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A repulsive Hubbard model with both spin-asymmetric hopping (t↑ �= t↓) and a staggered potential (of strength
�) is studied in one dimension. The model is a compound of the mass-imbalanced (t↑ �= t↓, � = 0) and ionic
(t↑ = t↓, � > 0) Hubbard models, and may be realized by cold atoms in engineered optical lattices. We use
mostly mean-field theory to determine the phases and phase transitions in the ground state for a half-filled
band (one particle per site). We find that a period-two modulation of the particle (or charge) density and an
alternating spin density coexist for arbitrary Hubbard interaction strength, U � 0. The amplitude of the charge
modulation is largest at U = 0, decreases with increasing U and tends to zero for U → ∞. The amplitude for
spin alternation increases with U and tends to saturation for U → ∞. Charge order dominates below a value
Uc, whereas magnetic order dominates above. The mean-field Hamiltonian has two gap parameters, �↑ and
�↓, which have to be determined self-consistently. For U < Uc both parameters are positive, for U > Uc they
have different signs, and for U = Uc one gap parameter jumps from a positive to a negative value. The weakly
first-order phase transition at Uc can be interpreted in terms of an avoided criticality (or metallicity). The system
is reluctant to restore a symmetry that has been broken explicitly.

DOI: 10.1103/PhysRevB.96.035116

I. INTRODUCTION

During the last decade, the study of ultracold atoms in opti-
cal lattices has spawned new insight into the complex behavior
of quantum many-body systems [1–3]. Atomic gases stored
in artificially engineered optical lattices constitute structures
beyond those currently achievable in actual materials and,
thanks to the easy manipulation of parameters, serve as a
playground for the simulation of condensed-matter systems
with unconventional properties [4]. While in the solid-state
context the use of simplified models cannot always be justified
because they may neglect relevant degrees of freedom, the
clean and precisely controlled environment of ultracold atoms
in optical lattices allows a direct mapping of a physical reality
onto such models. Moreover, the possibility of manipulating
the interaction strength using the Feshbach resonance [5]
enables the observation of many-body phenomena from
weak to strong coupling. Both bosonic [6,7] and fermionic
[8–10] Hubbard models have been realized and investigated
experimentally.

Optical lattices can be generated in various geometries,
including bipartite lattices with different potential minima on
the two sublattices [11]. For bosonic atoms a checkerboard
potential has been used to study metastable Bose-Einstein
condensates with unconventional order parameters [12–14].
The relaxation of a bosonic gas, initially prepared in a state
with alternating site occupancies, has been investigated for
a one-dimensional optical lattice, by switching off and on
a period-two potential [15]. Fermionic atomic gases in an
optical honeycomb lattice—artificial graphene—have been
tuned to the state of a Mott insulator for large enough on-site
coupling U [16]. With the addition of a disparity of well
depths on the A and B sites of the honeycomb lattice a

competition between the Mott insulator with homogeneous
particle density and a band insulator with a modulated density
appears [17,18]. In the limit of deep wells, such a system can
be described by the ionic Hubbard model, where the single-
particle levels on neighboring sites differ by an energy �.
In condensed-matter physics this model has appeared a long
time ago in the context of the neutral-to-ionic transition [19],
observed in organic mixed-stack compounds [20,21]. Later
similar models have been used for describing metal-halogen
chains [22] and transition-metal oxides [23,24]. In these cases
the A and B sites are associated with d and p orbitals,
respectively.

The conventional Hubbard Hamiltonian is invariant with
respect to translations by arbitrary lattice vectors and also
has spin SU(2) symmetry. In the ionic Hubbard model the
translational symmetry is reduced—the unit cell contains two
sites—but the Hamiltonian preserves the SU(2) invariance.
SU(2) symmetry can be broken in more than one way. One
option for electronic systems is the coupling to a magnetic
field, which induces an imbalance between up and down spins.
In systems of cold atoms, where the spin degree of freedom
may represent two hyperfine levels, an uneven mixture of the
two components leads to a similar population imbalance [25].
Another option for cold atoms is to use two atom species
with different masses [26,27]. This mass imbalance leads to
different hopping parameters t↑ and t↓ in the Hubbard model.
State-dependent tunneling has also been realized for gases
with one atomic species in two hyperfine levels [28,29]. In
condensed-matter physics mixtures of fermions with different
effective masses are realized in rare-earth-metal compounds
where a localized f level crosses a wide conduction band
[30,31]. However, in the models advocated for describing these
materials the two bands are usually strongly hybridized, and
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at least the light electrons have an additional spin degree of
freedom.

In this paper we study the mass-imbalanced ionic Hub-
bard model, where translational and spin SU(2) symmetries
are both explicitly broken. The Hamiltonian and the order
parameters are presented in Sec. II. In Sec. III several limits
are discussed, including the noninteracting case (U = 0), the
small- and large-U limits, the conventional ionic Hubbard
model (t↑ = t↓,� > 0) and the mass-imbalanced Hubbard
model (t↑ �= t↓,� = 0). In Secs. IV and V we concentrate
on mean-field predictions for the ground state. The method
is explained in Sec. IV and used in Sec. V for describing
the phase transition from (dominant) charge to spin order.
It is found that the phase diagram for the mass-imbalanced
case differs qualitatively from that of the conventional ionic
Hubbard model. A brief summary is presented in Sec. VI,
which also lists some questions to be addressed in the future.

II. HAMILTONIAN AND ORDER PARAMETERS

The mass-imbalanced ionic Hubbard chain is defined by
the Hamiltonian

H = −
∑
iσ

tσ (c†iσ ci+1σ + c
†
i+1σ ciσ )

+ �

2

∑
iσ

(−1)iniσ + U
∑

i

ni↑ni↓, (1)

where c
†
iσ and ciσ create and annihilate, respectively, fermionic

particles at sites i (i = 1, . . . ,L) with spin projections
σ =↑ ,↓, and niσ = c

†
iσ ciσ . The Hamiltonian commutes with

the number of particles with spin σ,Nσ = ∑
i niσ , and hence

with the total particle number, N = N↑ + N↓. We restrict
ourselves to the case of half filling, where N is equal to
the number of sites L. Moreover, we assume that the total
magnetization vanishes, i.e., N↑ = N↓. The parameters of the
Hamiltonian will be chosen in the range t↑ � t↓,� � 0 and
U � 0.

