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It is well established that physical quantities satisfy scaling functions across a quantum phase transition with
an order parameter. It remains an open problem if there are scaling functions across a topological quantum phase
transition (TQPT) with extended Fermi surfaces (FSs). Here, we study a simple system of fermions hopping in
a cubic lattice subject to Weyl-type spin-orbit coupling (SOC). As one tunes the SOC parameter at half filling,
the system displays both type-I and type-II Weyl fermions and also various TQPTs driven by the collision of
particle-particle or hole-hole Weyl FSs. At zero temperature, the TQPT is found to be third order, and its critical
exponents are determined. Then we investigate if the physical quantities such as specific heat, compressibility,
and magnetic susceptibilities satisfy any sort of scaling across the TQPT. In contrast to all the previous cases
in quantum or topological transitions, we find that although the leading terms are nonuniversal and cutoff
dependent, the subleading terms are nonanalytic and satisfy universal scaling relations. The subleading scaling
leads to topological depletions which show non-Fermi-liquid corrections and

√
T quantum cusps. One can also

form a topological Wilson ratio from the subleading scalings of two conserved quantities such as the specific heat
and the compressibility. One may also interpret the type-I and type-II Weyl fermions as a TQPT driven by the
collision of particle-hole Weyl FSs. Experimental realizations and detections in cold-atom systems and materials
with SOC are discussed.
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I. INTRODUCTION

Quantum phase transitions with an order parameter have
been under intense investigations since the experimental
discovery of high-temperature superconductivity. It is known
that various experimental measurable physical quantities near
a quantum phase transition satisfy various universal scaling
functions at a finite temperature [1,2]. On another front,
topological phases and phase transitions without an order
parameter have also been explored since the experimental
observations of the quantum Hall effects [3]. Topological
phenomena in various fermionic systems [4,5] have come back
into focus since the more recent experimental realizations of
a new kind of insulator called topological insulators [6,7]. It
is natural to study scaling functions across various topological
phase transitions without an order parameter. There have been
previous efforts to derive leading scaling functions across
a topological quantum phase transition (TQPT) such as the
quantum Hall to insulator transition in [8,9] and that driven by
collisions of Dirac points in a honeycomb lattice [10]. All these
TQPTs can be scaled to a single point in momentum space,
so the conventional renormalization group (RG), large-N
expansion, and other methods can be applied to capture low-
energy critical fluctuations and derive the scaling functions.

Here, we study a simple system in which free fermions
hop in a cubic lattice subject to a Weyl type of spin-orbit
coupling [11]. There are experimental motivations of this
model from both cold atoms and materials, which will be
discussed in Sec. VII. As one tunes the spin-orbit-coupling
(SOC) parameters at half filling, the system displays both
type-I and type-II fermions and also various TQPTs driven by
the collision of extended particle-particle or hole-hole Weyl

Fermi surfaces (FSs). The previous RG analysis scaled to a
single Dirac point in momentum space in [8–10] does not apply
to such a situation due to the low-energy excitations around the
extended FS. Unfortunately, the previous RG analysis [12,13]
designed to deal with leading scalings around a closed and
extended FS do not apply here either due to various cone
singularities of the FS geometry at the TQPT. Intuitively, we
do not expect the physical quantities such as specific heat,
compressibility, and magnetic susceptibilities to satisfy any
leading scalings across the TQPT. However, it is important
and interesting to investigate if they satisfy any sort of scaling
different from the leading scalings. At zero temperature, the
TQPT is found to be a third-order one whose critical exponent
is determined. Then we find that in contrast to all the previous
cases in quantum and topological transitions, although the
leading terms in all these physical quantities are nonuniversal
and cutoff dependent, the subleading terms satisfy universal
scaling relations. This fact is a unique and salient feature of this
kind of TQPT with extended FS reconstructions. The sublead-
ing scaling leads to the topological depletions (TDs) which
show non-Fermi-liquid corrections and

√
T quantum cusps.

The TDs show nonanalytic behaviors in the quantum critical
regime which can be easily distinguished from the analytic
leading terms and detected experimentally. One can also form
a topological Wilson ratio from the subleading scalings of
two conserved quantities such as the specific heat and the
compressibility. One may also interpret the type-I and type-II
Weyl fermions as a TQPT driven by collision of particle-hole
Weyl FSs. We provide an intuitive classification scheme for
the TQPT in terms of the collisions of FSs in the particle-hole
and particle-particle (or hole-hole) channels, augmented by
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the associated leading or subleading scaling functions. Some
possible connections with the subleading topological entangle-
ment entropy and classical cusps in the O(3) Heisenberg model
are briefly discussed. Some possible perspectives are outlined.
Experimental realizations and detection in cold-atom systems
and materials with SOC are discussed.

