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Effective field theory of an anomalous Hall metal from interband quantum fluctuations
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We construct an effective field theory, a two-dimensional two-component metallic system described by a
model with two Fermi surfaces (“pockets”). This model describes a translationally invariant metallic system
with two types of fermions, each with its own Fermi surface, with forward scattering interactions. This model,
in addition to the O(2) rotational invariance, has a U(1) × U(1) symmetry of separate charge conservation for
each Fermi surface. For sufficiently attractive interactions in the d-wave (quadrupolar) channel, this model has
an interesting phase diagram that includes a spontaneously generated anomalous Hall metal phase. We derive
the Landau-Ginzburg effective action of quadrupolar order parameter fields which enjoys an O(2) × U(1) global
symmetry associated to spatial isotropy and the internal U(1) relative phase symmetries, respectively. We show
that the order parameter theory is dynamically local with a dynamical scaling of z = 2 and perform a one-loop
renormalization group analysis of the Landau-Ginzburg theory. The electronic liquid crystal phases that result
from spontaneous symmetry breaking are studied and we show the presence of Landau damped Nambu-Goldstone
modes at low momenta that is a signature of non-Fermi-liquid behavior. Electromagnetic linear response is also
analyzed in both the normal and symmetry broken phases from the point of view of the order parameter theory.
The nature of the coupling of electromagnetism to the order parameter fields in the normal phase is non-minimal
and decidedly contains a precursor to the anomalous Hall response in the form of a order-parameter-dependent
Chern-Simons term in the effective action.
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I. INTRODUCTION

Interest in soft electronic liquids [1,2] grew out of attempts
to understand the rich phase diagram of the cuprates, which
host high-temperature superconductivity [3]. This approach
draws its inspiration from classical soft condensed matter.
Specifically, classical liquid crystals where competing orders
and entropic gains from broken translational and/or rotational
symmetries can lead to a plethora of energetically competitive
phases. Electronic liquid crystal phases, the quantum analogs
of classical liquid crystals, have been confirmed in several
electronic condensed matter systems such as in quantum
Hall fluids [4,5], stripe and nematic phases in the cuprate
superconductors [2,6], and the iron-based superconductors [7],
and in S3Ru2O7 [8].

Among the many possible soft electronic phases, there are
those electron fluids that retain their translational symmetry
but break orientational isotropy either spatially [9–11] and/or
internally, i.e., the spin degree of freedom [12–14] or a
band (“pseudospin”) degree of freedom [15]. From the weak-
coupling perspective, this order is driven by a tendency of
the Landau Fermi liquid to develop a Pomeranchuk instability
[16]. Near the transition point into an electronic liquid crystal,
the soft modes [17] of the theory are shape distortions of the
Fermi surface(s) (FS) that may be mixed with internal degrees
of freedom [12,13]. Moreover, the spontaneous symmetry
breaking of the orientational isotropy leads to non-Fermi-
liquid behavior [9] due to Landau damping of the particle-hole
soft collective modes near the FS.

In this paper, we revisit a simple model introduced in Ref.
[15] of a soft 2D electron metal that has an interaction-driven
unquantized anomalous Hall effect [18]. In its simplest form,
the model consists of a 2D metal with nearly degenerate orbital
degrees of freedom with two FSs nested inside each other

with forward scattering attractive interband interactions in the
d-wave channel. This simple model may also be realized in a
strongly layered metallic system in a perpendicular (Zeeman)
magnetic field with an easy-plane magnetic anisotropy with
quadrupolar exchange interactions. In this case, the two
species of electrons are labeled simply by the spin projection
and the forward scattering interactions are the XY quadrupolar
exchange interactions. The soft modes can also be thought of as
“nematic Stoner excitations”, which mediate residual forward
XY -exchange scattering in the l = 2 partial wave channel
after the establishment of ferromagnetism. Here we analyze
this soft electronic liquid using weak coupling perturbation
theory in the vicinity of its quantum critical point within the
Hertz-Millis approach [19,20]. Due to the XY -exchange-type
fluctuations, which are interband and gapped in character, the
critical theory is that of a nonrelativistic boson with z = 2
dynamical scaling exponent. Throughout this paper we will
use the terminology of a pseudospin model but the translation
to other cases is straightforward.

The mean-field theory phase diagram of this model has
three phases: normal metal and two broken-symmetry states
(dubbed α1 and β1 in Ref. [15]) representing a nematiclike
state (α1), which is invariant under a rotation by π/2 followed
by an orbital exchange, and an anomalous quantum Hall metal
(β1) with a spontaneously broken time-reversal invariance.
All three phases are gapless. In this work, we will consider
the effects of quantum fluctuations about these mean field
results. To this end we derive an effective low-energy field
theory of the soft collective modes in the normal phase near
the quantum phase transition to the α1 and β1 phases. At the
level of a one-loop renormalization group (RG) treatment, we
find that the three phases meet at a quantum tricritical point.
We further investigate the electromagnetic response of these
phases. The main results of this paper that follow from this
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analysis are the electromagnetic linear response kernels that
contain the direct coupling between the electromagnetic gauge
field and the soft quadrupolar modes (at quadratic order) near
the critical point of the theory. We show that the Ward identities
for the electromagnetic U(1) gauge symmetry are necessarily
satisfied. The nonminimally electromagnetic coupling to the
soft quadrupolar modes has a subtle structure but yields in
the β1 phase the intrinsic anomalous Hall effect in the form
of a Chern-Simons term for the order-parameter fields with
an unquantized coefficient (as expected for a gapless system).
Previously, the anomalous Hall conductivity was determined
only in the dc limit within the self-consistent mean-field
approximation [15].

The paper is organized as follows. In Sec. II, we define
the model, its various symmetries and coupling to electro-
magnetism. In Sec. III, we briefly discuss the effective action
for the quadrupolar XY -exchange bosons whose derivation
is included in Appendix A. Next, in Sec. IV, the symmetry
broken phases are discussed in detail from the point of the
view of the effective action. This is followed up with an RG
analysis in Sec. V that leads to a schematic phase diagram,
which takes into account of quantum fluctuations at one-loop
order. The electromagnetic linear response is addressed in
Sec. VI with special attention placed on the Ward identities.
In Sec. VII, we briefly comment on the effects of breaking the
U(1) symmetry of the relative phase down to a Z2 invariance.
Possible experimental realizations and material candidates
are proposed in Sec. VIII. We summarize and discuss the
implications of our findings in Sec. IX.

II. FERMIONIC MODEL

We begin with the model of Ref. [15] described here
as a (2+1)-dimensional action of two split Fermi liquids
that contains only a single XY -exchange interaction in the
quadrupolar (l = 2) partial wave channel, which we minimally
couple to probe electromagnetic (EM) fields (A0,A),

S[ψ†,ψ,A] =
∫

d3xL0 +
∫

d3x

∫
d3x ′Lint, (2.1a)

L0 = ψ†
α

[
(D0 + ξ (−iD)δαβ + vF �σz

αβ

]
ψβ, (2.1b)

Lint = 1

2
f (x − x′)δ(x0 − x ′

0)
∑
i=1,2
μ=x,y


μi(x)
μi(x
′).

(2.1c)

Coupling to EM proceeds with the operators D0 = ∂0 − eφ

and D = ∇ + ieA(x) that are covariant derivatives [21] acting
on (2+1) Euclidean space-time coordinates x = (x0,x). In this
paper, we focus only on the T = 0 zero-temperature limit. This
model may be realized in itinerant ferromagnets, spintronic
half-metal devices, or 2D bilayer materials. These possibilities
are discussed in full in Sec. VIII.

First, we describe terms in the free Lagrangian L0 followed
by the terms in the interaction Lint. The function ξ (k) =
ε(k) − εF is the reduced energy with dispersion ε(k) and
Fermi energy εF . The fermionic bands are uniformly split
by an energy difference of 2vF � in an otherwise isotropic
energy-momentum dispersion ξ (k). In one interpretation of the
model the different 1,2 bands of ψ are identified with physical

spin-1/2 polarizations, then 2vF � is a Zeeman splitting. The
bands have equal Fermi momenta kF and Fermi velocities vF

when � = 0. In particular, vF and the effective mass m are
related to ξ (k) by

∂aξ (k)|kF
= vF k̂a, ∂2

abξ (k)|kF
= 1

m
δab. (2.2)

In Lint, the field operators 
μi mediate an XY -exchange
interaction between the energy split fermionic bands and carry
an additional l = 2 quadrupolar orbital angular momentum.
Thus special care needs to be given to the nature of the
coupling of the interaction terms to electromagnetism. The
gauge invariant composite quadrupolar field operators 
μi are
given in terms of fermionic bilinears as


μi(x) = ψ†
α(x)Oμi

αβ(−iD)ψβ(x), (2.3a)

O
μi
αβ(−iD) = 1

k2
F

σ
μ
αβτ i

ab(−i
↔
Da)(−i

↔
Db), (2.3b)

or in k space when A = 0,


μi(q) =
∑

k

ψ
†
α,k−q/2 O

μi
αβ(k) ψ

†
β,k+q/2, (2.4a)

O
μi
αβ(k) = 1

k2
F

σ
μ
αβτ i

abkakb, (2.4b)

where the matrices τ 1 ≡ σ z,τ 2 ≡ σx are the invariant tensors
of the l = 2 quadrupole (d-wave) channel viz. τ 1

abpapb =
p2

1 − p2
2 and τ 2

abpapb = 2papb. The division by k2
F , where kF

is a Fermi momentum, is meant to make O
μi
αβ dimensionless

[22]. The operator
↔
D ≡

↔
∇ + ieA ≡ 1

2 (
→
∇ −

←
∇) + ieA (2.5)

is the symmetrized covariant derivative operator, which is
convenient for defining explicitly Hermitian velocity (vertex)
operators. A similar coupling to electromagnetism within the
quadrupolar density operator is also found in the context of
quadratic semimetals and fractional quantum Hall systems
[23,24].

Note that the repeated summation convention is implied
and the earlier greek indices α,β = 1,2 vary over the different
fermionic bands, while the earlier latin indices a,b sum over
the spatial coordinate x1,x2 directions. The other set of the
greek and latin indices are associated to symmetries. The later
greek indices μ,ν = x,y are taken to vary over the x,y basis
of the Pauli spin-1/2 matrices and can be considered as an
internal XY -isospin or pseudospin degree of freedom. While
the later latin indices i,j = 1,2 are associated to the two real
l = 2 quadrupolar harmonic basis functions ei(k) = τ i

abk̂ak̂b

such that e1(k) = cos(2θk) and e2(k) = sin(2θk).
The 
μi(x) fields mediate the XY pseudospin-exchange

interaction between the two bands, and we take the Landau
interaction potential f (x) for this partial wave to be attractive,
f (x) < 0, with a Lorentzian profile in momentum space of the
form

f (q) = f (0)

1 + κ|f (0)||q|2 . (2.6)

The parameter κ > 0 is the range of this potential.
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We next describe the symmetries of 
μi . The composite
quadrupolar field 
μi , which is a tensor in two indices μ

and i, transforms under the global action of a O(2)iso ×
O(2)rot symmetry group which acts on the “left” and the
“right” of the matrix valued field 
μi . Moreover, the total
action Eq. (2.1) is globally O(2)iso × O(2)rot invariant when
translated appropriately into a group action on ψα . It will be
convenient to regard 
μi as being composed of two real XY

vectors according to �
i = (
xi,
yi)T , i = 1,2. Furthermore,
the angle of the vector �
i relative to the X axis is the phase
difference between the fermionic fields ψ1 and ψ2 in the ith
quadrupolar channel. In the case that the fermionic bands 1
and 2 correspond to physical spin polarizations of Sz, then
�
i is the spin-1/2 polarization in the xy plane for the l = 2
partial wave channel, which is part of the spin-triplet channel
[13]. For this paper, we have chosen to focus only on the
O(2)iso × O(2)rot symmetric model although Ref. [15] had also
considered broken O(2)iso generalizations, which break the
“relative phase” symmetry, leading to more nuanced electronic
liquid crystal phases (see below). The physical transformations
of the symmetry group O(2)iso × O(2)rot and time reversal are
described as follows.

O(2)iso symmetry. The action of O(2)iso on the XY vectors
�
1, �
2 is comprised of a proper rotation


μi → [(cos ϕ)δμν − (sin ϕ)εμν]
νi (2.7)

and a parity transformation

(
xi,
yi) → (
xi, − 
yi), i = 1,2, (2.8)

where εμν is the totally antisymmetric Levi-Civita symbol.
The first continuous transformation is a U(1) ∼= SO(2) phase
rotation by an amount ϕ between the ψ1 and ψ2 bands, while
the second is a discrete complex conjugation of their relative
phase. Note that εμν is invariant under SO(2) but is odd
under the parity transformation. Also, this O(2) symmetry
is a broken symmetry of U(2), which is present in the free
part of the theory of Eq. (2.1b) whenever � = 0. Lastly, the
combination of the total U(1) phase rotation symmetry of both
bands—which preserves total electric charge—and the relative
U(1) phase symmetry leads to the separate U(1) phase rotation
symmetries in each band. Hence the model enjoys separate
number conservation in each band.

O(2)rot symmetry. The other symmetry group factor corre-
sponds to an isometric transformation in Euclidean space E2

and acts on the quadrupolar or d-wave multiplet ( �
1, �
2) as a
proper rotation,


μi → [(cos 2θ )δij − (sin 2θ )εij ]
μj , (2.9)

and a mirror reflection,

(
μ1,
μ2) → (
μ1, − 
μ2), μ = x,y, (2.10)

where εij is the Levi-Civita symbol now acting on l = 2
orbital space and θ is the angle of rotation. Note that
being a quadrupolar density, 
μi is invariant under spatial
inversion, but a nonzero expectation value of it may break
reflection symmetry [15]. Like in the previous symmetry, εij

is rotationally invariant but is odd under mirror reflection.
When this symmetry is broken spontaneously, a nematic fluid
phase is achieved. Due to the continuous O(2)rot group, this is
an XY -nematic as opposed to an Ising nematic in which C4 is
the broken symmetry.

Time reversal. The transformation properties of 
μi under
time-reversal depend crucially on how the fermionic bands
are physically interpreted. In the case of spinless fermions
and an internal isospin symmetry, time reversal manifests as
a complex conjugation K on ψα which results in a mirror
reflection, cf. Eq. (2.8), of �
i . The inversion of momenta
(k → −k) does not affect 
μi because it is inversion invariant.
However, when ψα is taken to be spin-1/2 with the 1 and 2
bands having a well defined Sz eigenvalue, time reversal on
ψα → [iσ y]αβKψβ produces �
i → − �
i as an inversion in
XY -vector space and � → −� in the Zeeman splitting. Thus
only in the case of an internal isospin symmetry and where

yi = 0 for i = 1,2 is �
1,2 time-reversal invariant. The action
of Eq. (2.1) is, however, always time-reversal invariant.

One last symmetry to comment on is the U(1) electro-
magnetic gauge symmetry. Despite 
μi being gauge-invariant
by definition, it can still depend nontrivially on the vector
potential A because the Fermi field ψ is not gauge invariant.
As we shall see, this leads to subtle vertex couplings between
Aa, psiα , and 
μi through the quadrupole operator of
Eq. (2.3).

