact diagonalization and the density
matrix renormalization group [14–18]. It is hard to implement
these techniques for higher-dimensional systems, particularly
for large two-dimensional systems although two dimensions
are often critical dimensions in competition between disorder
by thermal/quantum fluctuation and order by mean-field
dynamics. Thus ab initio simulation is required to precisely
determine the phase structure.

In this paper we study nonperturbative dynamics of interact-
ing Majorana fermions by utilizing the quantum Monte Carlo
simulations which are based on the path-integral formalism of
lattice field theories. We consider an effective Majorana lattice
model describing the low-energy behavior of the vortex lattice

in topological superconductors with time-reversal symmetry.
By applying the quantum Monte Carlo method to the effective
model, we discuss spontaneous breaking of time-reversal
symmetry at finite temperatures. Time-reversal symmetry
protects Majorana zero modes against opening a gap, and
gapless (free) Majorana fermion states are realized in the
symmetric phase. On the other hand in the broken phase,
double Majorana fermions form a pair and behave as a single
spinless Dirac fermion with dynamically generated mass. We
note that the understanding of time-reversal symmetry and
its spontaneous breaking is important for condensed-matter
realization of supersymmetry [14–16].

The rest of the paper is organized as follows. In Sec. II,
we introduce the Hamiltonian and the path integral of the
effective Majorana lattice model. By using the effective
model, we first discuss the phase structure on the basis of
the mean-field theory in Sec. III and then show the result
of quantum Monte Carlo simulation in Sec. IV. Finally we
summarize this paper in Sec. V.

II. MODEL

Let us introduce a low-energy effective model describing
a quantum vortex lattice in two-dimensional time-reversal-
invariant topological superconductors. A quantum vortex
supports a pair of Majorana zero modes ψ↑,↓ with spin up
and down [5], which are related by time-reversal symmetry as

T −1ψ↑T = ψ↓, T −1ψ↓T = −ψ↑. (1)

Time-reversal symmetry is an antiunitary operation, namely,
T −1iT = −i.

We consider the model Hamiltonian,

H =
∑

μ

it{ψ↑(x)ψ↑(x + μ̂) − ψ↓(x)ψ↓(x + μ̂)}

−
∑

μ

gψ↑(x)ψ↑(x + μ̂)ψ↓(x)ψ↓(x + μ̂), (2)

where μ̂ is the unit lattice vector in the μ direction (μ = 1,2).
The first term describes the intervortex hopping, and the second
term describes the nearest-neighbor interaction between the
spin-up and the spin-down Majorana fermions. Both the
hopping term and the interaction term keep time-reversal
symmetry. The unique local term iψ↑(x)ψ↓(x), which can
open a gap in the energy spectrum, is prohibited by time-
reversal symmetry since this term is time-reversal odd. We
consider the attractive interaction g > 0, which favors pairing
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of Majorana fermions. For the attractive interaction, this model
is free from the fermion sign problem for any lattice structure
in any dimension as shown in Sec. IV. We study this model on
a two-dimensional square lattice.

A pair of two Majorana fermions can be rewritten by a single
spinless Dirac fermion as ψ(x) = {ψ↑(x) + iψ↓(x)}/√2. The
Hamiltonian (2) is rewritten as

H =
∑

μ

it{ψ(x)ψ(x + μ̂) + ψ∗(x)ψ∗(x + μ̂)}

−
∑

μ

g

(
n(x) − 1

2

)(
n(x + μ̂) − 1

2

)
, (3)

where n(x) = ψ∗(x)ψ(x). For a bipartite lattice, such as a
square lattice, the Hamiltonian can be rewritten further by
the particle-hole transformation ψ(x) → ix1+x2ψ(x) on even
sites x and ψ(x) → (−i)x1+x2ψ∗(x) on odd sites x. The
model is equivalent to the spinless repulsive Hubbard model
at half-filling [19,20],

H = −
∑

μ

t{ψ∗(x)ψ(x + μ̂) + ψ∗(x)ψ(x + μ̂)}

+
∑

μ

g

(
n(x) − 1

2

)(
n(x + μ̂) − 1

2

)
, (4)

which was shown to be Majorana positive [21]. The
pairing term iψ↑(x)ψ↓(x) in the original Hamiltonian (2)
corresponds to the Dirac mass term ψ∗(x)ψ(x) − 1/2
in the Hamiltonian (3) and the staggered mass term
(−1)x1+x2 [ψ∗(x)ψ(x) − 1/2] in the Hamiltonian (4).

We introduce the Euclidean path integral,

Z =
∫

Dψ↑Dψ↓e−S, (5)

with the Euclidean action,

S =
∫

dτ
∑

x

[
ψ↑

∂

∂τ
ψ↑ + ψ↓

∂

∂τ
ψ↓ + H

]
. (6)

The integral of imaginary time τ is antiperiodic with the period
1/T . In the path-integral formalism, the Majorana fermions
ψ↑,↓ are real Grassmann fields. In the following sections, we
evaluate this path integral by using the mean-field theory and
the quantum Monte Carlo simulation.