II. TYPE-I WEYL FERMIONS AS A TQPT

The Hamiltonian of fermions hopping in a cubic lattice
subject to Weyl-type spin-orbit coupling in Fig. 1(a) can be
written as

H =
∑

k

hi(k)σi, i = 0,x,y,z, (1)

where σ0 is the identity matrix, σx,y,z are three Pauli matrices,
and h0(k) = −2t(cos α cos kx + cos β cos ky + cos γ cos kz),
hx(k) = 2t sin α sin kx , hy(k) = 2t sin β sin ky , hz(k) =
2t sin γ sin kz. The non-Abelian gauge parameters
(α,β,γ ) are shown in Fig. 1(b). The Hamiltonian’s
two energy bands are ε±(k) = h0(k) ± h(k), where
h(k) = √

[hx(k)]2 + [hy(k)]2 + [hz(k)]2. Since t is the
only energy scale, we choose 2t = 1 for later calculations. At
half filling μ = 0, the particle and hole FS is given by

ε±(k) = 0. (2)

It is easy to see that the particle energy is related to that
of the hole ε+(�k + �Q) = −ε−(�k), where �Q = (π,π,π ) is the
FS nesting vector which separates the particle FS from the
hole FS. It is this separation which distinguishes the TQPT
in a particle-particle or hole-hole FS from that of type-I Weyl
fermions in Fig. 2 and type-II Weyl fermions in Fig. 3, where
the particle Weyl Fermi surface (WFS) collides with the hole
WFS. It also leads to the relation between the particle density
of states (DOS) and that of the hole, D+(ω) = D−(−ω) at half
filling μ = 0.

At the cubic center (α,β,γ ) = (π/2,π/2,π/2) in Fig. 1(b),
there are eight type-I Weyl fermions located at kx = 0,π,ky =
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R(x̂, 2α)

R
(ŷ
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FIG. 1. (a) The non-Abelian gauge fields (ασx,βσy,γ σz) are put
on the three links in a cubic lattice. (b) The (α,β,γ ) parameter
space. There are one SU (2) Abelian point at the origin and
three more Abelian points in the correspondingly rotated frames

S̃U (2),˜̃SU (2),
˜̃̃
SU (2) at the edge, face, and the cubic center, respec-

tively. There are type-I Weyl fermions along the line connecting the
cubic center to the edge center and type-II Weyl fermions at the
face center. (c) The eight type-I Weyl fermions with the topological
charges N3 = ±1 at α = β = γ = π/2. See Fig. 2 for the Weyl point
explanation.
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FIG. 2. A pair of type-I Weyl fermions at (0,0,0) and (π,π,π )
with opposite topological charges is turned into a particle WFS and
a hole WFS, respectively, due to small SOC α = β = γ = θ . The
topological charges are conserved in the process. It is in the qz = 0
cross section with the energy ε as the vertical axis. Note the separation
between the particle and hole WFS by the FS nesting momentum
�Q = (π,π,π ).

0,π,kz = 0,π carrying the topological monopole charges
N3 = ±1 in Fig. 1(c). The center is the π flux (in all three

planes) Abelian point with
˜̃̃

SU (2) symmetry in the rotated
basis. It is the inversion-symmetry breaking in Eq. (1) which
leads to their existences. Its dispersion relation εI

±(�q) =
±

√
q2

x + q2
y + q2

z leads to the dynamic exponent z = 1 and a

vanishing DOS D(ω) ∼ ω2, so it is a semimetal. Conventional
scaling analysis with z = 1 in [1,2] leads to Cv ∼ T 3,χu ∼ T 2,
which can easily be distinguished from conventional Fermi-
liquid (FL) behaviors, Cv ∼ T ,χu ∼ C. Here, we focus on
rich and interesting topological phase transitions along the
three lines emanating from the eight type-I Weyl fermions.
We will focus only on the half-filling case μ = 0. Away from
the center, some or all Weyl fermions will become closed
particle or hole WFSs, as shown in Fig. 2. The WFS still
keep the topological monopole charges N3 = ±1 of the Weyl
fermions [4]. How the WFSs evolve along the three lines α =
β = γ = θ ; α = π/2,β = γ = θ ; and α = β = π/2,γ = θ

is shown in Figs. 4, 5, and 6 respectively. The WFSs satisfy∑8
i=1 N3i = 0 during the evolution. The extension of our
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FIG. 3. A type-II Weyl fermion at (0,0,π/2) and θc = 0 in Fig. 6
can be viewed as a TQPT of a particle WFS and a hole WFS. It is
in the cross section of qx = 0 or qy = 0, with qz being the vertical
axis. Under a small SOC α = β = π/2,γ = θ , it splits into a type-I
particle WFS with a charge 1 centered at (0,0,0) and a type-I hole
WFS with a charge −1 centered at (0,0,π ).
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FIG. 4. The particle WFS evolves along α = β = γ = θ for θ =
4π/9,π/3,π/4. At the QCP θc = π/3, the big WFS with N3 = 1
(blue) hits the other three small WFSs (yellow) with N3 = −1 at
six Fermi points at �Kc = (±2π/3,0,0),(0,±2π/3,0),(0,0,±2π/3).
As θ increases further, it becomes a whole (green) Fermi surface
with a total N3 = 1 − 1 − 1 − 1 = −2 charge, so it is a topologically
nontrivial FS. The hole WFS can be reached by shifting the particle
WFS by the FS nesting vector (π,π,π ).

analysis to doping cases with μ �= 0, mapping out the global
topological phase diagrams in the chemical potential μ, and
the SOC parameter space will be presented in future works.