A finite ionic term (� > 0) breaks translational invari-
ance and induces a density imbalance between neighboring
sites, whereas the Hubbard term (U > 0) suppresses density
inhomogeneities and favors antiferromagnetic ordering. For
different values of the hopping amplitudes (t↑ �= t↓) the spin
SU(2) symmetry is also explicitly broken. In this case charge
and spin modulations are expected to be nonzero for any finite
values of U and �. To characterize the two broken symmetries
we introduce the order parameters δρc and δρs , defined by the
relations

δρc = − 1

L

∑
iσ

(−1)iniσ ,

(2)

δρs = 1

L

∑
iσ

(−1)iσniσ .

For |δρc| > |δρs | charge ordering dominates (ionic phase),
while for |δρs | > |δρc| spin ordering prevails (antiferromag-
netic phase).

The canonical transformation

ci↑ → ci↑, ci↓ → (−1)ic†i↓ (3)

leaves the hopping term of the Hamiltonian (1) invariant,
but exchanges the order parameters, δρc ↔ −δρs . The ionic
potential is replaced by a Zeeman coupling to an alternating
magnetic field and the interaction term changes sign. There-
fore, this transformation maps the repulsive ionic Hubbard
model onto the attractive Hubbard model in an alternating
magnetic field. The phase diagram for positive U is then
readily converted into the phase diagram for negative U

by interchanging ionic and antiferromagnetic phases and by
associating the parameter � with the amplitude of a staggered
magnetic field. It has been argued that the mapping (3) can be
very useful for understanding the repulsive Hubbard model by
using cold atoms in optical lattices as quantum simulators in
the attractive regime [32].

The in-plane alternating spin (−1)ic†i↑ci↓ is transformed by

Eq. (3) to a pair operator c
†
i↑c

†
i↓, which implies an intimate

relationship between in-plane antiferromagnetic ordering for
the repulsive ionic Hubbard model and superconductivity for
the attractive Hubbard model in an alternating magnetic field.
This field is detrimental for superconductivity and thus favors
an alternating charge density for the attractive Hubbard model.
Correspondingly, we expect in-plane antiferromagnetism to be
suppressed by the ionic potential, and this is indeed found both
within mean-field theory and in the large U limit.

It is convenient to introduce unit cells with two sites and
operators

amσ = c2m−1σ , bmσ = c2mσ , m = 1, . . . ,
L

2
. (4)

The Hamiltonian (1) then reads

H = −
∑
mσ

tσ (a†
mσbmσ + b†mσam+1σ + H.c.)

− �

2

∑
mσ

(
nA

mσ − nB
mσ

) + U
∑
m

(
nA

m↑nA
m↓ + nB

m↑nB
m↓

)
,

(5)

where nA
mσ = a

†
mσamσ , nB

mσ = b
†
mσ bmσ .

III. LIMITING CASES

Before embarking on a discussion of the mean-field ground
state of the Hamiltonian (5), we explore certain limiting cases,
namely U = 0, small and large U, t↑ = t↓, and � = 0.

A. Noninteracting particles: U = 0

To diagonalize the Hamiltonian (5) for U = 0, we first
represent the Wannier operators amσ ,bmσ by Bloch operators
akσ ,bkσ ,

amσ =
√

2

L

∑
k

eikmakσ ,

(6)

bmσ =
√

2

L

∑
k

eik(m+ 1
2 )bkσ ,

where k = 4π
N

ν,−L
4 < ν � L

4 . The Hamiltonian then reads

H0 =
∑
kσ

(a†
kσ , b

†
kσ )

(−�/2 εkσ

εkσ �/2

)(
akσ

bkσ

)
, (7)
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where

εkσ = −2tσ cos
k

2
. (8)

The Bogoliubov transformation

akσ = cos ϕkσαkσ + sin ϕkσβkσ ,
(9)

bkσ = − sin ϕkσαkσ + cos ϕkσβkσ ,

diagonalizes H0 if the angles ϕkσ are chosen as

tan 2ϕkσ = 2εkσ

�
, cos 2ϕkσ = �

2Ekσ

, (10)

where

Ekσ =
√

ε2
kσ + (�/2)2. (11)

The transformed Hamiltonian

H0 =
∑
kσ

Ekσ (−α
†
kσ αkσ + β

†
kσ βkσ ) (12)

has conduction and valence bands separated from each other
by an energy gap �. For an average number of one particle
per site, the case considered here, the occupation numbers in
the ground state are 〈α†

kσ αkσ 〉 = 1 and 〈β†
kσ βkσ 〉 = 0, as in a

conventional semiconductor.
For this ground state the order parameters (2) are easily

evaluated in the thermodynamic limit, L → ∞, where 2
L

∑
k

is replaced by 1
2π

∫ π

−π
dk. We find

δρc = 1

L

∑
kσ

cos 2ϕkσ → �

4π

∑
σ

κσK(κσ )

tσ
,

(13)

δρs = − 1

L

∑
kσ

σ cos 2ϕkσ → − �

4π

∑
σ

σ
κσK(κσ )

tσ
,

where K(κσ ) is the complete elliptic integral of the first kind
with modulus

κσ =
[

1 +
(

�

4tσ

)2
]− 1

2

. (14)

Figure 1 shows the amplitudes of both charge and spin
modulations as functions of � for various ratios of hopping
parameters. The limiting cases � → 0 and � → ∞ are readily
obtained from Eq. (13) using the asymptotic behavior of the
elliptic integral,

K(κ) ∼
{

π
2

[
1 + 1

4κ2 + 9
64κ4 + O(κ6)

]
, κ → 0,

1
2 log 16

1−κ2 , κ → 1.
(15)

If both t↑ and t↓ are finite δρc vanishes for � → 0 and tends
to 1 for � → ∞, while δρs vanishes in both limits. The result
for � → 0 is different if one of the hopping amplitudes, say
t↓, vanishes (as in the Falicov-Kimball model). In this case
both δρc and δρs tend to 1

2 for � → 0. However, this is a quite
singular limit. In fact, for � = 0 (and U = 0) the total energy
is completely independent of the distribution of the infinitely
heavy particles. This degeneracy is removed by a finite
value of U .