III. MEAN FIELD

First we study this model in the mean-field approximation.
By the Hubbard-Stratonovich transformation, we obtain

Z =
∫

Dψ↑Dψ↓DC e−S ′−SC , (7)

with the bilinear fermion action,

S ′ =
∫

dτ
∑

x

[
ψ↑(x)

∂

∂τ
ψ↑(x) + ψ↓(x)

∂

∂τ
ψ↓(x)

+
∑

μ

it{ψ↑(x)ψ↑(x + μ̂) − ψ↓(x)ψ↓(x + μ̂)}

−
∑

μ

iCμ(x){ψ↑(x)ψ↓(x) + ψ↑(x + μ̂)ψ↓(x + μ̂)}
]
,

(8)

FIG. 1. Mean-field results of the pair condensate 〈iψ↑ψ↓〉 as a
function of temperature T .

and the auxiliary field action,

SC =
∫

dτ
∑

x

∑
μ

1

2g
C2

μ(x). (9)

Assuming that the mean field is homogeneous and isotropic
Cμ(x) = C, we obtain the gap equation,

1

2g
C = 〈iψ↑ψ↓〉 = Tr

(
σ2

2

1

M

)
. (10)

The fermion matrix M is defined by the fermion action in the
matrix notation,

S ′ ≡ 1

2
��M�

= 1

2

(
ψ�

↑ ψ�
↓

)(M↑↑ M↑↓
M↓↑ M↓↓

)(
ψ↑
ψ↓

)
, (11)

with the matrix elements,

M↑↑ = 2
∂

∂τ
+

∑
μ

it(P+μ − P−μ), (12)

M↓↓ = 2
∂

∂τ
−

∑
μ

it(P+μ − P−μ), (13)

M↑↓ = −M↓↑ = −i4C, (14)

and P±μψ↑,↓(x) = ψ↑,↓(x ± μ̂).
Solving the gap equation (10), we obtain the pair condensate

〈iψ↑ψ↓〉. As mentioned in Sec. II, the operator iψ↑ψ↓ is
time-reversal odd so that the pair condensate 〈iψ↑ψ↓〉 is
an order parameter of spontaneous breaking of time-reversal
symmetry. Its temperature dependence is shown in Fig. 1. At
high temperatures, time-reversal symmetry is preserved, and
there appear gapless Majorana fermions. At low temperatures,
time-reversal symmetry is broken, and double Majorana
fermions form a massive Dirac fermion. The finite-size-scaling
analysis shows that this is a second-order phase transition. It
corresponds to the phase transition to a density wave state in
the Hamiltonian (4) [19,20].
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IV. QUANTUM MONTE CARLO

Next, we study the phase structure in the quantum Monte
Carlo method. We introduce another type of the Hubbard-
Stratonovich transformation to satisfy the Majorana positivity
condition [22–25]. After the Hubbard-Stratonovich transfor-
mation, the path integral is

Z =
∫

Dψ↑Dψ↓DAe−S ′−SA, (15)

with

S ′ =
∫

dτ
∑

x

[
ψ↑(x)

∂

∂τ
ψ↑(x) + ψ↓(x)

∂

∂τ
ψ↓(x)

+
∑

μ

[{it + Aμ(x)}ψ↑(x)ψ↑(x + μ̂)

+{−it + Aμ(x)}ψ↓(x)ψ↓(x + μ̂)]

]
, (16)

SA =
∫

dτ
∑

x

∑
μ

1

2g
A2

μ(x). (17)

In the path-integral Monte Carlo simulation, imaginary time
τ is discretized. Naively, a temporal derivative is replaced by
a central difference,

∂

∂τ
�(τ ) → ∂̂τ�(τ ) ≡ 1

2 δτ
{�(τ + δτ ) − �(τ − δτ )}.

(18)

However, the central difference has the doubling problem. To
understand this problem, let us consider the noninteracting
propagator in momentum space,

1

M(ωn,p = 0)
= 1

2

δτ

i sin(ωnδτ )
, (19)

where ωn is the fermionic Matsubara frequency. The prop-
agator has two poles at ωnδτ → 0 and π (mod 2π ). The
pole at ωnδτ → π is unphysical and thus called the doubler.
Although one well-known solution in nonrelativistic theory is
the use of a forward or backward difference, it does not solve
the problem now. In the case of the Majorana fermion,
only the antisymmetric part of the fermion matrix contributes
to the path integral. Because the antisymmetric part of a
forward or backward difference is a central difference, the
calculation with a forward or backward difference is equivalent
to that with a central difference. To avoid the doubling problem,
we discretize a temporal derivative as

∂

∂τ
�(τ ) →

(
∂̂τ − σ2


̂τ

2

)
�(τ )

≡ 1

2 δτ
{�(τ + δτ ) − �(τ − δτ )}

− σ2
1

2 δτ
{�(τ + δτ ) + �(τ − δτ ) − 2�(τ )}.

(20)

This is inspired by the Wilson fermion formalism in relativistic
lattice field theory [26]. Since the second term in Eq. (20) is a
higher order of δτ , it does not contribute to the δτ → 0 limit.