III. THE THIRD-ORDER TQPT ALONG α = β = γ = θ AT
ZERO TEMPERATURE

In this section, we focus on the diagonal line α = β = γ =
θ in Fig. 1(b) and at half filling μ = 0. How the WFS evolves
along this line is shown in Fig. 4. Notably, there is a TQPT
driven by the collisions of the four WFSs where the colliding
four-particle WFS takes a saddle point (cone) geometry near
a Von Hove singularity (VHS) Kc = 2π/3 and the critical
SOC parameter θc = π/3. When expanding around the VHS
K = Kc + �/

√
3 and θc in Fig. 7, we get the particle energy

spectrum:

ε+(�q) = −[
� + aq2

x − b
(
q2

y + q2
z

)]
, (3)
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FIG. 5. The particle WFS evolves along α = π/2,β = γ = θ for
θ = 4π/9,π/3,π/4. The end point θ = 0 (not shown) is the zero-flux
(in all three planes) Abelian point with ˜SU (2) symmetry in the rotated
basis in Fig. 1(b). At θc = π/3, the WFS with N3 = 1 hits the one
with N3 = −1 at the two Fermi points at �Kc = (±π/2,0,0). As θ

decreases further, it becomes a whole Fermi surface (violet) with a
total N3 = 1 − 1 = 0 charge, so it is a topologically trivial FS. The
remaining four type-I Weyl fermions stay intact through the TQPT.
This should be in a different class of TQPTs than in Fig. 4. The
coexistence of the four type-I Weyl fermions and the TQPT of the
WFS is one of the unique features along this line. The hole WFS can
be reached by shifting the particle WFS by one of the two FS nesting
vectors, (0,π,π ),(π,π,π ).
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FIG. 6. The particle WFS evolves along α = β = π/2,γ = θ for
θ = 4π/9,π/4,0. The TQPT happens at the end point θc = 0, where it
becomes a corner-sharing octahedron. The hole WFS can be reached
by shifting the particle WFS by one of the four FS nesting vectors,
(0,0,π ),(π,0,π ),(0,π,π ),(π,π,π ). There are also eight straight type-
II Weyl fermions at θc = 0 shown in Fig. 3.

where � = √
3(θc − θ ) is the tuning parameter and a =

1/2,b = 3/4 + �/4.
The DOS takes the piecewise form:

D(ω) =
{

B
[
� −

√
−(ω+�)

a

]
, ω + � < 0,

B�, ω + � > 0,
(4)

where � is the momentum cutoff and B = 1
(2π)2b

. Note the
nonanalytic depletion in the DOS due to the TQPT.

From the DOS, we can evaluate the ground-state energy
and find

E ∼
{

α�2 + 1
(2π)2b

2√
a

2
15 |�|5/2 + · · · , � < 0,

α�2 + B0�
3 + · · · , � > 0,

(5)

where · · · means analytical terms or higher-order nonanalytic
terms and α and B0 are cutoff dependent. Only the leading
nonanalytic term is cutoff independent and universal. It is the
� dependence of b which leads to the background numerical
value −0.77.

At half filling μ = 0, plugging the parameters � =√
3(θc − θ ),a = 1/2,b = 3/4 + �/4 into Eq. (5) and taking

two derivatives lead to

E′′(θ,μ = 0) ∼
{
α + A0

√
θ − θc, θ > θc,

α + B0(θ − θc), θ < θc,
(6)

where the exponents ν− = 1/2,ν+ = 1 are universal and the
coefficient A0 = 0.18856 is cutoff independent and stands for
the universal contributions from a single cone of the TQPT in
Fig. 7. However, B0 is not universal and cutoff dependent.
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(a) Δ<0

qx

qy

K

(b) Δ=0

qx

qy

K

(c) Δ>0

FIG. 7. The FS geometry near the TQPT driven by the particle-
particle WFS collision at Kc = π − θc,θc = π/3 in the qz = 0 cross
section. K = π − θ = Kc + �/

√
3 is the VHS. The hole-hole WFS

collision is similar after changing the shaded regime to a vacuum.
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At half filling μ = 0, there are six particle and six hole
WFSs colliding at the same time. So in the second derivatives
of the total ground-state energy A = 12A0 = 2.262.

We performed numerical calculations on the ground-state
energy in the Brillouin zone (BZ) as shown in Appendix A:

E′′
n(θ,μ = 0) ∼

{−0.77 + An(θ − θc)ν+ , θ > θc,

−0.77 + Bn(θ − θc)ν− , θ < θc,
(7)

where subscript n stands for numerical results, the numer-
ical exponents ν+ = 0.5 ± 0.05,ν− = 1.0 ± 0.05 match the
analytical values ν+ = 1/2,ν− = 1 well and the numerical
coefficient An = 2.19 is also very close to the analytical value
A = 2.262 achieved above.