The action of O(2)iso × O(2)rot then endows 
μi with
isospin in the internal XY space and an orbital angular of
momentum of 2h̄ from its d-wave character. The term isospin
is an appropriate one in this instance because 
μi facilitates
interband transitions in analogy to pions in nuclear physics.
In the instance that the isospin corresponds to physical spin
polarizations of Sz, these interband transitions are literally spin
flips [25]. We should also remark that a Hartree-Fock treatment
[15] of the model of Eq. (2.1) shows that a nonzero 〈
μi〉 �= 0
will lead to an XY -isospin texture on the mean-field corrected
Fermi-surfaces of ψ . More precisely, 〈
μi〉 will determine the
strength and orientation of this isospin texture. The specific
O(2)iso × O(2)rot symmetry broken phases and their properties
will be the focus of the subsequent sections.

Next, we perform a Hubbard-Stratonovich (HS) decoupling
in the 

 channel inside the interaction term. This produces
the following HS decoupled action:

Stot[ψ
†,ψ,�,A] = S0[ψ†,ψ,A] + S1[�] + S2[ψ†,ψ,�,A],

(2.11a)

S0[ψ†,ψ,A] =
∫

d3x L0, (2.11b)

S1[�] =
∫

d3x

∫
d3x ′ L1, (2.11c)

L1 = −1

2
f −1(x − x′)δ(x0 − x ′

0)�μi(x)�μi(x
′),

(2.11d)

S2[ψ†,ψ,�,A] =
∫

d3x 
μi(x)�μi(x), (2.11e)
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where �μi(x) is the bosonic HS field and

f −1(r) =
∑

q

1

f (q)
eiq·r, f (r) =

∑
q

f (q)eiq·r. (2.12)

Note that �μi has the same (Cartesian) indices as 
μi and
hence transforms identically under O(2)iso × O(2)rot. Thus
�μi carries the same types of conserved quantities as 
μi ,
i.e., l = 2 orbital angular momentum, and XY isospin. Other
decoupling channels may also be considered but lie beyond the
intended scope of this work. Here we expressly focus on the
physics of the l = 2 quadrupolar XY -exchange fluctuations
and the phases associated with these. It is, however, worth
mentioning that an account of superconducting order parame-
ters intertwined with electronic liquid phases leads to a rather
complex and rich phase diagram with a plethora of possible
phases, see, e.g., Ref. [26].

For the purposes of studying the linear EM response,
we need only expand the gauge fields (A0,A) to second
order; which is the same order as in the interaction vertex

�. This yields the following truncated expansion for the
electromagnetically coupled portions of the action,

S0[ψ†,ψ,A]

= S0[ψ†,ψ,0] +
∫

d3x
e2

2m
[ψ†

αψα]AaAa

+
∫

d3x evF

[
ψ†

α

( ↔
∂ a

|∇|
)

ψα

]
Aa−

∫
d3x e[ψ†

αψα]A0,

(2.13)

S2[ψ†,ψ,�,A]

= S2[ψ†,ψ,�,0] +
∫

d3x �μi

(−2ieσ
μ
αβτ i

ab

k2
F

)
[ψ†

α

↔
∂ bψβ]Aa

+
∫

d3x �μi

(
e2σ

μ
αβτ i

ab

k2
F

)
[ψ†

αψβ]AaAb. (2.14)

Now S0[ψ†,ψ,A] contains the conventional interaction ver-
tices between ψ and the gauge field A which includes the
(1/2m)|A|2 diamagnetic contribution. However, additional
interaction vertices arise from the S2[ψ†,ψ,�,A] functional
that linearly couples to �, while linearly as well as quadrati-
cally to A. These may interpreted as perturbative anisotropic
corrections to the group velocity and band curvature due to �.
More importantly, the presence of the σμ tensor implies that
nontrivial transitions between fermionic bands are involved
in these �-dependent vertex operators. The reason for this
can be traced back to the definition of Eq. (2.3) of the 


field. Physically, this allows the gauge field A to couple to the
distortions of the Fermi surface due to to �. This fact will prove
to be crucial in understanding the EM response properties of
this model.

Finally, we have the partition function formally expressed
as

Ztot =
∫

D�DψDψ† e−S0[ψ†,ψ,A]−S1[�]−S2[ψ†,ψ,�,A]. (2.15)

Notationally, we can compactly express the action by sup-
pressing the integrations and contraction of indices, where the
interpretation is obvious. This gives

S0[ψ†,ψ,A] = −ψ†Ĝ−1
0 ψ − eA0ψ

†ψ + evF Aψ†k̂ψ

+ e2

2m
A2ψ†ψ, (2.16a)

S1[�] = − 1

2f
��, (2.16b)

S2[ψ†,ψ,�,A] = ψ†Ô2ψ�+2eAψ†Ô1ψ�−e2A2Ô0ψ
†ψ�,

(2.16c)

where Ĝ−1
0 in the inverse free propagator and Ôn is the vertex

operator with n internal momenta operators −i
↔
∂ contracted

with the quadrupolar coupling constant στ/(kF )2. Then, upon
formally integrating-out the field [27] ψ first, we get the
partition function as

Ztot = Zψ0

∫
D� e−S1[�]eTr ln(1̂+M̂[�,A]), (2.17)

M̂[�,A] = −Ĝ0Ô2� + eĜ0A0 − evF AĜ0k̂ − e2

2m
A2Ĝ0

− 2eAĜ0Ô1� + e2A2Ĝ0Ô0�, (2.18)

where Zψ0 is the free fermion partition function, i.e.,
det[−Ĝ−1

0 ]. This then leads to the effective action

Seff[�,A] = − 1

2f
�� − Tr ln(1̂ + M̂[�,A]), (2.19)

which will be the focus of our discussion in the following
sections.

III. EFFECTIVE ACTION

Initially, we shall limit our discussion to A = 0 to focus
on the order parameter �μi , the Landau-Ginzburg effective
action, and the symmetry broken phases. We proceed to
expand Eq. (2.19) in order of perturbation and formally derive
an expression for the effective Lagrangian Leff(�,∂�) in the
same vein as Hertz-Millis [19,20] theory. The details of this
calculation which involve a single fermionic loop are presented
in Appendix A. The form of the Landau-Ginzburg effective
Lagrangian up to O(�4) is

Leff = − iβ

2
εμν�μi∂τ�νi + κ

2
∇�μi · ∇�μi + ρ

2
(�μi�μi)

+ α

4
(�μi�μi)

2 − λ

4
(εμνεij�μi�νj )2. (3.1)

The form of this Lagrangian could have been determined
purely from the requirements of O(2)iso × O(2)rot symmetry.
Note that the oddness of εμν under time reversal compensates
for the change in sign arising from ∂τ under time reversal.
However, the specific coefficients at one loop order in terms of
the microscopic theory of Eq. (2.1) have to be computed from
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a one loop calculation. These couplings are given as

r = 1

2vF �

∫ vF �

−vF �

N (ξ )dξ ≈ N (0) + (vF �)2

6
N ′′(0), (3.2a)

β = r

2vF �
, ρ = 1

|f (0)| − r, (3.2b)

α = N ′(0)2

2N (0)
− N ′′(0)

8
, λ = −N ′′(0)

24
, (3.2c)

where

N (ξ ) =
∫

d2k

(2π )2
δ(ξ − ξk) (3.3)

is the density of states (DOS) induced from the dispersion ξ (k)
and the quantity r is defined as the average DOS in the region
between the split Fermi surfaces. For stability purposes, it is
also required that α > |λ| > 0.

The free Gaussian portions of Leff are entirely local
with a dynamical scaling of z = 2 that makes the α and
λ couplings marginal in (2+1) dimensions. The coupling ρ

is relevant and controls the phase of the model such that
when ρ < 0, spontaneous symmetry breaking occurs. This
is the Pomeranchuk instability [16] from the point of view
of the fermionic theory that occurs at sufficiently negative
f (0). Noticeably absent is the dynamical term in the form of
Landau damping that is typically associated with Hertz-Millis
theories of itinerant magnetism. This can be attributed to the
gapped interband fluctuations of the microscopic interactions.
In the next section, we will introduce and discuss the different
symmetry broken phases that follow from Landau-Ginzburg
theory.

IV. BROKEN SYMMETRY PHASES

On a classical level, the theory described by Eq. (3.1)
experiences spontaneous symmetry breaking whenever ρ < 0.
The specific type of symmetry broken phase will depend on
the coupling λ, which we take here to be either positive or
negative. Notice that the symmetry group SO(2)iso × SO(2)rot

is isomorphic to U(1) × U(1), and that the form of the
dynamical term is highly suggestive that the O(2)iso plays a
more important role than O(2)rot. In fact, for the purposes
of deriving the effective action after spontaneous symmetry
breaking, we have found it useful to elevate the U(1) × U(1)
isomorphism by complexifying the fourreal components of �μi

into a C2 valued field according to

φj = �xj − i�yj , j = 1,2. (4.1)

This choice is made to simplify the form of the dynamical
term. Thereafter by rescaling time and space, and dropping
a boundary term, we have the much simplified Lagrangian
density

Leff = φ†∂τφ + ∇φ† · ∇φ + ρ φ†φ

+ α

2
(φ†φ)2 − λ

2
(φ†σyφ)2, (4.2)

where the couplings ρ,α,λ are related to the ones in Eq. (3.2)
by proportionality constants. Note that the σy Pauli matrix
here acts on the two component “spinor” φ and hence mixes

the ��1 and ��2 vectors. In particular, in the internal isospin
interpretation of O(2)iso, the operations of time reversal and
mirror reflection are now given by φ → φ∗ and φ → σ zφ, re-
spectively. In the case of the magnetic spin-1/2 interpretation,
time reversal is instead implemented as φ → −φ.

Firstly, it is easily recognized that the effective action
now describes a two component nonrelativistic boson whose
total number is conserved. Hence the route to spontaneous
symmetry breaking is very much like the physics of (bosonic)
superfluidity where the O(2)iso symmetry has been promoted
to a global U(1) charge conserving symmetry. Secondly, note
that the free Gaussian part has a U(2) symmetry, which is more
symmetric than the U(1) × U(1) symmetry of the full action
with the interaction terms. However, the U(2) symmetry is only
restored in the fine-tuned limit where λ = 0. Furthermore, the
λ-dependent term is proportional to the square of the cross
product of ��1,2 vectors according to

εμνεij�μi�νj = 2(��1 ∧ ��2) = −(φ†σyφ). (4.3)

Thus the distinguishing feature between the different possible
phases whenever λ �= 0, is whether or not 〈φ†σyφ〉 is zero or
extremal. In the following sections, we will discuss each of the
broken symmetry phases.

Given a nonzero order parameter φ0 = 〈φ〉, it will prove
convenient in our subsequent discussion to define the following
unit isospin vector:

�s = φ
†
0 �σφ0

n0
, (4.4)

where n0 = φ
†
0φ0 > 0 quantifies the symmetry breaking;

essentially, the density of condensed φ bosons. The mapping
φ0 �→ �s is simply the Hopf map of S3 → S2. Moreover, the
Hopf fiber, which is topologically S1, transforms under O(2)iso.
Hence fluctuations in the Hopf fiber are really fluctuations of
the internal XY -isospin directions, while fluctuations in �s are
a mixture of (spatial) orientational and orbital fluctuations.

A. α1 phase

Conditions that characterize this phase, whenever λ < 0,
are

φ
†
0φ0 = n0, n0 = |ρ|

α
, φ

†
0σ

yφ0 = 0, (4.5)

which also means sy = 0. This translates to collinear XY

vectors ��1 ‖ ��2 with a squared sum (| ��1|2 + |��2|2) that is
invariant under the O(2)rot rotation. In Ref. [15], this phase
was called the α1 phase by analogy with the He3 system, and
in keeping with the naming convention of Ref. [13] in regard to
spin nematics. Additional α2 and α3 phases were also defined
in Ref. [15] and they arise from explicitly broken O(2)iso

symmetry. Superficially, the α1 phase breaks time-reversal
symmetry φ0 → φ∗

0 , whenever φ0 is not real. However, this
is a “broken” time-reversal symmetry in the same vein that
an ordinary BCS s-wave superconductor breaks time reversal
whenever the order parameter is complex valued. The key point
is that, one can always transform using the O(2)iso × O(2)rot

group to choose a “gauge” where φ0 is real. Likewise, in a BCS
superconductor unless there is a topological obstruction, one
can always choose a gauge where the order parameter is real.
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FIG. 1. Visualization of the α1 phase. (a) The vacuum manifold
(thick blue line) of �s defined in Eq. (4.4), which lies on the xz great
circle of the Bloch sphere such that sy = 0. The position of �s depends
on arg(u/v) defined from Eq. (4.6). Not shown is the remaining Hopf
fiber component arg(uv) that takes values in S1. (b) The nematic
Fermi surfaces in the α1 phase with the isospin texture plotted. The
〈ψ †

kσ
x,yψk〉 texture does not wind around the Fermi surface and is

shown here as being horizontal and vanishes along the high symmetry
directions ±π/4,±3π/4.

Said another way, in the space of all symmetry broken vacua,
there exist a representative vacuum state, degenerate in energy
with all others, which is time-reversal invariant. In a similar
fashion, chiral or reflection symmetry is also preserved [15]
due to the existence of a mirror symmetric plane. However,
in the magnetic spin-1/2 interpretation, any nonzero φ0 will
always break time-reversal symmetry. Lastly, from the point
of view of the fermionic mean-field theory, the α1 phase will
exhibit quadrupolar Fermi-surface distortions but no isospin
textures that wind around the Fermi surfaces.

Next, we describe the space of broken symmetry vacua
associated to the α1 phase. Let us generally express φ0 in the
basis where σy is diagonal as

φ0 = u√
2

(
1
i

)
+ v√

2

(
1
−i

)
(4.6)

such that |u|2 = |v|2 = n0/2. The U(1) × U(1) symmetry acts
on u and v by the following phase rotations:

u �→ eiθ1u, v �→ eiθ2v, θ1,θ2 ∈ R. (4.7)

By choosing u = v, we can make φ0 manifestly time-reversal
invariant. More importantly this means that the space of vacua
is topologically a 2-torus, S1 × S1. One then predicts that
there should be two Nambu-Goldstone modes and topological
defects in the form of vortices with Z ⊕ Z charges. This
is indeed the case but the nonrelativistic form of Eq. (4.2)
and the U(2) symmetry of the free theory complicates the
broken symmetry analysis a bit. Finally, shown in Fig. 1 is a
visualization of the manifold of possible �s and an example of
a nematic Fermi surface in the α1 phase.

The derivation of the Nambu-Goldstone action is best
understood by considering the U(2)-symmetric, λ = 0, point
first. Now, taking the group quotient of U(2) by the stabilizer
of any general φ0 ∈ C2, reduces U(2) to SU(2) [28]. Since
SU(2) is topologically a 3-sphere, one naively expects that
there are three Nambu-Goldstone modes to start out with in

the λ = 0 limit. This is, however, not the case because of the
nonrelativistic symmetry and the noncommutativity of SU(2)
[29]. There are in fact two Nambu-Goldstone modes, which
satisfies the Brauner-Watanabe-Murayama [30,31] relation

nBG − nNGB = 1
2 rank ρ, (4.8)

ρij = −i〈[σ i,σ j ]〉, (4.9)

where nBG = 3 is the number of symmetry broken generators,
nNBG = 2 is the number of massless Nambu-Goldstone modes
and rank ρ = 2 is the rank of the commutator matrix of the
SU(2) Lie algebra.