FIG. 1. Charge modulation δρ and spin alternation ρs as functions
of the ionicity parameter �, for t↑ = 1 and various values of the
parameter t↓. The special case t↓ = 0 corresponds to the Falicov-
Kimball limit.

B. Small and large U limits

For U � � we can use perturbation theory for calculating
interaction effects. This is justified, because for U = 0 there
is a gap � in the excitation spectrum. To leading order in U

we find (for t↑ � t↓)

δρc(U ) = δρc(0) − κ↑κ↓U�

8π2t↑t↓
× [2K(κ↑)K(κ↓) − K(κ↑)E(κ↓) − E(κ↑)K(κ↓)],

δρs(U ) = δρs(0) + κ↑κ↓U�

8π2t↑t↓
[K(κ↑)E(κ↓) − E(κ↑)K(κ↓)],

(16)

where E(κσ ) is the complete elliptic integral of the second
kind. The density modulation δρc decreases linearly with U ,
since E(x) < K(x) for x > 0. For our choice of hopping
parameters we have κ↑ � κ↓. The function K(x) is mono-
tonically increasing, while E(x) decreases with x. There-
fore δρs(U ) − δρs(0) � 0, i.e., the staggered magnetization
increases as a function of U .

If the interaction strength is much larger than the other
parameters, i.e., for U � t↑,t↓,�, the ground-state config-
uration has essentially one particle at each site (δρc ≈ 0),
and the low-energy degrees of freedom are spin 1

2 operators
Si ,i = 1, . . . ,L. Degenerate perturbation theory yields the
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Hamiltonian [33]

H = J
∑

i

(
S

(x)
i S

(x)
i+1 + S

(y)
i S

(y)
i+1 + γ S

(z)
i S

(z)
i+1

)

−h
∑

i

(−1)iS(z)
i , (17)

with parameters

J = 4Ut↑t↓
U 2 − �2

, γ = t2
↑ + t2

↓
2t↑t↓

, h = 2�(t2
↑ − t2

↓)

U 2 − �2
. (18)

For t↑ = t↓ we recover the isotropic Heisenberg chain, where
the only effect of � is a slight enhancement of the exchange
constant J . For t↑ > t↓ and � = 0 we obtain an XXZ chain
with anisotropy parameter γ > 1, i.e., a uniaxial antiferromag-
net [34,35]. For t↑ > t↓ and � > 0 the z components of the
spins are coupled to a staggered longitudinal field of strength h.
It is interesting to note that this Hamiltonian has been proposed
in the context of quasi-one-dimensional easy-axis spin 1

2
antiferromagnets (such as CsCoCl3), where the staggered field
arises in a mean-field treatment of interchain coupling [36].

The Hamiltonian (17) has been studied with different tech-
niques, but mostly for isotropic exchange (γ = 0) or for the
easy-plane case (γ < 1), where the interaction and the mag-
netic field compete [37–40]. In the present case (γ > 1) the
staggered field and the interaction reinforce each other in pro-
ducing long-range antiferromagnetic order, with up-spins pre-
dominantly on even sites and down-spins mostly on odd sites.

C. Ionic Hubbard model: t↑ = t↓

For spin-independent hopping (t↑ = t↓) the Hamiltonian
(1) embodies the one-dimensional ionic Hubbard model,
which has been studied intensively during recent decades
[41–54]. Early studies found two phases (at half filling), a
band insulator for U � � and a Mott insulator for U � �,
with a single quantum phase transition as a function of
U/� [41,42,44]. The interest increased substantially when
a field-theoretic treatment of the ionic Hubbard chain came
up with two quantum critical points Uc1 and Uc2 [43]. The
system was found to be a band insulator (with finite and
almost equal spin and charge gaps) for U < Uc1 and a Mott
insulator (with gapped charge and gapless spin excitations)
for U > Uc2, as expected, but a new phase was found to sneak
in for Uc1 < U < Uc2. At U = Uc1 the charge gap vanishes
and one finds metallic behavior, the intermediate phase is a
spontaneously dimerized insulator (with finite spin and charge
gaps), and at U = Uc2 the spin degrees of freedom exhibit
a Kosterlitz-Thouless transition [43]. Subsequent numerical
studies [45,48,49,52] clarified details of these phases and
unambiguously confirmed the scenario of two quantum phase
transitions [49,52].

The ionic Hubbard chain has been generalized by adding
next-nearest-neighbor hopping [55] and by enlarging the unit
cell to model for instance MMX chains, where M stands for
metal atoms and X for halogens [56]. In both cases rich phase
diagrams have been found, where the band- to Mott-insulator
transition goes through a sequence of unconventional insulat-
ing and/or metallic phases. In higher dimensions the phase
diagram is more controversial. The ionic Hubbard model for

d > 1 at half filling has been studied by various methods, such
as dynamical mean-field theory (DMFT) [57–63], quantum
Monte Carlo [64,65], cluster DMFT [66], a variational cluster
approach [67], and the coherent potential approximation [68].
Intermediate phases are routinely found, but depending on
applied constraints and computational details different types of
order emerge, from metallic [58,59,64,65,68], to half-metallic
and antiferromagnetic [62,63], as well as insulating and
antiferromagnetic [60,66,67].

D. Mass-imbalanced Hubbard model: � = 0

In the absence of an alternating potential (� = 0) the
Hamiltonian (1) represents the mass-imbalanced Hubbard
model, which was introduced in the early 1990s [69] to
interpolate between the standard Hubbard model (t↑ = t↓) and
the Falicov-Kimball model (t↓ = 0) [70].

The one-dimensional mass-imbalanced Hubbard model is
well understood at half filling in the large U limit where
it becomes equivalent to the easy-axis Heisenberg antifer-
romagnet, with anisotropy parameter γ as in Eq. (18). It
is generally accepted [71,72], that in this case the ground
state has long-range antiferromagnetic order. Moreover, the
excitations are gapped. The situation is less clear for small
and moderate values of U . Is there a (Kosterlitz-Thouless)
transition to a gapped phase for an infinitesimal anisotropy
[35] or is the gapless phase extended over a finite region away
from the line t↑ = t↓ [73]? Away from half filling a lot of
effort has been spent on the problem of phase separation,
using rigorous techniques [74], bosonization [75], weak- and
strong-coupling expansions [76], or numerical methods [77–
79]. Several studies were also made for higher dimensions,
for instance on the Mott transition [80,81] and on magnetic
correlations [82,83].