IV. SUBLEADING SCALING FUNCTIONS ACROSS
THE THIRD TQPT AT FINITE T

It was established [1,2] that near a quantum phase transition
at zero temperature, the experimental measurable physical
quantities such as single-article Green’s functions, specific
heat, compressibility, magnetic susceptibilities, etc., should
satisfy scaling functions. However, there are always low-
energy excitations around the WFS on both sides of the TQPT
in Fig. 7. It becomes problematic to apply the scaling analysis
near a quantum phase transition with an order parameter to
such a TQPT. Unfortunately, the previous RG analysis [12,13]
designed to deal with leading scalings around an extended FS
do not apply here due to the cone singularity of the FS geometry
in Fig. 7. From Eq. (3), intuitively, one can still define the
dynamic exponent z = 2 with respect to the cone singularity.
However, its physical meaning should be quite different
from that defined in the QPT with an order parameter and
symmetry breaking [1,2] and need to be carefully examined.
Indeed, we show that although the leading terms in all these
physical quantities are cutoff dependent and nonuniversal,
the subleading terms do satisfy universal scaling with z = 2,
which leads to nonanalytic and therefore non-Fermi-liquid
corrections to the leading analytic terms. They always take
the sign opposite to the leading term and therefore can be
called topological depletions.

Because z = 2, one can apply the scaling analysis in [10]
here to write down the subleading scaling function for the
specific heat and the uniform compressibility κu = χ00(�q →
0,ω = 0) for a single particle-particle (or hole-hole) cone in
Fig. 7:

Cv = π2

3
BkB(kBT )� − BkB(kBT )3/2

√
a

�i

( |�|
kBT

)
,

κu = 1

2
B� − B(kBT )1/2

√
a

�i

( |�|
kBT

)
, (8)

where i = 1,2 stands for the two sides of the transitions, � < 0
and � > 0, in Figs. 7 and 8.

Note the first term is the leading term, proportional to
the frequency (or energy) cutoff � and nonuniversal, while
the second term is the subleading term, independent of the
frequency (or energy) cutoff � and a universal function of the
scaling variable s = |�|

kBT
. Due to the opposite signs between

the two terms, the universal subleading term can be interpreted
as the topological depletion coming from the TQPT.

0Δ< 0 Δ> 0 T
0

Δ

C  /T,v κu

(a)

QC
−0T−|Δ|1/2 1/2−

(b)

C  /T,v κu

T

FIG. 8. Experimental signatures of the topological depletions
and subleading scalings. (a) The specific heat Cv/T and the
compressibility κu at a given T show a nonanalytic

√
T depletion

in the QC regime. The FS geometries in the three regimes are shown
in Fig. 7. (b) The quantum

√
T cusps in Cv/T and κu in the QC

regime in (a) as T decreases. From the ratio of the coefficients of
√

T

in the two quantities, one may also measure the universal topological
Wilson ratio RT D

W .

The general forms of the two scaling functions �i(x) and
�i(x) are evaluated in Appendix B. Here, we list only the
topological depletions in the three limiting regimes in Fig. 8
for the specific heat

CT D
v =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−π2

3
B√
a
k2
BT

√|�|, � � −kBT ,

−2.88201 B√
a
k

5/2
B T 3/2, |�| � kBT ,

−
√

π

2
Bk

1/2
B√
a

�2√
T
e
− �

kB T , � 	 kBT ,

(9)

and for the uniform compressibility,

κT D
u =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− B√

a

√|�|, � � −kBT ,

−0.536077Bk
1/2
B T 1/2
√

a
, |�| � kBT ,

−
√

π

2
Bk

1/2
B T 1/2
√

a
e
− �

kB T , � 	 kBT .

(10)

One can see both topological depletions are nonanalytic only
in the quantum critical (QC) regime in Fig. 8. However,
essentially no depletion occurs when � 	 T , and a constant√|�| depletion occurs when −� 	 T , which can be absorbed
by the leading FL contribution anyway. This fact makes their
experimental detections feasible (see Sec. VII).

One can also form the topological Wilson ratio RT D
W ( |�|

kBT
) =

k2
BT κT D

u

CT D
v

, whose values in the three regimes are

RT D
W =

⎧⎪⎨⎪⎩
3/π2, � � −kBT ,

0.186, |�| � kBT ,(
kBT
�

)2
, � 	 kBT ,

(11)

which is even independent of a and b characterizing the shape
of the cone in Fig. 8. In fact, it is also independent of the number
of cones participating in the TQPT [14], so it is universal for
all the TQPTs in Figs. 4, 5, and 6.

As shown in Appendix B, due to the [C4 × C4]D symmetry
at α = β = γ , the topological depletions of the magnetic sus-
ceptibility χxx(T ) = χyy(T ) = χzz(T ) = 1

3χ00(T ) also sat-
isfy the subleading scaling equation (10).
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V. THE THIRD-ORDER TQPT ALONG THE LINE
α = π/2,β = γ = θ AND THE COEXISTENCE OF FOUR

TYPE-I WEYL FERMIONS

At half filling μ = 0, two particle WFSs and two hole WFSs
collide at the same time at �Kc = (π/2,0,0) and θc = π/3.
The dispersion near Kc = ±π/2,θc = π/3 can also be written
as Eq. (3), where � = √

3(θc − θ ),a = 1/2,b = 5/8 − �2/8.
Using Eq. (6), we find A0 = 0.2263; then the two particle
WFSs and two hole WFSs contribute to A = 4A0 = 0.90.
Similarly, the subleading scaling functions in Eqs. (9) and (10)
need also to be multiplied by 4, but the topological Wilson
ratio (11) remains identical. As shown in Appendix B, due to
the nonconservation of the spins, only the sum over the spin
components

∑
i χ

ii(T ) = κu in the magnetic susceptibilities
satisfies the subleading scaling equation (10).