To confirm this, we begin by parameterizing the order
parameter fluctuations by

φ =
√

n0 + δn

n0
ei �π ·�σφ0 (4.10)

⇒ δφ = i(�π · �σ )φ0 +
(

δn

2n0

)
φ0. (4.11)

Then we determined the symmetry-broken action [32] in the
λ = 0 limit to be

L(0)
NG = 1

2α
(�s · ∂τ �π )2 + in0[�s · (�π × ∂τ �π )] + n0∇ �π · ∇ �π,

(4.12)

which follows from an integration over the δn amplitude
fluctuations. This in turn leads to the following equations of
motion for the Nambu-Goldstone fields �π :

(
∂2
τ + 2|ρ|∇2)π‖ = 0, (4.13a)

i(�s × ∂τ �π ) + ∇2π⊥ = 0, (4.13b)

where π‖ = �s · �π and π⊥ = (1 − �s ⊗ �s)�π , are the parallel
and perpendicular isospin directions of �π with respect to �s.
Hence the π‖ field is gapless and relativistic, while the second
equation describes a single gapless nonrelativistic mode with
z = 2 dynamical scaling. To appreciate this, we can take as
a concrete example �s = ẑ, which then yields a relativistic πz

mode but produces the following complimentary equations of
motion:

i∂τπx + ∇2πy = 0, −i∂τπy + ∇2πx = 0. (4.14a)

This coupling between πx and πy modes that leads to a
single gapless nonrelativistic mode stems from their mutual
identification with conjugate momenta fields from the “Berry
phase” term in Eq. (4.12).

Returning now to the α1 phase, we include the λ < 0 term
in the effective Lagrangian which gives the following Nambu-
Goldstone action:

L(α)
NG = 1

2α
(�s · ∂τ �π )2 + in0[�s · (�π × ∂τ �π )]

+ n0∇ �π · ∇ �π + 2|λ|n2
0(�s × π )2

y. (4.15)

Remarkably, the additional λ dependent term does not remove
any of the previously two discussed gapless modes. This is so
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because the equations of motion that follow from L(α)
NG are

(
∂2
τ + 2|ρ|∇2

)
πz = 0, (4.16a)

i∂τπx + ∇2πy = 0, (4.16b)

−i∂τπy + ∇2πx = 4|λ|n2
0πx, (4.16c)

where we have again taken �s = ẑ for concreteness. Taking
another time derivative of the nonrelativistic modes gives

∂2
τ πx − ∇4πx + 4|λ|n2

0∇2πx = 0, (4.17a)

∂2
τ πy − ∇4πy + 4|λ|n2

0∇2πy = 0, (4.17b)

which results in a higher order dispersion relation in the gapless
modes πx,πy . Thus the addition of the λ < 0 dependent term
preserves the number of gapless modes and is still in agreement
with the counting relation of Eq. (4.8). This is so because
although there are now two broken symmetry generators from
the U(1) × U(1) symmetry group, the rank of (ρij ) = 0 since
the group is now Abelian. Finally, in the static limit, πx and πy

decouple in Eq. (4.16), but πx is short-ranged because of the
λ dependent term. Thus, in the vicinity of a vortex, the order
parameter winding occurs through slow gradients of solutions
to the harmonic equations ∇2πy = 0 and ∇2π‖ = 0. The latter
fluctuation is recognized as the winding of the vector �s, while
the former with the O(2)iso symmetry.

B. β1 phase

In the opposite limit, λ > 0, the order parameter is required
to satisfy

φ
†
0φ0 = n0, φ

†
0σ

yφ0 = syn0, n0 = |ρ|
α − λ

(4.18)

such that �s = (0,sy,0)T ,sy = ±1. In this instance, the expec-
tation value 〈φ†σyφ〉 is extremal and there is a Z2 degree of
freedom that determines the direction of sy . In the XY -vector
language, this corresponds to vectors that are perpendicular
(��1 · ��2 = 0) and equal in magnitude (| ��1| = |��2|). The sign
of sy determines whether or not ��1 and ��2 describes a
left-handed or right-handed system of axes. The phase is
called the β1 phase in Ref. [15], again in analogy with
the pattern of symmetry breaking in He3. Similarly to the
α phases, β2 and β3 phases are also defined in Ref. [15]
and also arise from explicitly broken O(2)iso symmetry. In
the β1 phase, time-reversal symmetry and parity symmetry
are always broken. This is because either transformation
causes the exchange sy → −sy . From the point of view of
the fermionic mean-field description, the β1 phase will not
experience a Fermi-surface distortion, but an isospin texture
that winds nontrivially around the Fermi surfaces [15]. This
produces a nonquantized Berry phase Wilson loop on the
mean-field Fermi surfaces which is the geometrical obstruction
to time-reversal and parity symmetries. A fact that gives the
β1 phase a nonzero anomalous Hall response.

The symmetry broken manifold for the β1 phase is more
constrained than the α1 and is given by

φ0 = u√
2

(
1

sy i

)
(4.19)

FIG. 2. Visualization of the β1 phase. (a) The vacuum manifold
(dark blue dots) of �s defined in Eq. (4.4), which lies on the ±y poles of
the Bloch sphere. Not shown is the remaining Hopf fiber component
arg(u) from Eq. (4.19) that takes values in S1. (b) The Fermi surfaces
in the β1 phase with the isospin texture plotted. The 〈ψ †

kσ
x,yψk〉

texture winds around the Fermi surface twice in this case.

with |u|2 = n0 and sy = ±1. The phase ambiguity in the
coordinate u and the sign choice of sy means that the total
vacuum manifold is topologically Z2 × S1. Thus one should
expect a single Nambu-Goldstone mode and the possibility
of vortices with Z2 ⊕ Z charge, and this is indeed the case.
Shown in Fig. 2 is a visualization of the manifold of possible
�s and an example of a (iso-)spin textured Fermi-surface in the
β1 phase.

The derivation of the Nambu-Goldstone action follows
closely with the α1 phase case, but with the difference that
the equilibrium density n0 is now λ dependent. The final form
of the Nambu-Goldstone Lagrangian is

L(β)
NG = 1

2(α − λ)
(∂τπy)2 + n0∇ �π · ∇ �π

+ in0 sy(�π × ∂τ �π )y + 2λn2
0

(
π2

x + π2
z

)
, (4.20)

which does indeed contain only a single relativistic Nambu-
Goldstone mode in πy . The other πx,πz modes have acquired
a mass, which is now controlled by λ > 0. Again this counting
conforms with the relation Eq. (4.8) since symmetry is reduced
to the Abelian U(1) group in this phase.

As a final point, we remark that the order parameter
manifold of the α1 phase Eq. (4.6) does not contain in it the
smaller order parameter manifold of the β1 phase Eq. (4.19)
as a submanifold. Hence, on the basis of Landau symmetry
breaking, there is a first-order transition that separates the α1

and β1 phases.

C. Overdamped Nambu-Goldstone modes

The preceding analyses superficially indicate that the
Nambu-Goldstone modes in the α1 and β1 phases are gapless,
coherent, and long-lived. This is incorrect due to a general
argument by Watanabe and Vishwananth [33], which deter-
mines a necessary criterion for the stability of such modes.
This criterion being that the broken symmetry generators,
�s · �π and πy in α1 and β1, respectively, do not commute
with the total momentum operator, and in this instance leads
to the nonvanishing l = 2 quadrupolar matrix elements at
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q = 0. In this section, we discuss the damping experienced
by these modes in the broken symmetry phases at the level of
the mean-field approximation. We show that the damping is
parametrically small in its prefactor such that Landau damping
is only experienced at very small momenta.

Generally, interband transitions lead to coherent undamped
excitations and intraband transitions lead to Landau damping.
However, in the normal phase, only interband transitions are
involved in the computation of the effective action of Eq. (3.1),
which leads to the effective actions of Eqs. (4.15) and (4.20)
after symmetry breaking. Hence they predict no damping
for their respective Nambu-Goldstone modes because only
interband transitions within the fermionic loop are involved.
Nevertheless, the presence of a nonzero order parameter
〈�μi〉 �= 0 opens up an interband channel that ultimately
produces damping for the Nambu-Goldstone modes.

The calculation of this Nambu-Goldstone damping is given
in Appendix E and we just quote here the final result. Denoting
the fluctuation correlator in the broken symmetry phase as

J (2)(q)μiνj = 〈δ�νj (−iq0, − q) δ�μi(iq0,q)〉MF, (4.21)

the intraband contribution is given to leading order by

(J (2)
intra)(q)μiνj − (

J
(2)
intra

)
(0)μiνj

≈ −2r̄ Cij lp〈�μl〉〈�νp〉
(vF �)2

⎛
⎝ |q0|√

v2
F |q|2 + q2

0

⎞
⎠, (4.22)

where we have defined the tensor

Cijlp = 1
8 (δij δlp + δilδjp + δipδjl). (4.23)

Analytically continuing to real frequencies iq0 → ω + i0+
and in the branch where s = |ω|

vF |q| < 1, yields to O(s)(
J

(2)
intra

)
(ω,q)μiνj − (

J
(2)
intra

)
(0)μiνj

≈
( −iω

vF |q|
)[

2r̄

(vF �)2

]
Cijlp〈�μl〉〈�νp〉, (4.24)

which is an imaginary self-energy correction to the correlator
〈δ�νj (−ω, − q) δ�μi(ω,q)〉.

Next, we express the Goldstone fluctuations as δ� =
iπAT A〈�〉 where {T A} are an orthonormal basis of the broken
symmetry generators and πA is the Nambu-Goldstone field.
This implies that inverse lifetime deduced from Eq. (4.24)
is of order O(〈�〉4) = O(n2

0) in terms of the Goldstone
modes π , where n0 is the density of condensed � bosons.
Comparing other terms of order O(n0) and O(n2

0) within the
effective actions Eqs. (4.15) and (4.20), we conclude that
(α1). The relativistic mode �s · �π is lightly damped when

|q|2 � r̄
(vF �)2

√
|ρ|
κβ

but eventually becomes overdamped when

|q|2 � r̄
(vF �)2

√
|ρ|
κβ

. By contrast, the mode �s × �π is always

overdamped since its equations of motion are of O(n2
0) as

well. (β1) Likewise, the relativistic πy mode is lightly damped

when |q|2 � r̄
(vF �)2

√
|ρ|
κβ

and is otherwise overdamped at lower
momentum.

Note that the fact that the damping rate is proportional to
n2

0 ∝ |ρ|2 means that it is parametrically small compared to
the leading-order n0 terms that arise from interband dynamics.

Thus, near the critical point, where |ρ| and n0 are small,
interband damping is suppressed leading to the stated lightly
damped behavior. Nevertheless, strictly speaking, the broken
symmetry phases are non-Fermi liquid in accordance to
Ref. [33].

V. RENORMALIZATION GROUP ANALYSIS

In this section, we present a renormalization group analysis
at one-loop order for the effective action of Eq. (4.2) to
determine approach to symmetry breaking from the normal
phase prior to the Pomeranchuk instability. This is relatively
straightforward given the similarity of Eq. (4.2) to a superfluid
theory [34]. What makes this possible and interesting is the
z = 2 dynamical scaling such that d = 2 becomes the upper
critical dimension. We note that the renormalization group
method can also be applied within the broken symmetry
phases [35] but we shall not pursue that matter here. At the
classical level, the normal phase would correspond to ρ � 0
or a negative chemical potential for the φ bosons.

In accordance to the z = 2 dynamical scaling, we begin by
parameterizing the space-time scaling

x → x e−u, τ → τ e−2u, φ → φ e−u, (5.1)

where u ∈ R>0. We then proceed to carry out a Wilsonian
renormalization group analysis by using a hard momentum
cutoff � to define the regularized theory. Formally, we then
divide the theory into fast and slow modes, where modes
with momentum |k| < �e−u are deemed slow and those with
�e−u � |k| < � are fast [36]. Then integrating over the fast
modes produces quantum corrections to the effective action
functional �[ϕ†,ϕ] for the slow modes ϕ. This is conveniently
done using the background field method [37] where the slow
field is the background field. Using

e−�[ϕ†,ϕ] =
∫

Dφ†Dφ exp(−S[φ† + ϕ†,φ + ϕ]), (5.2)

the one-loop order quantum contributions to � is [38]

δ�[ϕ†,ϕ] = tr
[

ln δ2
φ†φS[ϕ†,ϕ] − ln δ2

φ†φS[0,0]
]

= tr{(∂τ − ∇2 + ρ)−1M̂[ϕ†,ϕ](α,λ)}
− 1

2 tr{[(∂τ − ∇2 + ρ)−1M̂[ϕ†,ϕ](α,λ)]2} (5.3)

with the matrix operator

(M̂[ϕ†,ϕ](α,λ))ij = α[(ϕ†ϕ)δij + ϕ
†
jϕj ]

− λ
[
(ϕ†σyϕ)σy

ij + σ
y

ikσ
y

ljϕ
†
l ϕk

]
. (5.4)

These one-loop contributions correspond to the usual tadpole
or Hartree bubble, and the four point bubble diagrams that are
shown in Fig. 3. Because the propagators are U(2) symmetric,
the form of UV and IR divergences are identical to usual
Bose gas case. The only differences arise from the complicated
form of the coupling which is U(1) × U(1) symmetric that is
encoded in M̂ .

It turns out that the Hartree bubble is zero and does not
introduce any quantum corrections to the relevant coupling
ρ. This is due to the simple reason that in the normal phase,
the boson number density is zero at T = 0. Since the scaling
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FIG. 3. The first-order loop corrections to the quadratic and
quartic interactions.

dimension [ρ] = 2, we have the renormalized ρ coupling as
ρR = ρ0e2u and the RG equation

∂ρ̃R

∂u
= 2ρ̃R, (5.5)

where ρ̃R = �−2ρR is the dimensionless form of the coupling.
Additional higher-order terms if present on the RHS of
Eq. (5.5) will act to shift the critical value ρc from zero.

Moving on to the marginal couplings, we instead have the
following one-loop corrections from the four-point bubble:

δα = − 2u

8π
(4α2 + (α − λ)2), (5.6)

δλ = + 4u

8π
λ(α + λ), (5.7)

which is independent of ρ. This then yields the following RG
equations:

∂αR

∂u
= −4α2

R + (αR − λR)2

4π
, (5.8)

∂λR

∂u
= +2λR(αR + λR)

4π
(5.9)

that remain independent of ρR . The fate of the symmetry
broken phase is then dictated by Eqs. (5.8) and (5.9).