For t↓ = 0 we recover the Hamiltonian of the Falicov-
Kimball model [70,84,85]. Its ground state at half filling has
been shown to consist of the most homogeneous configuration
of immobile particles, which occupy the sites of one of the two
sublattices [86,87]. For other densities spin-up and spin-down
particles are segregated for large enough repulsion [88,89].
In one dimension a more subtle phase separation can occur
already for weak repulsion [90].

IV. MEAN-FIELD THEORY

In the rest of this paper we seek the ground state of the
mass-imbalanced ionic Hubbard chain in mean-field approx-
imation. We only consider the broken symmetries included
in the Hamiltonian (1), which lead to a period-two density
modulation and spin alternation. If we would admit arbitrary
densities we would have to include more complicated spatial
orderings as well as phase separation and even ferromagnetism
[91], but we restrict ourselves to half filling.

A. Mean-field Hamiltonian and its ground state

We define the mean-field state as the ground state of the
single-particle Hamiltonian

Hmf = −
∑
iσ

[
tσ (c†iσ ci+1σ + H.c.) − �σ

2
(−1)iniσ

]
, (19)
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where �↑ and �↓ are variational parameters. This mean-field
Hamiltonian can also be written as

Hmf = −
∑
iσ

tσ (c†iσ ci+1σ + H.c.)

− L

4
[(�↑ + �↓)δρc + (�↓ − �↑)δρs]. (20)

Therefore �↑ + �↓ and �↑ − �↓ can be interpreted as con-
jugate fields of the order parameters δρc and δρs , respectively.

Hmf is diagonalized by the Bogoliubov transformation (9),
but now the ionic potential strength � has to be replaced by
�σ in Eqs. (10) and (11), i.e.,

tan 2ϕkσ = 2εkσ

�σ

, cos 2ϕkσ = �σ

2Ekσ

, (21)

where

Ekσ =
√

ε2
kσ + (�σ/2)2. (22)

The transformed Hamiltonian is again given by Eq. (12) and
its ground state (for N = L particles) is

|�0〉 =
∏
kσ

α
†
kσ |0〉 =

∏
kσ

(cos ϕkσ a
†
kσ − sin ϕkσ b

†
kσ )|0〉. (23)

The order parameters are also calculated in exactly the same
way as in Sec. III A, giving

δρc = 1

4π

∑
σ

�σκσK(κσ )

tσ
,

(24)

δρs = − 1

4π

∑
σ

σ
�σκσK(κσ )

tσ
,

where

κσ =
[

1 +
(

�σ

4tσ

)2
]−1/2

. (25)

B. Mean-field energy and gap equations

It is straightforward to calculate the expectation value of
the Hamiltonian (1) with respect to the mean-field state (23).
We find

E(�↑,�↓)

L
=

∑
σ

[
�σ (�σ − �)

8πtσ
κσK(κσ ) − 2tσ

π

E(κσ )

κσ

]

+ U

4

[
1 + �↑

2πt↑
κ↑K(κ↑)

�↓
2πt↓

κ↓K(κ↓)

]
.

(26)

To calculate derivatives, we use the following relations

d

dκσ

[
1

κσ

E(κσ )

]
= − 1

κ2
σ

K(κσ ),

d

dκσ

[κσK(κσ )] = 1

1 − κ2
σ

E(κσ ), (27)

d

d�σ

[�σκσK(κσ )] = κσ [K(κσ ) − E(κσ )],

and obtain

1

L

∂E

∂�↑
= A↑

[
�↑ − � + U

2πt↓
�↓κ↓K(κ↓)

]
,

(28)
1

L

∂E

∂�↓
= A↓

[
�↓ − � + U

2πt↑
�↑κ↑K(κ↑)

]
,

with non-negative coefficients

Aσ = κσ

8πtσ
[K(κσ ) − E(κσ )] � 0. (29)

At extrema of the energy the first derivatives vanish, and
we get the gap equations

�↑ = � − U

2πt↓
�↓κ↓K(κ↓),

(30)

�↓ = � − U

2πt↑
�↑κ↑K(κ↑).

They admit two different types of solutions, one where
0 < �σ < �, and a second one where the signs of �↑
and �↓ are different. These two possibilities correspond to
different relative values of the order parameters (24). If both
gap parameters are positive, charge modulations dominate,
|δρc| > |δρs |, but if the gap parameters have different signs,
the alternating spin is dominant, |δρs | > |δρc|. In general the
gap equations have to be solved numerically, but for small
on-site interaction we can use an expansion in U . To first
order in U we can obtain the mean-field corrections to the
gap parameters by putting �σ = � on the right-hand side of
Eq. (30). Inserting these expressions into Eq. (24) we obtain the
perturbative expressions (16), which implies that mean-field
theory is exact to leading order in U .

V. PHASES AND PHASE TRANSITIONS

We have solved numerically the gap equations (30) to
determine the various phases and phase transitions of the
model. The solution is not always unique. In such a case
one can compare the energies to find out which solution
corresponds to the minimum. Another useful criterion is local
stability, which requires the second derivatives of the energy
to be positive definite. For values �↑,�↓ satisfying the gap
equations we obtain

1

L

∂2E

∂�2
σ

= Aσ ,
1

L

∂2E

∂�↑∂�↓
= 4UA↑A↓, (31)

where the coefficients Aσ are defined by Eq. (29). The
eigenvalues of the “dynamical matrix” 1

L
( ∂2E
∂�σ ∂�σ ′ ) are

λ± = A↑ + A↓ ± √
(A↑ − A↓)2 + (8UA↑A↓)2

2
. (32)

At a local minimum both eigenvalues have to be positive.
Solutions that do not satisfy this condition have to be ruled out
as unstable.

In some limiting cases analytical solutions of the gap
equations can also be given. This will be particularly useful for
discussing the behavior close to the transition. In the following
we choose t↑ = 1.
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FIG. 2. Order parameter (top) and gap parameters (bottom) for
� = 6. For small U the asymptotic solution (16) is indicated by
dashed lines. Phase transition points (Uc) for t↓ = 0.9 and t↓ = 0.5
are indicated by dash-dot and dotted lines, respectively.