We also performed numerical calculation in the whole BZ:

E′′
n(θ,μ = 0) ∼

{
−0.224 + An(θ − θc)ν+, θ > θc,

−0.224 + Bn(θ − θc)ν− , θ < θc,
(12)

where An = 0.861 is quite close to the analytic value A =
4A0 = 0.90.

Coexistence of four type-I Weyl fermions

As shown in Fig. 5, there are also four type-I
Weyl fermions located at (0,0,π ), (0,π,0), (π,0,π ),
(π,π,0), with the anisotropic dispersion εI

± = −[ 1
2 (q2

z −
q2

y ) ∓
√

q2
x + sin2 θ (q2

y + q2
z )]. They remain intact through the

TQPT, so they just act as four spectators. From the simple
scaling analysis with z = 1, their contributions to the specific
heat are Cv ∼ T d/z ∼ T 3, which is analytic and subleading to
the topological analytic depletion Cv ∼ T d/z ∼ T 3/2 in the QC
regime due to the third-order TQPT. Furthermore, it cannot be
distinguished from the analytic T 3 FL corrections. However,
they do contribute to the surface Fermi arcs and associated
chiral anomalies in the transport properties. How the TQPTs
in the bulk in Fig. 5 interfere with the surface Fermi arcs needs
to be investigated in a separate publication.

VI. THE FIFTH-ORDER TQPT ALONG THE LINE
α = β = π/2,γ = θ AND THE EIGHT

TYPE-II WEYL FERMIONS

How the FS evolves along this line is shown in Fig. 6. As
shown in Fig. 6, there is a TQPT at the π flux (in the XY

plane) Abelian ending point θc = 0 with ˜̃SU (2) symmetry in
the rotated basis in Fig. 1(b). At half filling μ = 0, all four
particle WFSs and four hole WFSs collide at the same time
at θc = 0. Near �Kc = (π/2,0,0),θc = 0, the dispersion can
also be written as Eq. (3), where � = −θ2/2,a = 1/2,b =
1/2 + �/2. Note the quadratic dependence of � on the SOC
tuning parameter θ . Plugging these parameters into Eq. (5),
we find

E ∼ 1

15π2
|θ |5 + · · · , (13)

where · · · indicates leading analytical terms. Taking five
derivatives to get rid of the leading analytic terms

leads to

d5E

dθ5
∼ 8

π2
sgnθ. (14)

It shows that the transition is a fifth-order one. Because all four
particle WFSs and four hole WFSs collide at the same time,
A = 8A0 = 64

π2 . Similarly, the subleading scaling functions in
Eqs. (9) and (10) also need to be multiplied by 8, but the
topological Wilson ratio (11) remains the same.

Type-II Weyl fermions at α = β = π/2,θ = 0 as a TQPT

One new feature at the TQPT θc = 0 is that in addition to
the particle-particle and hole-hole WFS collisions, the particle
WFS also touches the hole WFS shown in Figs. 6 and 3;
such a cone structure between the particle WFS and the
hole WFS is nothing but a special case of the type-II Weyl
fermions discussed in [15]. Shown in Fig. 3 is essentially
a three-dimensional (3D) version of two-dimensional (2D)
Dirac fermions. In the 2D case, it is known [16] that there are
four Dirac fermions at α = β = π/2 with topological charges
1,−1,1,−1 at the four time-reversal-invariant momenta
(0,0),(π,0),(π,π ),(0,π ). Now adding the third dimension
without putting any SOC along it will change the four Dirac
fermions into the eight type-II Weyl fermions at the eight mo-
menta, (0,0, ± π/2),(π,0,±π/2),(π,π,±π/2),(0,π,±π/2),
shown in Fig. 6. Their topological charges are determined
by the projections onto the (kx,ky) plane, independent of
the kz component and so are still given by 1,−1,1,−1
at the four projections on the (kx,ky) plane: (kx,ky) =
(0,0),(π,0),(π,π ),(0,π ).

Without losing any generality, we look at the type-II Weyl
fermion’s dispersion at (0,0,π/2):

εII
± (�q) = −[ − qz ∓

√
q2

x + q2
y

]
, (15)

where the plus and minus signs corresponds to the particle
and hole WFSs shown in Fig. 3. At μ = 0, taking the minus

sign leads to the particle WFS −qz �
√
q2

x + q2
y , which takes a

cone structure near (0,0,π/2). Taking a plus sign leads to the

hole WFS qz �
√
q2

x + q2
y , which also takes a cone structure

above the particle cone shown in Fig. 3. Now putting the SOC
γ = θ along the third direction, any small θ immediately opens

a gap to both the particle WFS −qz �
√
θ2 + q2

x + q2
y near

(0,0,0) and the hole WFS qz �
√
θ2 + q2

x + q2
y near (0,0,π )

with the dynamic exponent z = 1 in Fig. 3. At the same time,
the four particle WFSs split with the form (3) with the dynamic
exponent z = 2. The four hole WFSs also split at the four
FS nesting momenta. When θ gets close to π/2, the particle
and the hole WFSs shrink to a small sphere with q2