The phase portrait for the flow equations of Eqs. (5.8) and
(5.9) is shown in Fig. 4. In the regime where αR, − λR >

0, we have the α1 phase whenever ρ < ρc. In Fig. 4, this
phase corresponds to the flows on the lower half-plane λR < 0,
which are attracted to the Gaussian fixed line at (αR,λR) = 0.
Tuning ρ across ρc in this case corresponds to a conventional
second order phase transition. Conversely, the β1 phase occurs
whenever αR < λR < 0 and ρ < ρc. So this is positive λR

coupling and corresponds to the flows in the upper plane in
Fig. 4. However, the phase-portrait predicts a flow to large

FIG. 4. Integrated RG flow of the marginal couplings.

FIG. 5. Schematic phase diagram implied by the RG equations
at one-loop order. Not shown is the α axis where it is required that
α > |λ| > 0 for stability.

positive λ � α where the naive free energy implied by Leff

is no longer stable. Then we require φ6 terms to stabilize the
free energy and this generally leads to a fluctuation-induced
first-order transition. Another first-order transition line lies
between the α1 and β1 phases since their pattern of symmetry
breaking is unrelated. However, the transition from the normal
to the α1 phase is second order since this is controlled by the
Gaussian fixed point.

We then summarize the phase diagram implied by this one-
loop RG analysis in Fig. 5. This differs from the phase diagram
of the mean-field analysis of Ref. [15], in that a tricritical
point is predicted to exist between the normal and β1 phase.
Again, this physical feature is unattainable within our simple
φ4 theory, and would require additional higher order terms to
capture this tricritical behavior.

VI. ELECTROMAGNETIC RESPONSE

We now turn our discussion to the electromagnetic response
properties of the model. It is expected that the different
symmetry broken phases will respond differently to EM probe
fields. For this discussion, we prefer to revert back to the
�μi representation. In principle, the entire EM response is
contained in the functional expansion in A of Eq. (2.19). In
practice, it is much easier to organize this expansion in terms of
the linear response current which can be divided into separately
conserved contributions. We shall only concern ourselves with
the linear response currents; equivalently the expansion of
Seff[�,A] to order O(A2). Also, we will regard the � fields to
move much slower than A such that we neglect their gradient
terms ∂�μi .

From the expansion in Eq. (2.16), the total gauge invariant
3-current density jμ(x) to order O(A) can be determined from
the variation of S[ψ†,ψ,�,A] by δA as

j 0 = −eψ†ψ, ja[A] = ja
1 [A] + ja

2 [�,A], (6.1a)

,

(6.1b)
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, (6.1c)

where we have used the diagrammatic convention of Fig. 7
and have suppressed the � lines for clarity. Also, the wiggly
photon lines are understood to be amputated. The total current
density ja has been separated into contributions that are
�-independent (ja

1 ) and �-dependent (ja
2 ). Note that both

these current density vertices ja
1 and ja

2 , are separately gauge
invariant [39] because they include the linear in A diamagnetic
terms. As we shall show, this leads to separate sets of Ward
identities that result from the total gauge invariance of the
action.

Now the total linear response 3-current is given as

〈jμ[A]〉A,�

= Z−1
∫

Dψ†Dψ jμ[A] e−S[ψ†,ψ,�,A]

= Z−1
∫

Dψ†Dψ (jμ[A])(1 − Aνj
ν[A]) e−S[ψ†,ψ,�,0]

= Z−1
∫

Dψ†Dψ

(
−jμ[0]jν[0] + δjμ[0]

δAν

)

× Aν e−S[ψ†,ψ,�,0]

, (6.2)

where the �-corrected current vertices are

, (6.3)

, (6.4)

. (6.5)

Note that in the third line of Eq. (6.2), we have only retained
terms up to linear order in A, and the second “tadpole” term in
the final line is only relevant for the spatial 2-current since there
are no direct charge-current vertices. We have also omitted the
spontaneous current density 〈jμ[0]〉(A=0),� , since it is zero and
we are only interested in linear response current.

Hence, diagrammatically, the different contributions to the
gauge invariant linear response currents are

,
(6.6)

,
(6.7)

.

(6.8)

It is also understood that the fermionic propagator lines here
include perturbative � corrections in the form of a self-energy.

To appreciate the gauge invariance of 〈jb
1 [A]〉,〈jb

2 [A]〉
and 〈j 0〉, we first consider j2[A]:〈

jb
2 [A]

〉 =Z−1
∫

Dψ†Dψ

(
2e

k2
F

)

× τ i
ab [ψ†σμ(k + eA)aψ]e−S[ψ†,ψ,�,A]. (6.9)

Then applying the gauge transformation A → A +
dϕ, psi → ψe−iϕ we see that the current remains unchanged
because the action and the current density are gauge invariant.
Thus〈

jb
2 [A]

〉 = 〈
jb

2 [A + dϕ]
〉 = 〈

jb
2 [A]

〉 + ∫
∂μϕ

δ

δAμ

〈
jb

2 [A]
〉

(6.10)

to linear order in dϕ. Then by an integration by parts, this
produces the following Ward identity:

(6.11)

By the same arguments, the following Ward identities can be
proven as well:

,
(6.12)

.

(6.13)
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This then suggests the following definitions of separate
response kernels [q = (q0,q) is the incoming momentum]:

K
μb

0 (q) = δ〈jb
1 [A]〉�=0,A

δAμ(q)

∣∣∣∣
A=0

, (6.14a)

K
μ0
0 (q) = δ〈j 0〉�=0,A

δAμ(q)

∣∣∣∣
A=0

, (6.14b)

K
μb

1 (q) = δ〈jb
1 [A]〉�,A

δAμ(q)

∣∣∣∣
A=0

− K
μb

0 (q), (6.14c)

K
μ0
1 (q) = δ〈j 0〉�,A

δAμ(q)

∣∣∣∣
A=0

− K
μ0
0 q, (6.14d)

K
μb

2 (q) = δ〈jb
2 [�,A]〉�,A

δAμ(q)

∣∣∣∣
A=0

, (6.14e)

which are all individually transverse ∂μK
μν
m (q) = 0. The total

linear response current is then given as

jν(−q) = [
K

μν

0 (q) + K
μν

1 (q) + K
μν

2 (q)
]
Aμ(q). (6.15)

The first and second kernels K
μb

0 ,K0b
0 are the conventional

linear responses when � = 0 and are transverse by themselves.
This makes the next pair K

μb

1 ,K0b
1 mutually transverse. In the

first set K
μν

0 , we have

, (6.16a)

, (6.16b)

, (6.16c)

which can be recognized as the conventional polarization
tensors. In the next set of response kernels K

μν

1,2, we expand to
order O(�2) to give

,

(6.17a)

,
(6.17b)

,
(6.17c)

and

,
(6.18a)

. (6.18b)

The kernels Kb0
1 are similarly defined to K0b

1 , and K2 does
not have a density-density response counterpart K00

2 because
the quadrupole operator O does not couple to A0. These kernels
being all transverse means that they satisfy the following Ward
identities:

qaK
ab
m (q) + iq0K

0b
m (q) = 0, (6.19a)

qaK
a0
m (q) + iq0K

00
m (q) = 0 (6.19b)

with m = 0,1,2 where defined. Recall that by construction �

is gauge invariant, however, the response kernels K
μν

1,2 depend
very much on �. This can be traced back the minimally
coupling to A in the quadrupolar definition of �, which leads
to these very nontrivial forms of K

μν

1,2.
We remark that a further integration over the �-fields

can be carried out by connecting the (©) vertices by �-
propagator lines f (q) in Eq. (6.17) and (6.18). This yields
linear response kernels that include Gaussian fluctuations in �.
The diagrams in Eq. (6.17) and Eq. (6.18) are then recognized
as EM susceptibilities computed with vertex and self-energy
corrections that satisfy Ward identities [40,41]. This is another
way to interpret the equations Eq. (6.19). However, in this
paper, we will not include the effects of � fluctuations in the
normal phase which are known to introduce nonanalyticities
[42,43] at higher order in perturbation theory for the l = 0
channel. The case of the l = 2 channel at first order in Gaussian
fluctuations has so far not yielded any nonanalyticities [44] that
destabilize the zeroth-order �-� susceptibility, but more study
is required to clarify the issue.

To proceed, we need to evaluate the Feynman diagrams in
above expressions Eq. (6.17) and Eq. (6.18) for K

μν
m (q); which

is very formidable for finite q. Since we are only interested
in the response to slow A fields, we can look for a gradient
expansion in small q. This is however more subtle than it seems
because the ψ fluctuations are now generally gapless, unlike in
the derivation of the effective action of Eq. (3.1). Hence we will
expect nonlocal forms for K

μν
m (q), which contains singularities

at q0 = |q| = 0. This precludes a Taylor expansion in q and
also a Laurent expansion for reasons that will become clear.
Our resolution of this technical obstacle involves extracting
the “leading-order” singularities as q → 0. Due to complex
contours methods that are involved in the internal Matsubara
frequency summations, these expansions resemble very much
the operator product expansions (OPEs) [45–47] in particle
physics and statistical physics whenever two operators are
brought asymptotically close to one and another. The details of
this gradient expansion method are described in Appendix D.

The explicit forms of the response kernels K
μν
m (q) are

collected in Appendix F, after a gradient expansion in q has
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been applied. As was claimed, K
μν

0 (q) reduces to the usual
forms of the polarization tensor and density-density response
in (2+1) dimensions for an isotropic Fermi liquid. They
include both longitudinal and transverse components. Chiefly,
the Landau damping remains present in these response kernels.
For example, the density-density response K00

0 (q) is given as

K00
0 (q) = 2e2r̄

⎛
⎝1 − |q0|√

q2
0 + v2

F |q|2

⎞
⎠, (6.20)

where r̄ = (N (vF �) + N (−vF �))/2 is a DOS parameter.
Note that the RHS is very much sensitive to the order of limits
of q0,|q| → 0 due to the branch-cut singularity of the square
root. This is the reason for why a Laurent expansion is not
suited for these class of response kernel functions. Moreover,
the other kernels K

μν

1,2(q) also contain singularities of this sort.
The key point is that, although the effective action Eq. (3.1)
for just the � dynamics is local, the full EM response of the
theory remains that of a metal and the coupling of � to A

highly nontrivial and nonlocal.
The order O(�2) corrections to the linear response is

contained in K
μν

1,2(q), where the anisotropy of the Fermi surface
due to � �= 0 play out in the response. These are of lower order
than K0 due to their � dependence and are only accurate near
the critical point of theory. More importantly, they determine
the form of the nonminimal EM coupling to the soft modes �

near the critical point.
Now, the more important response kernel of the two is

K
μν

2 (q), which contains the following two contributions:

Kab
2 = −

(
4e2

k2
F

)(
r

2vF �

)
(εij εμν�μi�νj )εab q0 + . . . ,

(6.21)

K0b
2 = −

(
4e2

k2
F

)(
r

2vF �

)
(εij εμν�μi�νj )εab iqa + . . . ,

(6.22)

which are linear in q and hence local. In fact, they contribute
to the effective action as a Chern-Simons Lagrangian,

LCS =
(

8e2

k2
F

)(
r

2vF �

)
(��1 ∧ ��2)εab[Aa∂tAb + A0∂aAb],

(6.23)

where ∂t is the real-time derivative. The constant prefactor in
this case is not quantized because of the gaplessness of the
system. This does lead to a �-dependent intrinsic anomalous
Hall response whenever (��1 ∧ ��2) �= 0. In the normal and
α1 phases, 〈�μi〉 = 0. However, in the β1 phase, we have
〈��1 ∧ ��2〉 �= 0 and hence a nonzero anomalous Hall response
co-exists with the other metallic EM response contributions
that is strongly anisotropic in the α1 phase. This is in total
agreement with the previous mean-field study [15] of this
model; albeit by a more complicated method. Furthermore,
this Chern-Simons term distinguishes the β1 phase from the
α1 and normal phases. In fact, the sign of the nonuniversal
Chern-Simon coefficient can be used to distinguish between
different chiral β1 phase domains that differ in their Z2 order
component (cf. Fig. 2).

Broken symmetry phases

We next consider the EM response deep inside either
symmetry broken phase. Here, we may determine the EM
response using the mean-field approximation for the theory and
where the dependence on 〈�μi〉 �= 0 is no longer perturbatively
quadratic. The mean-field action stems from the following
manipulations of the partition function in the limit A = 0:

Ztot = Zψ0

∫
D� e−S1[�]+Tr ln[1̂−Ĝ−1

0 Ô2�]

= Zψ0

∫
D� e−Seff[�]

≈ Zψ0

∫
D(δ�) e−Seff[�class]−S

′′
eff[�class]δ�2

= Zψ0 e−Seff[�class]
∫

D(δ�)e−S
′′
eff[�class]δ�2

= Zψ0 e−S1[�class]+Tr ln[1̂−Ĝ−1
0 Ô2�class]Zδ�,�class

= det
[−Ĝ−1

0 + Ô2�class
]
e−S1[�class]Zδ�,�class , (6.24)

where Zψ0 = det[−Ĝ−1
0 ] is the partition function for the free

fermion model and �class the uniform classical mean-field that
is a saddle point solution of Seff[�]. The other partition function
Zδ�,�class is the partition function that results from integrating
out the fluctuations δ� about the saddle point solution �class.
The final fermionic determinant factor contains in it the mean-
field theory of the fermion through

det
[−Ĝ−1

0 + Ô2�class
] =

∫
DψDψ† e−ψ†[−Ĝ−1

0 +Ô2�class]ψ,

(6.25)

which then yields the following mean-field Lagrangian for the
fermionic theory:

LMF = ψ†
α(∂0 + ξ (−i∇)ψα

+ ψ†
α

[
vF �σz

αβ + (�class)μiO
μi
αβ

]
ψβ. (6.26)

We then define the mean-field Hamiltonian in k space as

Hk = ξk + vF �σz + (�class)μi O
μi(k) (6.27)

using the definitions of Eq. (2.4). Then minimal coupling to
EM yields the following Lagrangian:

LMF = −ψ†G−1ψ − eA0ψ
†ψ + eAaψ

†∂aHψ

+ e2

2

(
ψ†∂2

abHψ
)
AaAb, (6.28)

where G = −[∂0 + H ]−1 is the mean-field corrected Green’s
function and the derivatives are ∂a ≡ ∂ka

. Again for the
purposes of linear response, we only coupled to O(A2). The
Green’s function G can be further expressed in spectral form
as

G(ik0,k) = 1

ik0 − E1k
P1(k) + 1

ik0 − E2k
P2(k)

= G1(ik0,k)P1(k) + G2(ik0,k)P2(k), (6.29)
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where E1k,E2k are the energy bands of Hk such that Hk =
E1kP1(k) + E2kP2(k). The linear response kernels are then
given by the same type of Feynman diagrams as in Eq. (6.2).
Explicitly they are

Kab(q) = −e2
∫

d2k

(2π )2

1

β

∑
k0

2∑
m,n=1

{Gm(k+)Gn(k−)

× tr[∂aHkPm(k+)∂bHkPn(k−)] − Gm(k)Gn(k)

× tr[∂aHkPm(k)∂bHkPn(k)]}, (6.30a)

K0b(q) = +e2
∫

d2k

(2π )2

1

β

∑
k0

2∑
m,n=1

Gm(k+)Gn(k−)

× tr[Pm(k+)∂bHkPn(k−)], (6.30b)