A. From charge to spin order

Figure 2 shows the order parameters δρc, δρs and the gap
parameters �↑,�↓ for a potential strength � = 6 and two
different anisotropies (t↓ = 0.5 and 0.9). At U = Uc there is
a weakly first-order transition from dominant charge order to
prevailing antiferromagnetism. The steps of the order param-
eters at Uc decrease with decreasing t↓ and finally disappear
as t↓ → 0. The results for other values of � are qualitatively
similar and lead to the phase diagram of Fig. 3. The transition
line separating the ionic and antiferromagnetic phases depends
only weakly on the mass imbalance t↓/t↑, especially for not
too small values of U . For U → ∞ the transition occurs at
U = �, as will be shown analytically below.

The barely visible discontinuities at Uc (see Fig. 2) are
linked to the fact that the gap parameter �↑ changes sign
and, instead of passing smoothly through zero, jumps from a
small positive value to a small negative value. A state with
�↑ = 0 would be metallic for the particles with up-spins and
semiconducting for the others. From the point of view of
symmetry, the full translational invariance of the mean-field
Hamiltonian would be restored for one spin component. A
solution of Eq. (30) with �↑ = 0 indeed exists, with �↓ = �

(for a particular value U ∗). However, when this point is
approached, the quantity A↑, defined by Eq. (29), diverges,
while A↓ remains finite. Therefore the eigenvalue λ− of
Eq. (32) is negative and the solution is unstable. This result is a
nice example for the resistance of many-body systems against
the restoration of an explicitly broken symmetry.

FIG. 3. Mean-field phase diagrams, in the U -� plane for various
anisotropies (top) and in the U -t↓ plane for various values of �

(bottom). Long-range order exists for both the density modulation
(ionic phase I) and spin alternation (AF) throughout the entire
diagram. The notation I+(AF) stands for a dominant ionic phase
(δρc > δρs), while AF+(I) means that antiferromagnetism is stronger
(δρs > δρc).

To see how criticality is avoided, we show the solution
of the gap equations close to Uc in Fig. 4. The upper and
lower lines of the z- and s-shaped curves correspond to locally
stable solutions (λ− > 0), while the middle section represents
an unstable solution (λ− < 0). In fact, we can easily show
that the stability limit (λ− = 0) coincides with the point where
d�σ/dU diverges. From Eq. (30) we obtain

d�σ

dU
= 1

1 − 16U 2A↑A↓

[
�σ − �

U
− 4Aσ̄ (�σ̄ − �)

]
. (33)

In view of Eq. (32) the prefactor diverges when λ− → 0. The
value Uc is calculated by comparing the energies of the two
locally stable branches; the upper line has a smaller energy
than the lower one for U < Uc and the lower one is preferable
for U > Uc.

We estimate Uc for large values of � where the hysteresis
is very small (it vanishes for � → ∞) and Uc ≈ U ∗. At the
unstable critical point (with �↑ = 0 and �↓ = �) the gap
equations boil down to

1 = U ∗

2πt↓
κ0

↓K(κ0
↓), (34)
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FIG. 4. Solution of the gap equation close to Uc for t↑ = 1 and
t↓ = 0.9. The black segments stand for the most stable solution,
while the middle segment (red) represents an unstable solution. A
zero-crossing point of the unstable solution (U ∗) is indicated by a
blue dot.

where κ0
↓ = [1 + (�/4t↓)2]−

1
2 . For large values of � the

parameter κ0
↓ is very small, κ0

↓ ≈ 4t↓/� � 1, and we find

Uc ≈ U ∗ ≈ �

[
1 +

(
2t↓
�

)2
]

(35)

and therefore Uc indeed tends to � for � → ∞.
To estimate the discontinuity in the gap parameters at Uc

we determine the three solutions of the gap equations at U ∗,
again in the large � limit, where �↑ is very small and �↓ is
close to �. To leading orders of �↑ and (�↓ − �) the gap
equations read

�↑ ≈ − 8U ∗t2
↓

�3
(�↓ − �),

(36)

�↓ − � ≈ − U ∗

2πt↑
�↑ log

4t↑
|�↑| ,

where Eq. (34) has been used. Besides the unstable solution
there exist two other solutions, corresponding to the stable
branches, namely

�↑ ≈ ±4t↑ exp

(
− π�3t↑

4(U ∗)2t↓

)

≈ 4t↑ exp

(
−π�t↑

4t2
↓

)
. (37)

The jump 2|�↑| vanishes exponentially both for � → ∞ and
for t↓ → 0. The same exponential behavior is found for �↓.

B. Fidelity susceptibility

In addition to order parameters an interesting quantity
characterizing the ground state is the fidelity susceptibility,
which has been used successfully for quantum phase transi-
tions [92,93], and also for the crossover from Bose-Einstein
condensation of tightly bound pairs to BCS superconductivity
[94]. For a given Hamiltonian, which depends on some
parameter, typically a dimensionless coupling constant, the
fidelity is defined as the overlap of the ground states for
two different values of this parameter. In the present case we
choose U (for t↑ = 1) as characteristic parameter and use the
(normalized) mean-field ground state |�(U )〉 to calculate the
fidelity

F (U1,U2) = 〈�(U1)|�(U2)〉. (38)

The fidelity susceptibility is then defined as

χF (U ) := − 2

L
lim

δU→0

log F (U,U + δU )

(δU )2
. (39)

With our mean-field ground state (23) we obtain

χF (U ) = 1

L

∑
kσ

(
dϕkσ

dU

)2

. (40)

The Bogoliubov angles ϕkσ are linked to the gap parameters
�σ by Eq. (21), i.e.,

dϕkσ

d�σ

= − εkσ

4E2
kσ

, (41)

and the derivatives of �σ with respect to U are given by
Eq. (33). Working out the k sum in Eq. (40) for L → ∞ we
finally get

χF (U ) =
∑

σ

(
1

16tσ

)2
κ4

σ√
1 − κ2

σ

(
d�σ

dU

)2

. (42)

This expression is valid both for U < Uc and for U > Uc.
For a first-order transition at U = Uc, where the ground states
above and below the transition point differ, the fidelity F (Uc −
1
2δU,Uc + 1

2δU ) is smaller than 1, even in the limit δU → 0,
and χF (Uc) = ∞. We expect therefore a sharp line emerging
from a smooth background, in contrast to the case of a second-
order transition, where χF diverges when a critical point is
approached.