x + q2
y +

q2
z = (π/2 − θ )2 shown in Fig. 2. At θ = π/2, they shrink to

the type-I Weyl fermion shown in Fig. 1. Although a type-I
fermion is a semimetal, in the type-II Weyl fermion, both the
extended particle and hole WFSs add together to contribute to
a finite DOS D(ω) ∼ �2 − αω2 with a possible topological
depletion in DOS of ∼αω2, so it is a metallic phase [17]. For
tilted type-II Weyl fermions in [15], α > 0. However, for the
special straight type-II Weyl fermions in Fig. 3, α = 0.
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From the simple scaling analysis, the eight type-II Weyl
fermions with z = 1 contribute to the specific heat CD

v ∼ αT 3,
which is subleading to the topological depletion CD

v ∼ T 3/2

due to the fifth-order TQPT in the QC regime. In fact, as
stated above, for the straight type-II Weyl fermions, even
the coefficient α = 0, so it does not even have a topological
depletion to CD

v ,χD
u .

VII. EXPERIMENTAL REALIZATIONS AND DETECTIONS
IN COLD ATOMS AND MATERIALS

The Hamiltonian (1) of free fermions hopping in a cubic
lattice subject to a Weyl type of spin-orbit coupling can be
achieved by loading cold atoms in a cubic optical lattice.
Indeed, recently, 2D SOC was experimentally implemented
in the fermion 40K gas [18,19]. Soon after, using an optical
Raman lattice scheme, the authors of the experiment in [20]
realized the Rashba SOC of spinor bosons with tunable (α,β)
in a square lattice. An optical lattice clock scheme [21]
was proposed to generate a 2D SOC in an optical lattice; it
has the advantage of suppressing the possible heating issue.
Most recently, by using the most magnetic fermionic element,
dysprosium, to eliminate the heating due to the spontaneous
emission, the authors in [22] created a long-lived SOC gas
of quantum degenerate atoms. The long lifetime of this
weakly interacting SOC degenerate Fermi gas will facilitate
the experimental study of quantum many-body phenomena
that manifest at longer time scales. The heating issues with
fermions may be more serious than those with spinor bosons.
However, the TQPTs in Figs. 4, 5, and 6 are for noninteracting
fermions; they are essentially single-particle properties, so the
heating issues should be manageable in current cold-atom
experiments with fermions.

Of course, all experiments are performed at finite tempera-
tures which are controlled by the topological phase transitions
at T = 0 in Figs. 4, 5, and 6. The TQPTs do not survive at
finite T > 0 but become the three crossover regimes shown
in Fig. 8. The crossover temperature can be estimated as T ∼
� ∼ t ∼ 3 nK, which is easily experimentally reachable with
the current cooling techniques [23,24], so the

√
T quantum

cusp behaviors in Cv/T ,κu, and the universal topological
Wilson ratio in Fig. 8, could be detected by the specific-heat
measurements [25,26], in situ measurements [27], and the
compressibility κ measurements [26]. The change in the FS
topology across the TQPTs in Figs. 4, 5, and 6 and in the
type-I Weyl fermions in Fig. 2 and type-II Weyl fermions in
Fig. 3 can be monitored by the momentum-resolved interband
transitions [28] and the band-mapping technique developed
in [20].

As shown in Figs. 4, 5, and 6, type-I fermions are quite
common and robust in this simple SOC model. However,
the type-II fermions seem quite restricted; also only straight
type-II fermions different from the tilted type-II proposed
in [15] can be realized. Subleading scaling functions in Eqs. (9)
and (10) can be easily extended to the type-II Weyl fermions
with z = 1 in these materials. Unfortunately, the topological
depletion ∼T 3 is analytic and cannot be distinguished from
the FL corrections, which are also T 3. As noted above,
there is no such topological depletion for the straight type-II

fermions. Type-I Weyl fermions have been discovered in
several materials [29–33]. Type-II Weyl fermions [15] also
seem to have been found in a few materials, although there
are still quite controversial experimental interpretations on the
number of bulk type-II Weyl fermions and associated surface
Fermi arcs [34,35]. Topological Lifshitz transitions happen in
all these type-I and type-II Weyl fermion materials. Although
they may not be described precisely by the Hamiltonian (1),
they should be in the same topological classes as those in
Figs. 4, 5, and 6. So the results achieved in this paper should
also apply to the topological Lifshitz transitions in these
noninteracting or weakly interacting materials.