Kb0(q) = K0b(−q), (6.30c)

K00(q) = −e2
∫

d2k

(2π )2

1

β

∑
k0

2∑
m,n=1

Gm(k+)Gn(k−)

× tr[Pm(k+)Pn(k−)]. (6.30d)

The second line on the RHS of Kab(q) comes from the
diamagnetic tadpole term of order O(A2), which is necessary
for gauge invariance. The different contributions to the
linear-response can be organized into intraband (m = n) and
interband (m �= n) contributions as

Kμν(q) = K
μν
inter(q) + K

μν
intra(q). (6.31)

In the case of the interband terms, we can Taylor expand
the G1,2(k±) as a series in q/|E1k − E2k| due to the gap
between the mean-field bands E1,2k. This then yields, after
much simplification, the “topological” response [18] at the
lowest order in q:

Kab
inter(q) = −q0e

2
∫

d2k

(2π )2

2∑
m=1

nF (Emk)Fab
m (k), (6.32a)

K0b
inter(q) = −iqae

2
∫

d2k

(2π )2

2∑
m=1

nF (Emk)Fab
m (k), (6.32b)

Kb0
inter(q) = K0b

intra(−q), (6.32c)

K00
inter(q) = 0, (6.32d)

where Fm(k) = ∇k ∧ Am(k) is the Berry curvature for energy
band m and Am(k) is the associated Berry connection. Finally,
using the expansion of Eq. (D3), the intraband contributions
are determined to be

Kab
intra(q) = e2

∫
d2k

(2π )2

2∑
m=1

(
iq0

qc vc
mk − iq0

)
va

mkv
b
mk δ(Emk),

(6.33a)

K0b
intra(q) = −e2

∫
d2k

(2π )2

2∑
m=1

(
qc vc

mk

qc vc
mk − iq0

)
vb

mk δ(Emk),

(6.33b)

Kb0
intra(q) = K0b

intra(−q), (6.33c)

K00
intra(q) = e2

∫
d2k

(2π )2

2∑
m=1

(
qc vc

mk

qc vc
mk − iq0

)
δ(Emk),

(6.33d)

where va
mk = ∂ka

Emk is the band velocity. Note that the
Ward identities are satisfied separately for the interband and
intraband contributions. Lastly, the interband response kernel
K

μν
inter(q) contains the Hall conductivity, which is zero in the

α1 phase but is nonzero in the β1 phase as is expected.

VII. REDUCED SYMMETRY

Next, we discuss the consequences of explicit symmetry
breaking of the O(2)rot × O(2)iso group. The findings of
Ref. [15] remain largely unchanged compared to our analysis
of the effective field theory. The breaking of rotational O(2)rot

down to the discrete rotational group Cn may be caused
by the lattice and will have the effect of removing an
orientational Goldstone mode from either α1 or β1 phases.
More importantly, because it is an orientational Goldstone
mode, the remaining Goldstone mode in the α1 phase will
no longer be over-damped at low energy. This is because
the spontaneously broken continuous symmetry O(2)iso is
an internal symmetry, and in accordance to the criterion of
Ref. [33] will not suffer Landau damping. Meanwhile, the
O(2)iso symmetry which ensures separate fermionic number
conservation in each band may be broken by the inclusion
of additional interaction terms of the form 
xi
yi and/or
[
xi
xi − 
yi
yi] to the Lagrangian (2.1). The new lower
symmetry of the microscopic model is Z2, which conserves
the relative number parity of each band (−1)N1−N2 and is
affected by the transformation 
μi → (−
μi). This yields
additional terms in the effective action in Eq. (4.2) of the
forms φiφi, phi∗i φ∗

i , which explicitly breaks the number
conservation in the φ boson and gaps out the �s · �π mode in the
symmetry broken phases. These O(2)iso symmetry breaking
terms may have a microscopic origin in the details of their
atomic orbitals that leads to the reduced symmetry of the
Landau interaction parameters. The final condensed φi phases
in the presence of reduced symmetry models are noticeably
more complicated and were termed the α2 and β2 phases in
Ref. [15]. In particular, the β2 phase—like the β1—breaks
the requisite chiral (mirror) and time-reversal symmetries
such that an anomalous Hall effect is present. Finally, the
O(2)rot × O(2)iso symmetric model and its three possible
reduced symmetry relatives Cn × O(2)iso, O(2)rot × Z2 and
Cn × Z2 will have qualitatively different phenomenological
finite temperature phase diagrams that are discussed at length
in Ref. [15].

VIII. EXPERIMENTAL REALIZATIONS

In this section, we describe possible experimental realiza-
tions of the model of Eq. (2.1). But before that, we point out key
challenges that are faced when identifying suitable candidate
materials. We focus only on electronic liquids in the solid state
and avoid cold atomic systems altogether.
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2D/Quasi-2D Fermi fluids. A two-dimensional or quasi-
two-dimensional metallic electron liquid is needed. This
requirement may be met either with a legitimate 2D electron
gas (2DEG) or stacked two-dimensional metals in 3D with
weak interlayer coupling that leads to quasi-two-dimensional
metals.

Broken SU(2) symmetry. The electron liquid needs to
possess two internal flavors with an energy splitting that
lifts their degeneracy. Mathematically, this amounts to an
internal SU(2) symmetry that is either broken spontaneously
or explicitly. The electron’s spin-1/2 degree of freedom is the
most natural way to realize this and hence points to itinerant
ferromagnets as likely candidates. In fact, there are many
materials with spin-polarized metallic bands due to significant
Hund’s coupling at the atomic level. Most of these materials
contain partially filled transition metal ions. Alternatively,
atomic orbitals from different layers in a 2D bilayer system can
realize a broken SU(2) symmetry. In this scenario, rotational
spin-1/2 degeneracy remains intact but interlayer coupling
leads to bonding, antibonding orbitals, which yields an energy
splitting. Effectively, a spinless electron picture can be adopted
with the effects of spin symmetry appearing only as the
occasional spin-degeneracy factor of two in some physical
quantities like electrical conductivity.

Ferromagnetic exchange interactions. After the previous
two conditions are met, then a sizable “exchange” interaction
between the two energy split electron liquids is required.
Such interactions are generally present and can be modeled
semi phenomenologically with the Landau parameters. More
rigorously they can be argued to exist from renormalization
group [48] arguments starting from the bare Coulomb interac-
tion. However, determining whether or not the interaction is
ferromagnetic or anti-ferromagnetic is more difficult. But fer-
romagnetic tendencies are more common in itinerant systems.
Enhancing these interactions requires a large density of states
or equivalently narrow energy bands. Generally speaking,
heavy fermion materials could meet this criterion.

Approximate isotropy. Perfectly isotropic Fermi surfaces
are only possible in liquid He3. But there exists well studied
materials like the doped cuprate system or GaAs quantum
wells at low doping, which can meet this criterion quite well.
Moreover, crystals with the D4 point subgroup would be more
desirable because its dxy and dx2−y2 irreducible representations
are quadrupolar like. Note that the quadrupolar channel needs
to dominate over the other partial wave channels, and in this
way the point group of the lattice may play a crucial role.
Technically, the effects of the lattice can be accounted for
by additional terms in the effective action of Eq. (3.1) that
degrade the continuous O(2)rot symmetry to favor alignment to
the crystallographic directions. From these consideration, we
have three broad proposals and each has their own challenges
in terms of finding realistic material candidates.

A. Itinerant ferromagnets

In this scenario, an exchange splitting between otherwise
spin-1/2 degenerate Fermi liquids originates from a Stoner
instability. This is just the particular case of the Pomeranchuk
instability into the antisymmetric l = 0 partial wave channel
that fits into our overall narrative of strong ferromagnetic

interactions within the Fermi-liquid formalism. The exchange
interaction in the quadrupolar channel then represents part of
the residual interactions of the unbroken O(2) symmetry with
the �μi bosons interpreted as spin flip Stoner excitations in the
l = 2 partial wave channel. This is all supposed to occur after
the first symmetry breaking which defines the magnetization
direction and is accompanied by conventional magnetic l = 0
Goldstone modes.

However, it is now well established that the Hertz-Millis
approach to Stoner ferromagnetism is incorrect [49] due to
the appearance of nonanalytic momentum-frequency terms in
the effective action invalidating the initial assumptions of the
approach and destabilizing the quantum critical point. Hence
we have to imagine instead a scenario where the itinerant
ferromagnetism has been established by means other than the
Stoner mechanism and consider those itinerant ferromagnets
whose magnetism is not attributed to magnetic constituent ions
because these lead to oppositely spin-polarized bands, which
are too dissimilar.

Most ferromagnetic metals like elemental Fe and Ni are
actually made of magnetic constituent ions which are spin-split
due to Hund’s coupling. Nevertheless, there are known “Stoner
ferromagnetic” materials. But as was mentioned these are not
meant to be taken literally as ferromagnets whose ordering
is attributed to the Stoner mechanism. Rather, they represent
known itinerant ferromagnets whose isolated constituent ions
are nonmagnetic to begin with. The two known itinerant
ferromagnets without magnetic ion constituents are Sc3 In
[50] and ZrZn2 [51]. In fact, non-Fermi-liquid behavior has
recently been reported in chemically doped Sc3 In [52] and
it possesses a crystal structure of stacked hexagonal layers.
Hence an l = 6 hexapole (hexatic) generalization of our model
may be a more appropriate treatment of this system. By
contrast, ZrZn2 is a less likely candidate with its diamondlike
lattice structure and it is known to have magnetic order that is
strongly three-dimensional [53,54] and superconductivity [55]
at temperatures below the Curie point. Nevertheless, we do not
yet know of any thin-film experiments with Sc3 In or ZrZn2,
but hope that this work will encourage future work with these
and related materials.

B. Spin-polarized junctions

“Half-metals” [56] are special itinerant ferromagnets with
completely spin-polarized metallic bands. The name refers to
the fact that the partially filled bands at the Fermi level are
of a single spin-polarization because bands with the opposite
polarization are insulating or semiconducting. We imagine that
a heterojunction of two oppositely polarized half-metals as
shown in Fig. 6 could serve as an experimental realization
for the model. The oppositely spin-polarized two-dimensional
electronic liquids at the interface originate from different
completely spin-polarized bulk metals. Generically, an energy
splitting between the two-dimensional spin-polarized Fermi
liquids can be expected and may even be controlled by gating
one side of the two sides of the junction. This leads to a
metallic ferromagnetic two-dimensional liquid at the interface
in complete analogy with the previously proposed itinerant
Stoner ferromagnet scenario.
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FIG. 6. Schematic of a layered structure comprised of two
thin films of completely spin-polarized metals (“half-metals”) that
are oppositely polarized. At the interface between the layers lies
a two-dimensional electron liquid that remains ferromagnetically
ordered due to the imbalance of spin-polarized 2D bands that may
be controlled by gating. Here the bulk half-metals are assumed to be
magnetically hard or pinned by hard magnets (not shown) above and
below.

Of all the known half-metals, CrO2 [57] is the most well
studied [58,59] and continues to be investigated actively
[60,61]. Its rutile crystal structure and previously measured
bulk electronic structure [61] are somewhat encouraging for
our purposes. Additionally, synthesis of thin film CrO2 has
also been reported [62]. Other known half-metals include
La0.67Sr0.33MnO3 [63] and NiMnSb [64]. We refer the reader
to Ref. [65] for a more exhaustive list.

C. 2D materials

In this last scenario, we maintain SU(2)spin symmetry and
appeal to the isospin interpretation of the model. The effects
of spin-1/2 rotational symmetry of the electron if present then
manifests as a spin-degeneracy factor. We imagine the SU(2)iso

degree of freedom originates from a layer index in a 2D bilayer
material. Interlayer coupling then provides the necessary
energy splitting between the bonding and anti-bonding bands.

Reference [15] had suggested this as a possible interpreta-
tion of the model as well as several proposed lattice models.
Of note are honeycomb lattice models, which are physically
realized in graphene. Moreover, in Ref. [66], an extended
Hubbard model of spinless electrons on the honeycomb lattice
was shown to have metallic anomalous Hall phases and
(C6 breaking) Pomenranchuk phases within the mean-field
approximation.

Lately, there have been many advances in the synthesis
and isolation of atomically thin monolayer materials besides
graphene. The most promising of which for our purposes
are the transition metal dichalcogenide (TMDC) bilayers.
Some currently well studied examples include MoS2 [67],
WS2, MoSe4, and MoTe2 [68] to name a few. These 2D
materials are hexoganal crystal sheets with a semiconducting
gap. Doping is required to produce metallic bands which in
the bilayer system (AA stacking) would lead to a version
of our proposed model with some differences. For one, the
hexagonal symmetry of these 2D materials would likely mean
that the l = 6 hexapolar (hexatic) generalization of our model
would be more suited. Secondly, there is significant spin-orbit
interaction in the conduction and valence bands that breaks
the rotational spin-1/2 degeneracy and an additional twofold
valley degeneracy of the honeycomb lattice. The latter is an
exact symmetry, which exhibit an incipient anomalous valley
Hall effect. However, unless a net valley polarization is present,
contributions from each valley cancels exactly.

IX. SUMMARY AND DISCUSSION

In this paper, we have revisited a deceptively simple model
of a two component soft electron liquid, first proposed in
Ref. [15] as an interaction driven quantum anomalous Hall
liquid. In the absence of interactions, the 2D electron liquid
is split in its bands and can be interpreted as an itinerant
ferromagnet. Interactions are incorporated in the form of XY -
exchange forward scattering terms in the quadrupolar partial
wave channel. Due to the band splitting, fluctuations induced
by interactions are gapped and quadrupolar in character. This
then leads to a relatively simple effective Landau-Ginzburg
action functional for the bosonic quadrupolar order parameter
fields. Chiefly, the quantum critical theory resembles that of
a two component theory of nonrelativistic superfluidity with
a non SU(2)-symmetric self-interaction which allows for a
straightforward RG analysis.

The broken symmetry phases of model are the α1 and
β1 electronic liquid crystal phases whose Nambu-Goldstone
modes we have analyzed. Despite the apparent simplicity of
the Landau-Ginzburg theory, the eventual fate of the broken
symmetry phase is really that of a non-Fermi liquid due
to Landau damping of the Nambu-Goldstone modes from
low-energy particle-hole pairs at small momentum.

We have analyzed the electromagnetic linear response in
the normal phase near the quantum transition and in the broken
symmetry phases. We find that the nonminimal EM coupling
to the quadrupolar boson in the normal phase is surprisingly
complicated and strongly anisotropic. Also, despite the
deceptively local form of the Landau-Ginzburg action, the
electronic system remains very much a metal and Landau
damping is present in the EM response. More interestingly,
precursors to the quantum anomalous Hall phase are visible
even in normal phase and manifest as a Chern-Simons action
with nonuniversal coefficient that is proportional to the amount
local chiral and time-reversal symmetry breaking due to the
quadrupolar boson. Finally, we propose several experimental
candidates that might realize the model or a related hexapolar
variant.