Figure 5 shows the fidelity susceptibility for � = 6 and
various values of t↓. For t↓ < 0.99 a single peak is found,
and it is located at Uc. We notice that this line is not simply an
infinitely sharp peak as in an ordinary first-order transition, but
χF is strongly enhanced upon approaching Uc, in agreement
with the avoided criticality discussed above. Mathematically,
this enhancement comes from the first factor of the right-hand
side of Eq. (33), which can also be written as A↑A↓/(λ+λ−).
The eigenvalue λ− decreases when Uc is approached and is
very small at Uc. Surprisingly, a second peak appears if t↓
approaches 1. It has the form of a weak hump for t↓ = 0.999,
which becomes sharper as t↓ approaches 1 and finally is sin-
gular at the isotropic point, t↓ = 1. We attribute the hump to a
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FIG. 5. Fidelity susceptibility in the vicinity of Uc for � = 6 and
various hopping anisotropies.

crossover due to a rapid change in gap parameters, whereas the
singularity for t↓ = 1 marks a second-order phase transition,
as will be discussed in more detail in the next section.

C. Mean-field theory for the ionic Hubbard model

We now turn our attention to the ionic Hubbard model
(t↑ = t↓), where the spin SU(2) symmetry is not explicitly
broken. Figure 6 shows the results for the gaps �σ and
the order parameters δρc, δρs as functions of U . For small
U the gap parameters are equal and, correspondingly, there

FIG. 6. Order parameter (top) and gap parameters (bottom) for
the ionic Hubbard model (t↑ = t↓ = 1) for several values of �.

FIG. 7. Mean-field phase diagram for the ionic Hubbard model
(t↑ = t↓ = 1).

is no antiferromagnetism. For large U the gap parameters
have different signs and therefore the antiferromagnetic order
parameter δρs dominates. The nature of the transition between
these two regimes depends on the strength of the ionic
potential �. For small � there is a single first-order transition,
as in the mass-imbalanced case. For large � there are two
transitions, first a continuous transition at Uc1 where the
difference between gap parameters starts from zero and both
of them remain first positive. In this intermediate phase
the density modulation still dominates, but there is already
antiferromagnetic order. A second transition occurs at a
slightly larger value Uc2 and is of first order. For U > Uc2

antiferromagnetism dominates. It is worthwhile to mention
that the two transitions at Uc1 and Uc2, respectively, coincide
with the two singularities observed in the fidelity susceptibility
for t↑ = t↓ (see Fig. 5).

Figure 7 shows the phase diagram for the ionic Hub-
bard chain. The main differences with respect to the mass-
imbalanced case of Fig. 3 are the existence of a pure ionic
phase, where δρs = 0, and the appearance of the intermediate
phase. The bifurcation from a single transition line to two lines
occurs at � ≈ 3.3373088, U ≈ 4.2398854.

We focus first on the continuous transition at Uc1 and show
that it is triggered by the softening of antiferromagnetic fluctu-
ations. We start within the purely ionic phase, U < Uc1, where
a single gap parameter �↑ = �↓ =: �̄ satisfies the equation

�̄ = � − U

2πt
�̄κ̄K(κ̄). (43)

We now enhance U by an infinitesimal amount δU and
assume the gap parameters to change accordingly,

�↑ = �̄(1 + η↑), �↓ = �̄(1 + η↓). (44)

Expanding the gap equations (30) up to first order in δU and
ησ and subtracting Eq. (43) we get the linear system

η↑ = − 1

2πt
{Uκ̄[K(κ̄) − E(κ̄)]η↓ + κ̄K(κ̄)δU},

(45)

η↓ = − 1

2πt
{Uκ̄[K(κ̄) − E(κ̄)]η↑ + κ̄K(κ̄)δU}.
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Adding and subtracting these two equations we obtain{
1 + κ̄U

2πt
[K(κ̄) − E(κ̄)]

}
(η↑ + η↓) = − κ̄

πt
K(κ̄) δU,

(46){
1 − κ̄U

2πt
[K(κ̄) − E(κ̄)]

}
(η↑ − η↓) = 0.

The first line implies that the sum of the gap parameters varies
linearly with δU , while the second line implies η↑ = η↓, as
long as the prefactor is finite. This prefactor is proportional
to the eigenvalue λ− and therefore a new solution η↑ �= η↓
appears at the particular value of U where λ− = 0, which we
therefore identify with the critical point Uc1 for the transition
to the intermediate phase.

We can also use the parametrization (44) for calculating the
eigenvectors of the dynamical matrix (31). One readily finds
η↑ = ±η↓ for λ±. The eigenvector of λ− modifies primarily
δρs and can therefore be associated with a magnetic excitation.
This completes the soft-mode picture of the transition at the
critical point Uc1, which is determined by the gap equation (43)
(with U = Uc1) together with the soft-mode condition

1 = 4Uc1Ā = κ̄Uc1

2πt
[K(κ̄) − E(κ̄)]. (47)

When Uc1 is approached from below, the order
parameters are

δρs = 0,
δρc(U ) − δρc(Uc1)

δρc(Uc1)
≈ Uc1 − U

2Uc1
. (48)

The treatment of the region above the critical point is slightly
more tricky because we have to use a higher-order expansion.
The calculation, detailed in the Appendix, gives the following
result for the critical region

δρs ∼
(

U − Uc1

Uc1

) 1
2

,

(49)

δρc(U ) − δρc(Uc1) ∼
(

U − Uc1

Uc1

)
,

with proportionality factors given by Eqs. (A11) and (A12),
respectively. The behavior of Eqs. (48) and (49) agrees
perfectly well with numerical calculations in the vicinity of
Uc1, as shown in Fig. 8.