VIII. DISCUSSIONS AND CONCLUSIONS

We may classify the FS topologies at half filling in terms
of topological phase transitions and associated leading or
subleading scaling functions. There are two kinds of TQPTs:
(1) the first one is between a particle and a hole, which leads
to type-I and type-II fermions. (a) Type-I Weyl fermions
are relativistic, have closed particle or hole FSs with the
DOS D(ω) ∼ ω2, and satisfy leading analytic scaling with
the dynamic exponent z = 1. (b) Type-II Weyl fermions are
nonrelativistic, have extended open particle and hole FSs with
the DOS D(ω) ∼ �2 − αω2, and satisfy subleading analytic
scaling with the dynamic exponent z = 1. (2) The second one
is the TQPT between a particle and another particle (or a hole
and another hole) through a cone singularity, has extended
FSs on both sides with the DOS given in Eq. (4), and satisfy
subleading nonanalytic scaling with the dynamic exponent
z = 2. Our preliminary results away from half filling show
there are new classes of TQPT with anisotropic dynamic
exponents [36]. Of course, at sufficiently large μ, there is a
quadratic band touching through a closed hole FS with the
DOS D(ω) ∼ √

ω,ω > 0,D(ω) = 0,ω < 0. It leads a metal
to Band insulator (BI) transition which satisfies a leading
nonanalytic scaling with dynamic exponent z = 2. The results
will be presented in a future publication. It would also be
interesting to look at the physical classification here from
formal K-theory classification. However, so far, the K-theory
classification assumes only the translational symmetry and
ignores the constraints from crystalline symmetries which take
the spin-orbital-coupled crystalline symmetries in Eq. (1).

Equations (9) and (10) take a form similar to the topological
entanglement entropy [37]: S = αL − γ , where the first term
is the leading nonuniversal term proportional to the length
between the boundary of the two entangled regimes, A and B.
The second term is the subleading term, independent of the
boundary and universal, called the topological entanglement
entropy γ = ln D, where D is the quantum dimension (which
is a counterpart of the dynamic exponent z here). There is also
a relative minus sign between the two terms. This suggests that
the form may be a general scaling structure across a TQPT,
in sharp contrast to the conventional leading scaling across
a conventional QPT with an order parameter and associated
symmetry breaking.

The subleading scaling behaviors in the specific heat in
Eq. (9) resemble the specific heat near the finite-temperature
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phase transition of the classical O(3) Heisenberg model [38]
Cv ∼ C − b0t

−α , where t = |(T − Tc)/Tc|,b0 > 0, and α ∼
−0.1. So the specific heat will show a maximum classical
cusp near Tc. This cusp has been precisely detected in specific-
heat experiments. This fact has also been used to determine
the anomalous Hall effect near the finite-temperature phase
transition in [39]. Here, the quantum

√
T cusp behavior in

the QC regime near T = 0 in Fig. 8 is due to the TQPT
at (T = 0,� = 0). So the mechanism of the quantum cusp
discovered in this paper is completely different than that of the
classical cusp.

As shown in Figs. 4, 5, and 6, type-I fermions are quite
common in this simple model, in contrast to the Weyl
semimetals in materials [29–33] which have only two (or four)
Weyl points if the time-reversal (or inversion) symmetry is
broken. Here, there are eight and four Weyl points in Figs. 1(c)
and 5, respectively, due to the inversion symmetry breaking.
The present paper focused on the TQPTs in the bulk. Taking a
slab geometry with two surfaces (in real space) parallel to the
(1,1,1) direction, every Fermi arc connects one +1 to one −1
monopole, so it may be interesting to investigate how the Fermi
arcs in the two surfaces connect the projections of the eight or
four Weyl points onto the two surfaces and monitor how the
Fermi arcs reconstruct across the TQPT in the bulk in Figs. 4
and 5. While eight type-II fermions seem quite restrictive,
they are realized only at the π flux in Abelian point α = β =
π/2,γ = 0 in Fig. 6. It remains unknown if there is a well-
defined surface Fermi arc associated with these eight straight
type-II fermions.

In terms of scaling functions, the TQPT in Figs. 4, 5, and 6
should all be in the same universality class. The topological
Wilson ratio is even identical. However, the main difference
is that the WFS is still topologically nontrivial, carrying a
topological charge N3 = −2 after the TQPT in Fig. 4, but
becomes trivial in Figs. 5 and 6. It seems the scaling functions
near a single cone may not reflect the total topological charges
carried by the WFS. Different TQPTs may be described by the
same set of scaling functions. However, the total coefficient
A does depend on the global topology of the WFS which is
related to N3.

Due to the vanishing of the DOS at the type-I Weyl point,
a weak interaction is irrelevant. But due to the extended FS at
the type-II Weyl point and the particle-particle or hole-hole
TQPT point, any weak interaction is relevant. Following
Refs. [16,40–42], it is important to look at the effects of
both positive U and negative U . For example, U > 0 and
away from half filling, due to N3 = −2 in Fig. 4, depending
on the signs of the pairing amplitudes in different parts
of WFS, it may lead to new time reversal (TR) invariant
topological superfluids with an associated Majorana surface
mode [7].

ACKNOWLEDGMENTS

We thank Yu Yi-Xiang for early participation in the Project
and acknowledge AFOSR Grant No. FA9550-16-1-0412 for
the support. The work at KITP was supported by NSF Grant
No. PHY11-25915.

FIG. 9. The ground-state energy density and its derivatives on the
lattice versus the SOC parameter θ/π . (a) The ground-state energy.
(b) Its first-order derivative. (c) Its second-order derivative. (d) Its
third-order derivative. So the TPT at θc = π/3 is a third-order one.