The richness and complexity of the order-parameter theory
may be traced to the nontrivial form of the quadrupolar inter-
action and the metallicity of the fermionic sector. Although
we have mostly limited ourselves to an order parameter only
formulation, much in the spirit of the Hertz model, it is
likely that a complete formulation low energy-long wavelength
will always require both fermionic and bosonic sectors. In
fact, the damping of Nambu-Goldstone was a situation where
mean-field corrected fermionic fields had to be reintroduced
that eventually led to non Fermi-liquid behavior at very low
momenta. This parallels much of the recent revisions of Hertz-
Millis theories [49]. In addition, there is the open question
of whether or not nonanalyticities in the effective action are
encountered at higher order in expansion of the effective action
in Eq. (2.19), as it does in Stoner ferromagnetism [42,43].
If present, they may invalidate aspects of the Hertz-Millis
like approach, as in the case of Stoner theory. On the other
hand, the finite � splitting of the Fermi surfaces may serve as
an energy/momentum scale that could suppress some of the
potential nonanalyticities at higher order, as was in the case of
our effective action at lowest order. At any rate, the main focus
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of this paper is on the structure and properties of the phases and
not on the validity of the Hertz-Millis approach to quantum
criticality which by now is well known to be qualitative.
Nevertheless, we should note that a full solution of the problem
for quantum criticality in metals, a subject of intense research
in recent years, is still a largely unsolved problem (for a recent
insightful discussion, with references, see Ref. [69]).

It would be desirable to know if nonperturbative methods
such as multidimensional bosonization [10,70–72] may be
brought to bear to this and related Fermi-liquids where
interband and topological effects are nontrivial. For example,
topological Fermi liquids [73,74] are a class systems that
might profit from a bosonized formulation. We note that Ref.
[75] had developed a fairly complete EM response theory
couched in the multidimensional bosonization framework,
which is RPA exact. However, situations with broken SU(2)
Fermi-liquids and interaction driven Berry phase responses
remains largely unexplored. Moreover, we believe it likely that
the concerns raised in the previous paragraph are intimately
related to feasibility of such a bosonized formulation. For
example, the issue of nonanalyticities in the effective action, if
encountered at higher order may are not taken into account by
the existent higher-dimensional bosonization theories which
focus only on intra-patch forward scattering processes. Since
the nonanalytic terms arise from a subtle interplay of large and
small momentum transfers, the bosonization approach will
have to be modified to include the interpatch processes. This is
an open and interesting problem. Lastly, extensions of this and
related models to 3D is certainly possible with the rotational
O(2) group is replaced by O(3). This could allow for richer
broken symmetry theories with monopole defects like those
already considered in Ref. [13].
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APPENDIX A: DERIVATION OF THE
EFFECTIVE LAGRANGIAN

In this Appendix, we describe the derivation of the effective
Lagrangian of Eq. (3.1). From the total gauge invariant action
of Eqs. (2.11), (2.13), and (2.14), we can read off the various
propagators lines and interaction vertices in (k0,k) space.
These are listed in Fig. 7. Expanding Eq. (2.19) in order of
M̂ yields

Seff[�,A] = − 1

2f
�� − Tr M̂[�,A] + 1

2
Tr M̂[�,A]2

− 1

3
Tr M̂[�,A]3 + 1

4
Tr M̂[�,A]4 + . . . .

(A1)

Although this expansion in terms of Feynman diagrams (see
Fig. 7) involves an enormous amount of terms, there is one
important simplification. Namely, that the Ôn vertices involve
transitions between ψ bands but G0 remains diagonal in the
band basis. Hence only diagrams with Ôn appearing an even
number of times in a fermion loop are nonzero. Also, we
shall only pursue the expansion up to the fourth order, since
this—as we will show—produces all the marginal couplings

FIG. 7. Diagrammatic lines and fermions for the Feynman rules of the Hubbard-Stratanovich decoupled action and with coupling to
electromagnetism. The form of the EM coupling in Eqs. (2.13) and (2.14) yields two additional vertices that couple to A that are due to
distortions and isospin textures on the Fermi surfaces due to �.
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that are needed to complete an RG analysis of the theory. Next,
we set A = 0, which yields M̂ = −Ĝ0Ô2�. Thus only the
quadratic O(�2) and quartic O(�4) kinetic and self-interaction
terms generated by the single fermion loop contribute to the
effective action. One other factor that constraints the form
of the effective action is the adherence to O(2)iso × O(2)rot

symmetry, which requires that the invariant symbols εμν,εij

appear in appropriate combinations.
Before that, we point out a key difference of this derivation

of Seff compared to the derivation of the free-energy
in Refs. [13,15] within the self-consistent mean-field
approximation. Ordinarily, the effective action and the
free-energy should agree in the case of static mean fields.
However, the self-consistency method of Refs. [13,15] uses
mean-field ansatz solutions from the saddle point equations
of Eq. (2.19) that includes the full trace-log functional.
Technically, this means that effects of the field �μi on ψα

have been Dyson resummed. Hence the resulting free-energy
functional should be more accurate deep inside the symmetry
broken phase. However, the free-energy couplings that are
determined this way will be ansatz dependent and may be
misleading near the critical point of the theory. Furthermore,
the form of the couplings to be derived below can always
be associated to specific loop diagrams and hence to specific
virtual processes undertaken by fluctuations in ψα .

1. Zeroth order

To the lowest order, we have in momentum space

− 1

2f (q)
�(−q)μi�(q)μi

= 1

2|f (0)|�μi(−q)�μi(q) + κ|q|2
2

�μi(−q)�μi(q), (A2)

where we use the form (2.6). We thus identify a bare “mass”
of and a gradient term that derives from the form of f (|q|). In
real space, this yields the following zeroth-order contribution
to the effective action:

L(0)
eff = 1

2|f (0)|�μi�μi + κ

2
∇�μi∇�μi. (A3)

FIG. 8. The susceptibility bubble for the �μi field, which also
determines its temporal dependence under a gradient expansion of
(q0,q).

2. Quadratic interaction

The simplest diagram to consider is the O(�2) bubble
diagram shown in Fig. 8. Applying the standard rules
gives

I
(2)
μiνj (q) = (−1)

k4
F

∫
d2k

(2π )2

1

β

∑
k0

(kT τ ik)(kT τ j k)

×
∑

m,n=1,2

σμ
mnσ

ν
nmGm(ik+

0 ,k+)Gn(ik−
0 ,k−), (A4)

where k±
0 = k0 ± q0/2, kk± = k ± q/2, the Green’s function

Gn(ik0,k) = 1

ik0 − ξn(k)
(A5)

and the indices m,n sum over the fermionic bands. Then per-
forming the Matsubara frequency summation and linearizing
k ≈ kF k̂ yields

I
(2)
μiνj (q) = −

∫
d2k

(2π )2
(k̂T τ i k̂)(k̂T τ j k̂)

×
∑

m,n=1,2

σμ
mnσ

ν
nm

[
nF (ξnk−) − nF (ξmk+)

iq0 + ξnk− − ξmk+

]
. (A6)

Then after Taylor expanding ξmk± and nF (ξmk±) to linear order
in q, using the identities

σ
μ

12σ
ν
21 = δμν + iεμν, σ

μ

21σ
ν
12 = δμν − iεμν, (A7)

with a change of variables
∫

d2k
(2π)2 → ∫

dθk
2π

∫
dξ N(ξ ), and

some further simplification, finally yields

I
(2)
μiνj (q) = − 2r

∫
dθk

2π

[
(k̂T τ i k̂)(k̂T τ j k̂)

(iq0 − vF δq)2 − (2vF �)2

]

×
{[

(2vF �)2 + vF δq(iq0 − vF δq)

(
r̄

r

)]
δμν + 2vF �

[
(iq0 − vF δq) + vF δq

(
r̄

r

)]
iεμν

}
, (A8)

where we have defined the averaged DOS quantities

r = 1

2vF �

∫ vF �

−vF �

N (ξ )dξ, r̄ = N (vF �) + N (−vF �)

2
(A9)

and defined δq = k̂ · q.
In the case where the DOS is constant, for a quadratic dispersion, one has r = r̄ . Implicit in the above derivation is the

zero-temperature limit of nF (ξ ) = �(−ξ ), which is taken after the Taylor expansion in q. We separate out the static (q0 = 0) and
dynamic contributions (q0 �= 0) by rearranging

I
(2)
μiνj (q) = rδμνδij − 2r

∫
dθk

2π

[
(k̂T τ i k̂)(k̂T τ j k̂){(iq0 − vF δq)δμν + (2vF �)iεμν}

[
iq0 + (

r̄
r

− 1
)
vF δq

]
(iq0 − vF δq)2 − (2vF �)2

]
. (A10)
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This form of the susceptibility bubble is tremendously useful for studying the two limits where 0 < |q|,q0/vF < � and 0 < � <

|q|,q0/vF . In the former, we are justified in making an expansion of the denominator in the integrand in |q|
�

and q0

vF �
, which after

performing the angular integral yields

I
(2)
μiνj (q) = rδμνδij + r(iεμνδij )

(
iq0

2vF �

)
+ rδμνδij

(
iq0

2vF �

)2

+ δij δμν

(
r̄ − r

4

)( |q|
2�

)2

+ . . . . (A11)

In real space, these lead to the following contributions to the effective action, which are entirely local,

δL(2)
eff = − r

2
�μi�μi + 1

2

(
r

2vF �

)
iεμν�μi∂τ�νi + 1

2

[
r

(2vF �)2

]
(∂τ�μi)(∂τ�μi) + 1

2

[
r − r̄

16�2

]
∇�μi∇�μi. (A12)

The second term on the RHS is the “Berry phase” term, which is crucial in giving the theory its z = 2 character. The third term
is higher order temporal gradient term and the last term is a renormalization of the parameter κ in Eq. (A3). For simplicity, we
have absorbed this latter renormalization into a redefinition of κ and we neglect the q2

0 term to leading order. This contributes to
Eq. (3.1) with the couplings Eq. (3.2). Note that the 2vF � > 0 gap is absolutely crucial in producing these local terms. This is
so because at small q, the fermionic fluctuations within the fermionic loop are gapped intraband in character.

Now in the other extreme limit, we can set � = 0 and for simplicity take r̄ = r . We will have instead the following nonlocal
expression [9]:

I
(2)
μiνj (q) − I

(2)
μiνj (0) = 2r

∫
dθk

2π
(k̂T τ i k̂)(k̂T τ j k̂)

(
iq0

vF δq − iq0

)
δμν

= −r
|q0|
‖q‖

{
δij +

(
vF |q|

‖q‖ + |q0|
)4(

cos 4θq sin 4θq
sin 4θq − cos 4θq

)
ij

}
δμν, (A13)

where I
(2)
μiνj (0) = rδij δμν and ‖q‖2 = q2

0 + v2
F |q|2. The angu-

lar integrals are carried out using the harmonic expansion
identity (B2). Diagonalization of this susceptibility kernel then
leads to the usual transverse and longitudinal polarization
modes [9]. Also note that the 2D Lindhard function [75] is
contained in this function as a factor since

|q0|
‖q‖ = |q0|√

v2
F |q|2 + q2

0

= |x|√
x2 + 1

, (A14)

where x = q0

vF |q| .

3. Quartic interaction

The next term to consider is the quartic interaction of �

shown in Fig. 9, specialized to the q = 0 limit. By the standard
application of the Feynman rules and linearizing k ≈ kF k̂k

FIG. 9. The quartic interaction bubble I
(4)
μi,νj,ρg,λh for the static-

homogeneous mode �(q = 0)μi .

gives

I
(4)
μi,νj,σg,λh = −

∫
d2k

(2π )2

1

β

∑
k0

∑
m,n,l,o

σμ
mnσ

λ
nlσ

ρ

loσ
ν
om

× ei(θk)ej (θk)eg(θk)eh(θk)Gm(ik0,k)Gn(ik0,k)

× Gl(ik0,k)Go(ik0,k), (A15)

where ei(θk) := k̂T τ i k̂. To proceed, we simplify the product
of Green’s functions by partial fractions and carry out the
Matsubara sum over k0 by a contour integral. This last step
involves double poles, which produces factors of the derivative
of the Fermi function n′

F (ξk). This yields at the end, after a∫
dξN (ξ ) integration,

I
(4)
μi,νj,ρg,λh

= 4(δμλδρν − εμλερν)

[
r̄ − r

(2vF �)2

] ∫ π

−π

dθk

2π
eiej egeh

= 1

2
(δμλδρν − εμλερν)(δij δgh + δigδjh + δihδjg)

×
[

r̄ − r

(2vF �)2

]
, (A16)

where we have used the identities (A7) and the relation∫ π

−π

dθk

2π
ei(θk)ej (θk)eg(θk)eh(θk)

= 1

8
(δij δgh + δigδjh + δihδjg). (A17)

Thus we need nontrivial band curvature r �= r̄ or varying DOS
for this coefficient (coupling constant) to be nonzero. This
diagram then leads to the following contribution to the effective
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FIG. 10. The density n with its perturbative correction δn due to
� at order O(�2).

Lagrangian:

δL(4)
eff = −1

4
Iμi,νj,ρg,λh�μi�νj�ρg�λh

= 1

8

[
r − r̄

(2vF �)2

]
[(�μi�μi)

2 + 2(�μi�μj�νj�νi)],

which is manifestly O(2)iso × O(2)rot symmetric. We further
simplify this by defining the parameter

λ = 1

2

[
r − r̄

(2vF �)2

]
≈ −N ′′(0)

24
, (A18)

which gives after some manipulation

δL(4)
eff = 3λ

4
(�μi�μi)

2 − λ

4
(εμνεij�μi�νj )2, (A19)

where we have used

(�μ1�μ2)2 = (�μ1�μ1)(�ν2�ν2) − (εμν�μ1�ν2)2

in the previous expression for δL(4)
eff .

As it stands, the first term on the RHS of Eq. (A19) is
parametrically larger than the second which would suggest
that only one type of symmetry broken-phase, the β phase will
be preferred. Also, for stability reasons of the free energy, it
appears that we will always require that λ > 0 or equivalently
N ′′(0) < 0. However, by working in a fixed density scheme as
opposed to a fix chemical potential, we can supplement δL(4)

eff
with a counter term at the quartic order in �, which will lead
to a richer phase diagram.

Fixed density

Following Refs. [13,15], we next determine the fixed
density corrections to the quartic interaction in �. The field
�μi(q = 0) �= 0 will lead to distortions of the Fermi surfaces,
which in turn leads to changes in the total density. Now the
density n with O(�2) corrections is shown in Fig. 10, which
evaluates to

n = n0 + (2vF �)r + N ′(0)

2
(�μi�μi), (A20)

where n0 = 2
∫ 0
−∞ dξ N (ξ ) is the reference density when there

is zero splitting � = 0. Then we parametrize

n0(δμ) = 2
∫ δμ

−∞
dξ N (ξ ) ≈ n0 + 2N (0)δμ (A21)

as a change in the “bare” density due to a small change in
chemical potential δμ. Demanding that n remain constant at its

� = 0 value, we have to leading order the constraint equation

n0(δμ) + (2vF �)r(δμ) + N ′(+δμ)

2
(�μi�μi)

= n0 + (2vF �)r (A22)

with r(δμ) being the new measure of average DOS after a
change in chemical potential. It has a form

r(δμ) = 1

2vF �

∫ vF �

−vF �

dξ N (ξ − δμ) ≈ r − N ′(0)δμ.