In Fig. 7 the intermediate phase appears as a tiny fjord,
separating the dominating ionic and antiferromagnetic regions.
To find out how this fjord widens further up we calculate the
asymptotic behavior of the two transition lines. The transition
at Uc2 is exactly of the same nature as the single transition
at Uc found in the case of unequal hopping parameters and
therefore we can use the large � estimate of Eq. (35) for Uc2.
The critical point Uc1 is determined by two equations, the
gap equation (43) and the soft-mode condition (47). For large
�Uc1 is also large and therefore the parameter κ̄ has to be
small. Expanding �̄ and the elliptic integrals in powers of κ̄

we get

�

8t
∼ 1

κ̄3

(
1 − 1

8
κ̄2

)
(50)

FIG. 8. Critical behavior of the order parameters for the ionic
Hubbard model at Uc1 for two different values of �. Full lines
are numerical data, dashed lines represent the analytical results of
Eqs. (A11) and (A12).

together with

Uc1

8t
∼ 1

κ̄3

(
1 − 3

8
κ̄2

)
(51)

and therefore

Uc1

�
∼ 1 − 1

4
κ̄2 ∼ 1 −

(
t

�

) 2
3

. (52)

We conclude that the size of the intermediate region steadily
grows and diverges for � → ∞,

Uc2 − Uc1 ∼ (t2�)
1
3 . (53)

Coming back to the fidelity susceptibility (see Fig. 5) we
recall that for the ionic Hubbard model (t↑ = t↓) we found
two peaks, one at Uc2 with a similar shape as that found for
the mass-imbalanced case and one at Uc1 with a very different
form. When approaching Uc1 from above we find a divergence
characteristic of a second-order phase transition. This is not
seen when approaching Uc1 from below. We can readily
understand this interesting result from Eq. (33), because for
U < Uc1 the singularity due to the first factor (triggered by the
soft mode) is compensated by the second factor and we get

d�̄

dU
= (1 + 4UĀ)−1 �̄ − �

U
. (54)

Does the peculiar behavior of the fidelity susceptibility
for U < Uc1 recur in other quantities, for instance in the
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staggered magnetic susceptibility? To calculate the response
to a staggered magnetic field we add the perturbation

H ′ = −h

2

∑
iσ

(−1)iσniσ (55)

to the Hamiltonian (1). Its expectation value with respect to
the mean-field ground state is

〈H ′〉 = Lh

8πt

∑
σ

σ�σκσK(κσ ) (56)

and the derivatives with respect to the gap parameters are

∂

∂�σ

〈H ′〉 = LhσAσ . (57)

Therefore the gap equations read

�↑ = � − h − U

2πt
�↓κ↓K(κ↓),

(58)

�↓ = � + h − U

2πt
�↑κ↑K(κ↑).

We seek a solution as in Eq. (44) where �̄ is the gap parameter
for h = 0. For an infinitesimal value of h we find

ησ = − σh

�̄(1 − 4U�̄)
. (59)

The staggered magnetic response is measured by the suscep-
tibility

χst := lim
h→0

1

h
[δρs(h) − δρs(0)]

= −2Ā�̄ lim
h→0

η↑ − η↓
h

= 4Ā2

λ−
. (60)

The eigenvalue λ− = Ā(1 − 4UĀ) vanishes as (Uc1 − U )
because Ā is finite and continuous close to Uc1. Therefore
the staggered susceptibility diverges as (Uc1 − U )−1 and does
not exhibit any anomalous behavior.

At this point we have to compare the mean-field phase
diagram of Fig. 7 with that obtained using more elaborate
methods (mentioned in Sec. III C). There is qualitative agree-
ment for the ionic phase, the location of the transition line
and even the existence of an intermediate phase. However,
the nature of both antiferromagnetic and intermediate phases
differs. While we found long-range magnetic order in both
phases, only quasi-long-range order is obtained by essentially
exact treatments for the antiferromagnetic phase. This can be
readily understood in terms of quantum fluctuations, which are
neglected in mean-field theory. However, in the intermediate
phase the ordering found both in numerical simulations and in
analytical treatments for small U is completely different from
our mean-field result; this disparity cannot be simply attributed
to order parameter fluctuations.

D. Ionic Falicov-Kimball model: t↓ = 0

For t↓ → 0 the gap equations are simplified considerably.
With the limiting behavior

�↓κ↓K(κ↓)

t↓
→ 2π (61)

the first gap equation yields �↑ = � − U , and the order
parameters are given by

δρc = 1
2 + �↑κ↑K(κ↑),

(62)
δρs = 1

2 − �↑κ↑K(κ↑).

Therefore δρc + δρs = 1, which implies ni↓ = 1 on odd sites
and 0 on even sites. We have verified, using both analytical
and numerical tools, that this mean-field solution reproduces
the exact ground state of this ionic Falicov-Kimball model,
namely the immobile particles occupy the potential minima
and the mobile particles experience an effective ionic potential
of strength � − U . Both for U < �, where δρc > δρs , and for
U > �, where δρs > δρc, the gap parameter �↑ is finite, but
for U = � it vanishes, and therefore the system is metallic
just at the critical point Uc = �. We can also easily show that
the slopes of the order parameters diverge logarithmically by
approaching the critical point. If U tends to Uc the parameter
κ↑ tends to 1. Using the asymptotic behavior of the elliptic
integrals together with Eq. (27) we find

dδρs

dU
= −dδρc

dU
∼ log

1

1 − κ↑
∼ log

∣∣∣∣ 4

U − Uc

∣∣∣∣. (63)

VI. SUMMARY AND OUTLOOK

In our study of the one-dimensional mass-imbalanced ionic
Hubbard model we have found a subtle interplay of explicit
and spontaneous symmetry breakings. We have explored in
detail the competition between two types of order, namely a
modulation of the particle density induced by the breaking
of translational symmetry and alternating magnetic order
originating from the broken SU(2) symmetry. We have limited
ourselves to the ground state at half filling (one particle per
site), using mostly mean-field theory. For given parameters
� > 0 (ionic potential strength) and t↓/t↑ �= 1 (hopping
imbalance) we found a weakly first-order transition as a
function of the on-site interaction U from a dominant density
modulation to prevailing spin order. We have interpreted this
transition in terms of an avoided criticality. Tiny steps appear
in the two order parameters at a point Uc. The transition is
very clearly seen as an infinitely sharp peak in the fidelity
susceptibility.