APPENDIX A: NUMERICAL EVALUATION OF
ZERO-TEMPERATURE UNIVERSAL AMPLITUDE AND

CRITICAL EXPONENTS IN THE TQPTS

The ground-state energy along the line α = β = γ = θ is
calculated as

EGS(θ ) = 1

(2π )3

∫
kfilled

dk[ε+(k; θ ) + ε−(k; θ )], (A1)

whose numerical results are given in Fig. 9.
It is obvious that when θ < θc, E

′′
(θ ) ∼ (θ − θc). But when

θ > θc, it should be E
′′
(θ ) ∼ (θ−θc)ν+ with some value ν+ <1.

The best fits leads to Eq. (7) with the coefficient An = 2.19 and
the critical exponent ν+ = −(0.50 ± 0.05), which matches the
analytic values well.

We also performed similar calculations along the other two
lines, α = π/2,β = γ = θ and α = β = π/2,γ = θ , and also
found the numerical values match the analytic ones precisely.

APPENDIX B: EVALUATIONS OF FINITE-TEMPERATURE
UNIVERSAL SUBLEADING SCALING FUNCTIONS

ACROSS A TQPT

The internal energy is

U =
∫ ∞

−∞
dω

D(ω)ω

e
ω

kB T + 1
, (B1)

which leads to the specific heat:

Cv = ∂U

∂T
= kB

∫ ∞

−∞
dωD(ω)

e
ω

kB T

(e
ω

kB T + 1)2

ω2

(kBT )2
. (B2)

Plugging in the DOS in Eq. (3) leads to the first equation in the
scaling form equation (7) with the scaling variable s = |�|

kBT
,

where

�1(s) =
∫ s

0
dx

√
s − xx2ex

(ex + 1)2
+

∫ ∞

0
dx

√
s + xx2ex

(ex + 1)2
,

�2(s) =
∫ ∞

s

dx

√
x − sx2ex

(ex + 1)2
. (B3)
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However, the compressibility and magnetic susceptibility
involve the Hamiltonian, not just the DOS. From Eq. (1), one
can get the fermion Green’s function:

G(iω,k) = [iω − Hk]−1 =
∑
s=±

Ps(k)

iω − εs(k)
, (B4)

where Ps = 1
2 [σ0 + s

∑
i

hi

h
σi] are the projection operators

onto the particle-hole bands s = ±.
The dynamic density-spin susceptibility is

χμν(q,iωn) = −kBT
∑
k,iν

Tr[G(iωn + iνn,k
′)σμG(iνn,k)σ ν],

(B5)

where k′ = k + q.
Working out the sum over the Matsubara frequency leads

to

χμν(q,iωn) = −
∑
k,s,s ′

M
μν

ss ′ (k,k′)
fsk − fs ′k′

iωn − εs ′
k′ + εs

k

, (B6)

where the Fermi distribution function fsk = f (εs
k) and

M
μν

ss ′ (k,k′) = Tr[Ps(k)σμPs ′ (k′)σ ν].
In the static limit, we have

lim
q→0

fsk − fs ′k′

εs
k − εs ′

k+q

= δss ′
∂f (ε)

∂ε
+ δs,−s ′

fsk − fs ′k

2sh(k)
(B7)

and limq→0 M
μν

ss ′ (k,k′) = M
μν
ss (k,k)δss ′ , which is evaluated as

Mμν
ss (k,k) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 s hx

h
s

hy

h
s

hz

h

s hx

h

h2
x

h2
hxhy

h2
hxhz

h2

s
hy

h

hxhy

h2

h2
y

h2
hyhz

h2

s
hz

h

hxhz

h2
hyhz

h2

h2
z

h2

⎞⎟⎟⎟⎟⎟⎟⎠. (B8)

Because the particle and hole WFSs collide at momenta
differing by �Q = (π,π,π ), in extracting nonanalytic con-
tributions, one can drop the mixing between particle and

hole WFSs and focus on just one collision cone between
the particle-particle or hole-hole WFS. Then a single cone
compressibility is

κu(T ) = χ00(T ) = −
∫ +∞

−∞
dωD(ω)

∂

∂ω

1

e
ω

kB T + 1
. (B9)

Plugging in the DOS in Eq. (3) leads to the second equation
in the subleading scaling form equation (7), where

�1(s) =
∫ s

0
dx

√
s − xex

(ex + 1)2
+

∫ ∞

0
dx

√
s + xex

(ex + 1)2
,

�2(s) =
∫ ∞

s

dx

√
x − sex

(ex + 1)2
. (B10)

From Eq. (B8), one can also read the single-cone spin
susceptibility:

χij (T ) = −
∫

d3k
hihj

h2

∂

∂ω

1

e
ω

kB T + 1

∣∣∣∣
ω=ωs (k)

, (B11)

where i,j = x,y,z.
Since hi is an odd function of k, we have χij (T ) =

δijχ
ii(T ). Using the identity h2 = h2

x + h2
y + h2

z , we get the
following sum rule for the subleading scaling which holds for
any (α,β,γ ): ∑

i

χ ii(T ) = κu. (B12)

Indeed, like in the theoretical evaluations and experimental
detections of the coherence length in a SOC system [43],
because the spin is not conserved, we expect only that the
average over all the spin components satisfies the subleading
scalings.

However, the enlarged [C4 × C4]D symmetry at α = β =
γ = θ dictates

χxx(T ) = χyy(T ) = χzz(T ) = 1
3χ00(T ), (B13)

which also satisfies the subleading scaling individually.
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