(A23)

To leading order in smallness in �μi�μi , we can ignore
the variation in N ′(+δμ). Then, from solving the constraint
equation, we have to O(δμ)

δμ = − N ′(0)

2[(2vF �)N ′(0) + 2N (0)]
�μi�μi, (A24)

which leads to a correction in r as

δr = −1

2

[
N ′(0)2

2N (0) − (2vF �)N ′(0)

]
(�μi�μi). (A25)

Hence the effective action acquires an additional “counter
term” arising from the quadratic term −(r/2)�μi�μi as

−δr(�)

2
(�μi�μi) = 1

4

[
N ′(0)2

2N (0) − (2vF �)N ′(0)

]
(�μi�μi)

2

≈ 1

8

(
N ′(0)2

N (0)

)
(�μi�μi)

2 (A26)

in the approximation that | N(0)
N ′(0) | � 2vF �; that is, in the large

DOS limit. Also note that this correction is regular in the � = 0
limit.

Finally, including the constant density correction with
the previously calculated direct quartic interaction yields the
following total quartic contribution to the effective action

δL(4)
eff =

(
α′

4
+ 3λ

4

)
(�μi�μi)

2 − λ

4
(εμνεij�μi�νj )2, (A27)

where α′ = N ′(0)2

2N(0) is newly defined parameter. This leads then
the expressions quoted in Eq. (3.2).

APPENDIX B: HARMONIC EXPANSION OF THE
FERMI-LIQUID DENSITY-DENSITY PROPAGATOR

Calculations will often involve angular
∫

dθk integrals with
the density-density propagator (vF δq − iq0)−1, with δq =
k̂ · q = |q| cos θkq . We present here a closed form harmonic
expansion for this function, which can then be used to
evaluate the desired angular integrals. Defining the following
geometrical quantities:

‖q‖ =
√

q2
0 + v2

F |q|, x = q0

‖q‖ , y = vF |q|
‖q‖ ,

tan α = y

|x| , tan

(
α

2

)
= y

1 + |x| = vF |q|
‖q‖ + |q0| , (B1)
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we have the expansion

1

vF δq − iq0
= i sign(q0)

‖q‖

(
1 + 2

∞∑
n=1

(−1)nei nπ
2 sign(q0)

× tann
(α

2

)
cos(nθkq).

)
(B2)

This expansion can be derived by using the Jacobi-Anger
identity [76] to expand the RHS of

1

vF δq − iq0
=

(
1

‖q‖
)

1

y cos θkq − ix

= isign(q0)

‖q‖
∫ ∞

0
ds e−|x|se−isign(x)ys cos θkq (B3)

in terms of Bessel functions Jm(z). It turns out the integrals
can be evaluated by Laplace transforms, which gives the stated
expression after some simplification using x2 + y2 = 1.

We note that more general expansions for the func-
tion [vF (k̂)k̂ · q − iq0]−1 than Eq. (B2) can be derived for
anisotropic Fermi velocities vF (k̂). Although tedious, this can
be achieved by through a generalized Jacobi-Anger expansion
of eif (θk) cos θkq using multivariate Bessel functions [77] and their
associated Laplace transforms. Extensions to three dimensions
are also relatively straightforward.

APPENDIX C: NAMBU-GOLDSTONE ACTION
FOR A BROKEN U(N) SYMMETRY

For the curious reader, we sketch here the derivation of the
Nambu-Goldstone action in the case of U(N ) symmetry of a
nonrelativistic N -component boson. This may be regarded as
the symmetry broken action of Eq. (4.2) in the λ = 0 limit for
an enlarged symmetry group such that φ(x,τ ) ∈ CN . When
ρ < 0 with α > 0, the U(N ) symmetry is broken and the
vacuum is set by the equilibrium density n0:

〈φ(x,τ )〉 = φ0 ∈ CN, (C1)

n0 = φ
†
0φ0 = |ρ|

α
. (C2)

Now the field φ as a representation of the U(N ) group is not
simply transitive. Hence we need to quotient out the stabilizer
of φ0, which brings the symmetry group down to SU(N ). This
stabilizer is expressed in terms of the central U(1) subgroup in
U(N ) (which is given by the determinant map) and the Cartan
subgroup generated by the following su(N ) generator:

�̂ = 2φ0φ
†
0

(φ†
0φ0)

− 1. (C3)

The stabilizer of φ0 is then simply given by

Hφ0 ≡ {exp(iθ [1 − �̂]) : θ ∈ R} ⊂ U (N ). (C4)

Hence the order parameter target space is the following coset
space:

U (N )/Hφ0
∼= SU (N ). (C5)

Now the group quotient operation removes the generator
(1 − �̂) by enforcing 1 ≡ �̂ at the level of the Lie algebra.

Hence as a matter of convenience, we will continue to use the
fundamental representation of SU(N ) acting on φ, but with the
understanding that the Cartan subgroup generated by �̂ is to
be identified with the central U(1) of U(N ) ∼= U (1) × SU(N ).

Next, we parametrize the first-order fluctuations of φ about
φ0 by the following:

φ =
√

n0 + δn

n0
eiπAT A

φ0 = φ0 + δφ, (C6)

δφ = iπAT Aφ0 +
(

δn

2n0

)
φ0, (C7)

where the first term in δφ corresponds to the SU(N) fluctuation
given as a Lie algebra valued field πAT A and the second term
to the amplitude fluctuation expressed as a density variation
δn. The matrices {T A} are a traceless Hermitian basis of su(N )
with the structure constants f AB

C given by

[T A,T B] = if AB
CT C. (C8)

To the level of Gaussian fluctuations in the order parameter,
we have the following expanded Lagrangian:

L(0)
NG = i(φ†

0T
Aφ0)

(
δn

n0

)
∂τπA + i

2
f AB

C(φ†
0T

Cφ0)πA∂τπB

+ (φ†
0T

(AT B)φ0)∇πA · ∇πB

+
(

1

4n0

)
∇(δn) · ∇(δn) +

(α

2

)
δn2, (C9)

where boundary terms have been tacitly omitted. We next
proceed to integrate out the massive δn amplitude modes and
note that the functional measures Dφ†Dφ and DπAD(δn)
agree up to irrelevant constants. We then have the following
final lowest order (in gradients) effective free Lagrangian for
the Nambu-Goldstone fields:

L(0)
NG = GAB∂τπA∂τπB + i�ABπA∂τπB + KAB∇πA · ∇πB,

(C10)

where the isospin tensors are given by the following order
parameter expectations:

GAB = (φ†
0T

Aφ0)(φ†
0T

Bφ0)

2|ρ| = GBA, (C11)

KAB = (φ†
0T

(AT B)φ0) = KBA, (C12)

�AB = 1

2
f AB

C(φ†
0T

Cφ0) = −�BA. (C13)

In the N = 1 case, which is the single component nonrelativis-
tic superfluid, G and K are scalars and � = 0. However, in
the general SU(N ) symmetric nonrelativistic boson case, the
Goldstone Lagrangian L(0)

NG seems to include the additional
“Berry” phase term i�ABπA∂τπB . The fact that � �= 0 is the
reason for the modified counting rule for the Nambu-Goldstone
modes [29,31].

APPENDIX D: GRADIENT EXPANSIONS

In this Appendix, we describe the gradient expansion in q

which operates by isolating the singularity at q → 0. This is
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FIG. 11. The conventional density-density response bubble.

necessary because neither a Taylor nor Laurent expansion in
q is possible with the response kernels of a gapless metallic
model. In many ways, the gradient expansion resembles that
of an operator product expansion [45–47] of coincident poles
in complex frequency space as q0 → 0. We first describe the
simplest example of the response bubble encountered in the
density-density response.

1. Density-density example

In calculating the bare or conventional (gapless) density-
density response (shown in Fig. 11) we encounter the following
expression obtained from linearizing ξk±q/2 = ξk ± vF δq/2
and nF (ξk±q/2),∫

d2k

(2π )2

1

β

∑
k0

G(ik+
0 ,k+)G(ik−

0 ,k−)

=
∫

d2k

(2π )2

(
vF δq

vF δq − iq0

)
n′

F (ξk)

=
∫

d2k

(2π )2

(
vF δq

vF δq − iq0

)
1

β

∑
k0

G(ik0,k)2, (D1)

where δq = q · k̂ and in the last line we have resubstituted
the Matsubara sum by using the relation between Matsubara
summed powers of the (bare) Green’s function and derivatives
of nF ,

1

β

∑
k0

G(ik0,k)m = 1

(m − 1)!
n

(m−1)
F (ξk), m > 0.

(D2)

Also we let G(z,k) = (z − ξk)−1 be the single-particle Green’s
function. This suggests the following identity:

G(ik+
0 ,k+)G(ik−

0 ,k−) ≡
(

vF δq

vF δq − iq0

)
G(ik0,k)2, (D3)

which is valid only inside the Matsubara frequency sum, and
in the limit of q → 0. Thus, in this sense, it resembles an
OPE in complex frequency space, where in the limit q → 0,
the complex energy poles of the G’s coincide to form a
double pole. Moreover, in performing the Matsubara sum, a
contour integral is invoked which furthers the analogy with
OPE’s encountered in conformal field theories. Amusingly, it
is the opposite of a short distance expansion, since small q

corresponds to long wavelengths and low frequencies.
In deriving gradient expansion terms of the many response

kernels, we will need more replacement identities between
different combinations and powers of Green’s functions under
a Matsubara frequency sum. These can all be derived in much
the same way as the above argument suggest. As an example,
consider a meromorphic function F (z), which is never singular
at z = k0 and the following Matsubara frequency summation
using the contour integral:

1

β

∑
k0

G(ik+
0 ,k+)G(ik−

0 ,k−)F (ik0) = 1

vF δq − iq0

∮
−C

dz

i2π

(
1

z + i
q0

2 − ξk+
− 1

z − i
q0

2 − ξk−

)
F (z)nF (z), (D4)

where C is the contour which surrounds (counterclockwise) the poles of nF (z) located at the odd Matsubara frequencies
z = ik0 = (2n + 1)π/kBT . Let (−C)′ be the contour (−C) but which excludes a neighborhood, which contains ξk± ∓ i

q0

2 . Then
from linearizing by (q0,q)

1

β

∑
k0

G(ik+
0 ,k+)G(ik−

0 ,k−)F (ik0)

= 1

vF δq − iq0

{
F

(
ξk+ − i

q0

2

)
nF (ξk+) − F

(
ξk− + i

q0

2

)
nF (ξk−)

}

+ 1

vF δq − iq0

∮
−C′

dz

i2π

[
G

(
z + i

q0

2
,k+

)
− G

(
z − i

q0

2
,k−

)]
F (z)nF (z)

= F ′(ξk)nF (ξk) +
(

vF δq

vF δq − iq0

)
F (ξk)n′

F (ξk) +
(

1

vF δq − iq0

)

×
∮

−C′

dz

i2π

[
G

(
z + i

q0

2
,k+

)
− G

(
z − i

q0

2
,k−

)]
F (z)nF (z)

= F ′(ξk)nF (ξk) +
(

vF δq

vF δq − iq0

)
F (ξk)n′

F (ξk) +
(

1

vF δq − iq0

)∮
−C′

dz

i2π
(vF δq − iq0)G(z,k)2F (z)nF (z)
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= F ′(ξk)nF (ξk) + F (ξk)n′
F (ξk) +

(
vF δq

vF δq − iq0
− 1

)
F (ξk)n′

F (ξk) +
∮

−C′

dz

i2π
G(z,k)2F (z)nF (z)

=
(

iq0

vF δq − iq0

)
F (ξk)n′

F (ξk) +
∮

−C

dz

i2π
G(z,k)2F (z)nF (z)

=
∮

−C

dz

i2π

[
iq0F (ξk)

vF δq − iq0
G(z,k)2 + G(z,k)2F (z)

]
nF (z),

where in the second equality we used the analyticity of F in
the neighborhood z = ξk± and Taylor series expanded in q.
Likewise, in the third equality, we used the analyticity of the
G’s under the integral in the same neighborhood of z = ξk±

to series expand to lowest order in q. For the penultimate
equality, we can consolidate the first two terms of the previous
line into the whole contour integral −C. Since this expansion
holds within the linearized approximations, we can infer the
OPE-like long-distance expansion

G(ik+
0 ,k+)G(ik−

0 ,k−)F (ik0)

=
(

iq0

vF δq − iq0

)
F (ξk)G(ik0,k)2 + G(ik0,k)2F (ik0),

(D5)

where the two sides are meant to agree only (i) inside the
Matsubara frequency summation of ik0, (ii) in the linearized
approximation of the dispersion ξ±

k and nF (ξk±), (iii) to the
lowest most singular order in the small expansion of q, and
(iv) F (z) is analytic in the neighborhood of z = ξk. Note also
both sides agree in the q = 0 limit only when the order of
limits is taken such that q0 → 0 first then |q| → 0.

Finally, we can derive more intricate gradient expansions
involving multiple Green’s functions which are valid only
inside Matsubara frequency sums using the same methods as
above. In a way, this is just a systematic way to perform the
contour integral around each individual pole separately. The
standard procedure is as follows: (0) convert the Matsubara
sum into a contour integral in the conventional way; (1) deform
and isolate the contour around the desired singularity, e.g.,
z = ξnk± ; (2) perform the contour and collect the residues just
around that pole; (3) using the assumed analyticity properties
of the remaining factors of the integrand, Taylor expand about
q = 0; (4) reorganize terms such that the resulting terms may
be re-incorporated into an integral using the original contour;
(5) identify terms inside to contour integral to derive the
desired relation.

These expansions are then used to derive the explicit forms
of the response kernels in Appendix F. Note also that after the
expansion, the terms are factored into angular θk and isotropic
factors, making it easier to carry out the

∫
d2k integrations.