Now the noninteracting propagator becomes

1

M(ωn,p = 0)
= 1

2

δτ

i sin(ωnδτ ) + σ2{1 − cos(ωnδτ )}
= −δτ

4

i sin(ωnδτ ) − σ2{1 − cos(ωnδτ )}
1 − cos(ωnδτ )

.

(21)

Only the physical pole at ωnδτ → 0 survives, and the
unphysical pole at ωnδτ → π gets massive. This resolves the
doubling problem. On behalf of it, time-reversal symmetry is
explicitly broken at δτ �= 0. This is similar to the explicit chiral
symmetry breaking of the Wilson fermion formalism [26].

After the Majorana fermions are integrated out, the path-
integral (15) becomes

Z =
∫

DA pf Me−SA, (22)

where pf M is the Pfaffian of the antisymmetric fermion matrix
M . The fermion matrix is given by

M =
(

M↑↑ M↑↓
M↓↑ M↓↓

)
, (23)

with

M↑↑ = 2∂̂τ +
∑

μ

[{it + Aμ(x)}P+μ

−{it + Aμ(x − μ̂)}P−μ], (24)

M↓↓ = 2∂̂τ +
∑

μ

[{−it + Aμ(x)}P+μ

−{−it + Aμ(x − μ̂)}P−μ], (25)

M↑↓ = −M↓↑ = i
̂τ . (26)

This matrix satisfies the Majorana positivity condition [25].
The Pfaffian pf M is real and semipositive. Thus the path
integral is free from the sign problem. We remark here that
the sublattice symmetry is not essential for the Majorana
positivity of the model Hamiltonian (2). It is still Majorana
positive and does not suffer from the sign problem even for
nonbipartite lattices, such as a triangular lattice. (On the other
hand, for the case of repulsive interaction g < 0, the auxiliary
field Aμ is replaced by iAμ. Then the fermion matrix no
longer satisfies the Majorana positivity condition. The Pfaffian
becomes indefinite and causes the sign problem.)

We performed the path-integral Monte Carlo simulation
with the hybrid Monte Carlo algorithm [27]. For applying
the hybrid Monte Carlo algorithm, we transformed the path-
integral (22) to

Z =
∫

DA(det MM†)1/4 e−SA

=
∫

D�∗D�DAe−(1/4)�†(MM†)−1�−SA . (27)

The complex scalar field � is called the pseudofermion field.
We note that the transformation (27) is invalid if the Pfaffian is
indefinite. We extrapolated the infinite-volume limit V → ∞
from three lattice volumes V = 82, 122, and 162. We fixed
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FIG. 2. Monte Carlo data of the pair condensate 〈iψ↑ψ↓〉 as a
function of temperature T . The noninteracting value 〈iψ↑ψ↓〉0 is
subtracted from the Monte Carlo result 〈iψ↑ψ↓〉.

the hopping parameter t and the temporal discretization δτ at
t δτ = 0.1. Taking the continuum limit δτ → 0 will be done
in a future work.

The simulation results are shown in Fig. 2. The nonin-
teracting value 〈iψ↑ψ↓〉0, which is induced by the explicit
symmetry breaking (20), is subtracted from the Monte Carlo
data 〈iψ↑ψ↓〉. The results are qualitatively consistent with
the mean-field results. The symmetry is broken at low
temperatures and restored at high temperatures. However, the
phase transition seems to be a crossover not second order.
This is the artifact of the explicit symmetry breaking (20). To
determine the order of the physical phase transition, we need to
take the continuum limit δτ → 0 or formulate a discretization
scheme to preserve the symmetry.

The phase diagram on the (g,T ) plane is shown in Fig. 3.
The second-order phase-transition line in the mean-field
approximation also is shown. The Monte Carlo data and the
mean-field results are qualitatively consistent. Note that the
temperatures of the path-integral Monte Carlo simulations are
nonzero and the zero-temperature limit is obtained by the
extrapolation of them. The extrapolated data are shown at
T = 0 in Fig. 3.

V. SUMMARY

We have introduced the effective Majorana lattice model
describing the low-energy physics of the vortex lattice in
time-reversal-invariant topological superconductors. We have

FIG. 3. Phase diagram on the (g,T ) plane. The black solid line is
the mean-field result of the phase-transition line. The blue gradation
is the Monte Carlo data of the subtracted condensate 〈iψ↑ψ↓〉 −
〈iψ↑ψ↓〉0.

studied spontaneous breaking of time-reversal symmetry at
finite temperatures. To perform ab initio analysis, we imple-
mented the path-integral Monte Carlo simulation for Majorana
fermion systems. For attractive interaction, our model is free
from the sign problem for any lattice structures including
nonbipartite lattices in any dimension and can be evaluated
by using the standard importance sampling method. We have
shown that the phase diagram of Majorana fermion systems
can be investigated in the same way as that of complex fermion
systems.

Our formulation is applicable to general Majorana fermion
systems. For example, it can be applied to variants of the Kitaev
spin model [18,28–30] by expressing them with Majorana
fermions through the Jordan-Wigner transformation [31–33].
It will be interesting to study the spin liquid state by using
our method. Another application is the Majorana fermion
in particle physics, such as neutrinos, supersymmetry, and
quantum vortices in color superconductors [34–36].
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