Due to the broken symmetries, spin-dependent band gaps
�↑ and �↓ appear, which behave very differently as functions
of U . At Uc the gap for the light particles becomes very small,
especially for large ionic potential strength �, while the gap
for the heavy particles remains large. This opens a very unusual
avenue for spin-selected transport.

For symmetric hopping the existence of an intermediate
phase is well established on the basis of advanced ana-
lytical and numerical methods. We have verified that such
an intermediate phase also appears in mean-field theory
(for large values of U ), with a second-order transition at
Uc1 and a (weakly) first-order transition at Uc2. However,
for an arbitrarily small mass imbalance the second-order
transition is replaced by a crossover and the intermediate phase
disappears.

Mean-field theory is quite generally expected to be a bad
approximation for one-dimensional systems, but in the present
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case fluctuations are strongly suppressed due to preexisting
gaps in the charge and spin excitation spectra and we expect
our phase diagram to be essentially correct. Our mean-field
result for the ground-state energy agrees to leading order in
U with perturbation theory, and it also reproduces the exact
ground state in the Falicov-Kimball limit (t↓ → 0).

The mean-field parameters �↑ and �↓, which determine the
order parameters and also the gaps in the excitation spectrum
behave very differently as Uc is approached. The gap parameter
for more mobile particles, �↑, becomes very small and jumps
to a negative value at Uc, while �↓ remains large. Interestingly,
the larger the strength of the ionic potential �, the smaller
the minimum gap reached at Uc. This value also strongly
decreases with increasing mass imbalance and tends to zero in
the Falicov-Kimball limit.

We have also discussed several limiting cases of the
model, some of which have been thoroughly investigated
in the recent past. In the limit of spin-independent hopping
our mean-field results differ markedly from results obtained
previously by large-scale numerical simulations. We attribute
this discrepancy to the fact that the single-particle term of
the Hamiltonian has ungapped spin excitations. In this case
simple perturbation theory is not applicable and mean-field
theory cannot be trusted.

For spin-dependent hopping, fluctuation effects are weak
in most parts of the phase diagram. However, they may still
be relevant close to the transition where one of the gap
parameters is very small. Therefore it would be interesting
to study the model in the region close to Uc using more
sophisticated methods, such as bosonization for small U and
the mapping onto a spin-1 model for large U (as used in
Ref. [52] for the ionic Hubbard model). This would shed more
light on the nature of this peculiar order-order transition and,
in particular, on the avoided criticality. We could also learn
how the intermediate phase found in the ionic Hubbard model
is affected by a small mass imbalance.
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APPENDIX: CRITICAL BEHAVIOR FOR THE IONIC
HUBBARD MODEL

Here we present the solution of the gap equations for the
ionic Hubbard model for U > Uc1. We use the notation �̄ for
the gap parameter at Uc1. Expanding �σκσK(κσ ) in powers of
ησ = (�σ − �̄)/�̄ we find

�σκσK(κσ ) = �̄

(
κ̄K(κ̄) +

∞∑
n=1

cnη
n
σ

)
, (A1)

where the first three coefficients are given by

c1 = κ̄[K(κ̄) − E(κ̄)],

c2 = − κ̄

2
[(1 − κ̄2)K(κ̄) − (1 − 2κ̄2)E(κ̄)], (A2)

c3 = κ̄

6
[2(1 − 3κ̄2 + 2κ̄4)K(κ̄) − (2 − 11κ̄2 + 8κ̄4)E(κ̄)].

It is convenient to introduce the dimensionless coupling
constant g = Uc1/(2πt). The soft-mode condition (47) then
implies c1 = 1/g. Using Eq. (43) we can rewrite the gap
equations (30) for U = Uc1(1 + ε) as

η↑ = −(1 + ε)η↓ − g(1 + ε)
∞∑

n=2

cnη
n
↓ − gεκ̄K(κ̄),

(A3)

η↓ = −(1 + ε)η↑ − g(1 + ε)
∞∑

n=2

cnη
n
↑ − gεκ̄K(κ̄).

Subtracting the two equations we get

(η↑ − η↓)ε + g(1 + ε)
∞∑

n=1

cn+1(ηn+1
↑ − ηn+1

↓ ) = 0. (A4)

We now use the factorization

ηn+1
↑ − ηn+1

↓ = (η↑ − η↓) pn(η↑,η↓), (A5)

where pn(x,y) are polynomials in x and y, in particular

p1(x,y) = x + y,
(A6)

p2(x,y) = 1
4 (x − y)2 + 3

4 (x + y)2.

For η↑ �= η↓ Eq. (A4) becomes

0 = ε + g (1 + ε)
∞∑

n=1

cn+1 pn(η↑,η↓). (A7)

The leading contributions in powers of η↑ + η↓ and η↑ − η↓
are

0 = ε + g
[
c2(η↑ + η↓) + c3

4
(η↑ − η↓)2

]
. (A8)

A second relation is obtained by adding the two lines of
Eq. (A3). The leading terms are

η↑ + η↓ = −g
[
εκ̄K(κ̄) + c2

4
(η↑ − η↓)2

]
. (A9)

The last two equations yield the desired relations linking the
gap parameters and ε = (U − Uc1)/Uc1 slightly above the
critical point Uc1,

η↑ + η↓ = c3 κ̄K(κ̄) g − c2

c2
2 g − c3

ε,

(A10)

(η↑ − η↓)2 = 4[1 − c2 g2 κ̄K(κ̄)]

g
(
c2

2 g − c3
) ε.
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The order parameters are closely linked to the gap parameters.
To leading order in (U − Uc1) we find

δρs ≈ �̄

4πt
c1(η↓ − η↑)

≈ �̄

Uc1

[
1 − c2 g2κ̄K(κ̄)

g
(
c2

2 g − c3
)

] 1
2 (

U − Uc1

Uc1

) 1
2

(A11)

for the magnetic order and

δρc(U ) − δρc(Uc1)

≈ �̄

4πt

[
c1(η↑ + η↓) + c2

2
(η↑ − η↓)2

]

≈ �̄

2Uc1

c2 + gκ̄K(κ̄)
(
c3 − 2c2

2 g
)

c2
2 g − c3

(
U − Uc1

Uc1

)
(A12)

for the charge modulation.
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