APPENDIX E: DAMPING OF THE NAMBU-GOLDSTONE
MODES

In this Appendix, we will derive an approximate form of
this damping which appears in the RPA corrected effective
action using the mean-field Green’s functions in either broken
symmetry phase. The mean-field Green’s function can be

conveniently parametrized as

G(ik0,k) = [
ik0 − ξk − vF �σz − k−2

F 〈�μi〉(kT τ ik)σμ
]−1

= [ik0 − ξk − �k aα(k)σα]−1, (E1)

where the indices range over μ = x,y but α = x,y,z, and the
uniform mean field is given as 〈�μi〉 �= 0. The quantity �k > 0
is the mean-field corrected gap between the Fermi surfaces and
is given as

�2
k = (vF �)2 + k−4

F 〈�μi〉〈�μj 〉(kT τ ik)(kT τ j k) (E2)

such that �a(k) · �a(k) = 1. The mean-field energy bands are in
turn given as E(1,2)k = ξk ± �k. We further express G(ik0,k)
in terms of its spectral projectors as

G(ik0,k) = G1(ik0,k) P1(k) + G2(ik0,k) P2(k), (E3)

where Gn(ik0,k) = ik0 − En(k) and

P1(k) = 1
2 (1 + aα(k)σα), P2(k) = 1

2 (1 − aα(k)σα). (E4)

Next, allowing for fluctuations in �μi leads to coupling to
the mean-field Hamiltonian through the following interaction
term: ∫ [

k−2
F (kT τ ik)ψ†

k−σμψk+
]
δ�μi(−q), (E5)

where δ� is the fluctuation and the integral is understood
to mean to be over k and (q0,q). Here k is understood to
be the average momentum between ψ and ψ†. Hence the
computation of the susceptibility bubble in the mean-field
phase proceeds in much the same way as the computation
of the Feynman diagram of Fig. 8 in Appendix A. The key
difference now being that the fermion-boson vertex coupling
is through the fluctuation δ� and the fermion propagators have
now acquired uniform mean-field self-energy corrections in
G(ik0,k) as given above. We quote below the final result
for the intraband contribution to the susceptibility kernel
J (2)(q)μiνj = 〈δ�νj (−iq0, − q) δ�μi(iq0,q)〉MF,

(
J

(2)
intra

)
(q)μiνj

= 1

k4
F

∫
d2k

(2π )2

1

β

∑
k0

[(k+)T τ i(k+)][(k−)T τ j (k−)]

×
2∑

m=1

(
q · ∇Emk

q · ∇Emk − iq0

)
Tr[σμPm(k+)

× σ νPm(k−)]δ(Emk). (E6)
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To proceed, we make the following simplifying approxima-
tions:

(k±)T τ i(k±) ≈ kT τ ik,

q · ∇Emk ≈ vF q · k̂ = vF δq,

Tr[σμPm(k+)σ νPm(k−)] ≈ Tr[σμPm(k)σ νPm(k)],

which amounts to moving all the complexities of nonzero
q to the particle-hole excitation kernel in the large curly
parentheses. The effects of the broken symmetry manifests
as a nonzero trace which is normally zero in the normal phase.
This expression then simplifies to(

J
(2)
intra

)
(q)μiνj

≈ 1

k4
F

∫
d2k

(2π )2

1

β

∑
k0

[kT τ ik][kT τ j k]

×
(

1 + iq0

vF δq − iq0

)
aμ(k)aν(k)

2∑
m=1

δ(Emk), (E7)

where for convenience we have separated the static and
dynamic parts out, and used the expression relating Pm(k) and
�a(k). Finally, we approximate k ≈ kF k̂ and the delta functions
localized on the Fermi surfaces by δ(E(1,2)k) ≈ δ(ξk ± vF �).
Carrying out the radial integration with the density of states
function N (ξ ) and substitute �k ≈ vF � in the denominator
gives the leading-order term(

J
(2)
intra

)
(q)μiνj − (

J
(2)
intra

)
(0)μiνj

≈ 2r̄ 〈�μl〉〈�νp〉
(vF �)2

∫
dθk

2π
ei(θk)ej (θk)el(θk)ep(θk)

×
(

iq0

vF δq − iq0

)
(E8)

with r̄ = 1
2 (N (+vF �) + N (−vF �)) and the harmonic func-

tions e1(θk) = cos(2θk) and e2(θk) = sin(2θk). Now the static
part is uninteresting and is a mass renormalization that
according to Goldstone’s theorem must vanish for the relevant
broken symmetry. Thus we focus only on the dynamic
contribution. The final integral can be performed exactly
using the expansion (B2), which leads to n = 0,4,8 angular
harmonic contributions. The higher angular harmonics are
needed to distinguish between longitudinal and transverse
modes, but are subleading compared to the isotropic n = 0

FIG. 12. The simplest quartic interaction terms at finite momen-
tum q that lead to damping from interband scattering in the broken
symmetry mean-field phases. Here, k± = k ± q/2, where k is the
internal loop momentum. The diagrammatic notation follows that of
Fig. 7 in Appendix A.

mode. Thus we make a final approximation by computing the
leading-order n = 0 angular integral, which gives(

J
(2)
intra

)
(q)μiνj − (

J
(2)
intra

)
(0)μiνj

≈ −2r̄ Cij lp〈�μl〉〈�νp〉
(vF �)2

⎛
⎝ |q0|√

v2
F |q|2 + q2

0

⎞
⎠, (E9)

where we have defined the tensor

Cijlp = 1
8 (δij δlp + δilδjp + δipδjl). (E10)

Finally, analytically continuing to real frequencies iq0 → ω +
i0+ and in the branch where s = |ω|

vF |q| < 1, yields to O(s)(
J

(2)
intra

)
(ω,q)μiνj − (

J
(2)
intra

)
(0)μiνj

≈
( −iω

vF |q|
)[

2r̄

(vF �)2

]
Cijlp〈�μl〉〈�νp〉, (E11)

which is an imaginary self-energy correction to the correlator
〈δ�νj (−ω, − q) δ�μi(ω,q)〉 and is the form quoted in the main
text. Note that the interband fluctuations also contribute to this
correlator and are already accounted for in the effective actions
(4.15) and (4.20) to lowest order.

We remark that in principle this damping channel could
have be deduced from the trace-log expansion of Eq. (2.19).
The O(〈�〉4) dependence of this term indicates that it has its
origins in the gradient expansion of the quartic interaction
terms. A straightforward estimation of the Feynman diagrams
shown in Fig. 12 shows that this is the case. However, these
terms, as are irrelevant in the renormalization group sense in
the normal phase (cf. Sec. V). Due to the z = 2 dynamical
scaling, the factor iq0/|q| has scaling dimensions of a gradient
and thus quartic and higher-order couplings appearing together
with factors of iq0/|q| are necessarily irrelevant.

APPENDIX F: EXPLICIT FORMS OF THE LINEAR EM RESPONSE KERNELS

For convenience, we list here some definitions for parameters and notation used in expression the response kernels:

ξ1(k) = ξk + vF �, ξ2(k) = ξk − vF �, vF = ∂ξk

∂|k|
∣∣∣∣
ξk=0

, r = 1

2vF �

∫ +vF �

−vF �

N (ξ )dξ, r̄ = N (+vF �) + N (−vF �)

2
,

s = N (+vF �) − N (−vF �)

2vF �
, ‖q‖ =

√
v2

F |q|2 + q2
0 , G1,2 = 1

iq0 − ξ1,2(k)
, vF δq = vF q · k̂ ≡ vF |q| cos(θk − θq),

and the quadrupole tensors τ 1 ≡ σ z,τ 2 ≡ σx such that k̂T τ i k̂ = (cos 2θk, sin 2θk)i .
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1. Conventional polarization diagrams

These diagrams do not couple �μi and represent the “bare” electromagnetic response

K00
0 (q) = = −e2

∫
d2k

(2π )2

1

β

∑
k0

(
vF δq

vF δq − iq0

)(
G2

1 + G2
2

)

= 2e2r̄

(
1 − |q0|

‖q‖
)

,

K0b
0 (q) = = e2

∫
d2k

(2π )2

1

β

∑
k0

∂bξk

(
vF δq

vF δq − iq0

)(
G2

1 + G2
2

)

= −2ie2r̄vF

|q0|
‖q‖

(
vF |q|

‖q‖ + |q0|
)(

cos θq

sin θq

)
b

,

Kab
0 (q) = = −e2

∫
d2k

(2π )2

1

β

∑
k0

∂aξk∂bξk

(
iq0

vF δq − iq0

)(
G2

1 + G2
2

)

= e2r̄v2
F

|q0|
‖q‖

[
−δab +

(
vF |q|

‖q‖ + |q0|
)2(

cos 2θq sin 2θq

sin 2θq − cos 2θq

)
ab

]
,

where (cos θq, sin θq)T = q̂ and (cos 2θq sin 2θq

sin 2θq − cos 2θq
)
ab

= 2q̂a q̂b − δab. Also Kb0
0 (q) = K0b

0 (q).

The Ward identity qaK
ab
0 (q) + iq0K

0b
0 (q) = 0 can be easily checked in the integrated and un-integrated forms. Coupling

to the � nematic field will introduce more complicated harmonics in the EM response kernels as well as a Hall conductivity
(Chern-Simons) contribution. Also, when analytically continuing to the retarded branch, we use the following:

|q0| → −iω + 0+, ‖q‖ =

⎧⎪⎨
⎪⎩
√

v2
F |q|2 − ω2,

(
ω

vF |q|
)2

< 1

−i

√
ω2 − v2

F |q|2, (
ω

vF |q|
)2

> 1
.

2. Response of Kμb
2 and its Ward identity

These are diagrams that have an outgoing (to the right) current vertex, which originates from the quadrupole vertex(shaded
blobs). They produce the first nontrivial Hall response:

Kab
2 (iq0,q) =

= −
(

4e2

k4
F

)∫
d2k

(2π )2

1

β

∑
k0

[
+ 2iq0(τ ik)a(τ j k)b

(
G1 − G2

(2vF �)2

)
iεμν +

(
iq0

vF δq − iq0

)
∂aξk (kT τ ik)(τ j k)b

×
(

G2
1 − G2

2

2vF �

)
δμν −

(
iq0

vF δq − iq0

)
∂aξk (qT τ ik)(τ j k)b

(
G2

1 + G2
2

2vF �

)
iεμν

]
�μi�νj

= −
(

4e2

k2
F

)(
r

2vF �

)
(εij εμν�μi�νj ) q0εab +

(
2e2

k2
F

)(
r̄

2vF �

)
(εij εμν�μi�νj )q0

(
1 − |q0|

‖q‖
)

×
{

εab +
(− sin 2θq cos 2θq

cos 2θq sin 2θq

)
ab

}
+
(

e2s

kF

)
�μi�μj

(
vF |q|
‖q‖

){
+δij δab −

(
vF |q|

‖q‖ + |q0|
)2

×
[
δij

(
cos 2θq sin 2θq

sin 2θq − cos 2θq

)
ab

+ σ z
ij

(
cos 2θq − sin 2θq

− sin 2θq − cos 2θq

)
ab

+ σx
ij

(
sin 2θq cos 2θq

cos 2θq − sin 2θq

)
ab

]

−
(

vF |q|
‖q‖ + |q0|

)4[
σ z

ij

(
cos 4θq − sin 4θq

sin 4θq cos 4θq

)
ab

+ σx
ij

(
sin 4θq cos 4θq

− cos 4θq sin 4θq

)
ab

]}
,
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K0b
2 (iq0,q) =

=
(

4e2

k4
F

)∫
d2k

(2π )2

1

β

∑
k0

[(
vF δq

vF δq − iq0

)
(kT τ ik)(τ j k)b

(
G2

1 − G2
2

2vF �

)
δμν

+ 2(qT τ ik)(τ j k)b

(
G1 − G2

(2vF �)2

)
iεμν −

(
vF δq

vF δq − iq0

)
(qT τ ik)(τ j k)b

(
G2

1 + G2
2

2vF �

)
iεμν

]
�μi�νj

= −i

(
4e2

k2
F

)(
r

2vF �

)
(εij εμν�μi�νj ) qaεab + i

(
4e2

k2
F

)(
r̄

2vF �

)
(εij εμν�μi�νj )

(
1 − |q0|

‖q‖
)

qaεab

+ i

(
2e2s

kF

)
(�μi�μj )

q0

‖q‖

{(
vF |q|

‖q‖ + |q0|
)

δij

(
cos θq

sin θq

)
b

+
(

vF |q|
‖q‖ + |q0|

)3[
σ z

ij

(− cos 3θq

sin 3θq

)
b

− σx
ij

(
sin 3θq

cos 3θq

)
b

]}
,

where a tedious calculation will show a line by line cancellation in the Ward identity qaK
ab
2 + iq0K

0b
2 = 0. Moreover, the first

lines of either K2 contribute to a Hall (Chern-Simons) response.

3. Response of Kμν

1

The remaining set of response kernels, which are order O(�2) are as follows:

,

where

= 2e2

k4
F

∫
d2k

(2π )2

1

β

∑
k0

{
(kT τ ik)(kT τ j k) ∂aξk∂bξk

[
G1G2

(
G2

1 + G2
2

) −
(

iq0

vF δq − iq0

)
G2

1 + G2
2

(2vF �)2

]

+ 2(τ ik)a(kT τ j k) ∂bξk

[
G2

1 − G2
2

2vF �

]}
�μi�μj ,

= −4e2

k4
F

∫
d2k

(2π )2

1

β

∑
k0

∂bξk

{
(τ ik)a(kT τ j k)

[
G2

1−G2
2

2vF �
+
(

iq0

vF δq−iq0

)
G2

1−G2
2

2vF �

]
�μi�μj

− (τ ik)a(qT τ j k)

(
iq0

vF δq − iq0

)(
G2

1 + G2
2

2vF �

)
iεμν�μi�νj ,

}

= −2e2

k4
F

∫
d2k

(2π )2

1

β

∑
k0

(kT τ ik)(kT τ j k) ∂aξk∂bξk

{
G1G2

(
G2

1+G2
2

)+(
iq0

vF δq−iq0

)[
G1G2

(
G2

1+G2
2

)− 2G1G2

(2vF �)2

]}
�μi�μj

+ 4e2

k2
F

∫
d2k

(2π )2

1

β

∑
k0

(qT τ ik)(kT τ j k) ∂aξk∂bξk

(
iq0

(vF δq − iq0)2

)[
G2

1 − G2
2

2vF �

]
�μi�μj ,
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where

= 2e2

k4
F

∫
d2k

(2π )2

1

β

∑
k0

(kT τ ik)(kT τ j k) ∂bξk

[
G2

1G
2
2 +

(
iq0

vF δq − iq0

)
G2

1 + G2
2

(2vF �)2

]
�μi�μj

= 2e2

k4
F

∫
d2k

(2π )2

1

β

∑
k0

(kT τ ik)(kT τ j k) ∂bξk

(
iq0

vF δq − iq0

)[
G1G2

(
G2

1 + G2
2

) − 2G1G2

(2vF �)2

]
�μi�μj

− 4e2

k4
F

∫
d2k

(2π )2

1

β

∑
k0

(qT τ ik)(kT τ j k) ∂bξk

(
iq0

(vF δq − iq0)2

)[
G2

1 − G2
2

2vF �

]
�μi�μj ,

where

= −2e2

k4
F

∫
d2k

(2π )2

1

β

∑
k0

(kT τ ik)(kT τ j k)

[
G2

1G
2
2 +

(
iq0

vF δq − iq0

)
G2

1 + G2
2

(2vF �)2

]
�μi�μj

and

= −2e2

k4
F

∫
d2k

(2π )2

1

β

∑
k0

(kT τ ik)(kT τ j k)

{
G1G2

(
G2

1 + G2
2

) +
(

iq0

vF δq − iq0

)[
G1G2

(
G2

1 + G2
2

) − 2G1G2

(2vF �)2

]}
�μi�μj

+ 4e2

k2
F

∫
d2k

(2π )2

1

β

∑
k0

(qT τ ik)(kT τ j k)

(
iq0

(vF δq − iq0)2

)[
G2

1 − G2
2

2vF �

]
�μi�μj .

These response kernels can be evaluated using the same methods of those used to evaluate K
μν

2 (q), but they do not add much
to the discussion. However, from a tedious calculation, in their unintegrated form they satisfy the necessary Ward identities
qaK

aμ

1 (q) + iq0K
0μ

1 (q) = 0.
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