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We calculate exact zero-temperature real-space properties of a substitutional magnetic impurity coupled to
the edge of a zigzag silicenelike nanoribbon. Using a Lanczos transformation [A. Allerdt et al., Phys. Rev. B
91, 085101 (2015)] and the density-matrix renormalization-group method, we obtain a realistic description of
stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states.
Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the
spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on
the location of the impurity. More specifically, our real-space resolution allows us to conclude that there is a sharp
distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as
expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the
conduction electrons and that the edges scatter from the impurity and “snake” or circle around it. Our estimates
for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit
coupling.
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I. INTRODUCTION

A revolution is underway in the study of two-dimensional
(2D) materials. Since the mechanical exfoliation of graphene
from graphite was achieved in 2004 [1] (see Ref. [2] for a
detailed review on graphene properties), many resources have
been invested in the synthesis of other monolayer systems.
These efforts have been rewarded by the discovery of many
new 2D compounds that are either stable in free-standing
form or grown in a substrate platform (for a comprehensive
review, see Ref. [3]). Among these new 2D materials, a
few raise additional possibilities linked to the presence of
nontrivial topological phases such as silicene, germanene,
and stanene. As a result of the spin-orbit interaction (SOI),
they present bulk-gapped phases with metallic helical (spin-
momentum locked) edge states (for a review, see Ref. [4]).
The locking of spin and momentum leads to suppression of
elastic backscattering of the helical electrons in the absence
of spin-flip processes. This, in turn, leads to the possibility
of dissipationless spin-polarized currents (see Refs. [5–7] for
comprehensive reviews).

Besides the interest in the basic physics associated with
topological phases in condensed-matter materials [either 2D
or three-dimensional (3D)], the recent explosion of work in
this field is also due to possible applications of topological
insulators (TIs) in spintronics [8–10]. For instance, strong spin-
transfer-torque effects have recently been observed at room
temperature in a 3D TI [11].

The search for new paradigms in electronics has spurred
interest in other quantum phenomena at the nanoscale:
electron correlations offer the promise of new functionality
in nanoelectronics related to the possible manipulation of
many-body ground states in suitably produced nanostructures
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such as quantum dots and nanoribbons [12–14]. An important
example that has attracted a great deal of attention is the
Kondo state, realized by coupling a magnetic impurity to
conduction electrons (see, for example, Sec. VII of Ref. [14]
for a recent review of the Kondo effect in carbon nanotubes). In
addition, Kondo physics offers the possibility of probing the
spin-texture surrounding the magnetic moment and gaining
valuable information about the effect of magnetic interactions
over the metallic surface state [15].

A brief review of the Kondo effect in TIs (with a focus
on quantum critical behavior) can be found in Ref. [16].
Initial experimental work concentrated on bulk-doped 3D TIs
[17–19], but since many TI-based devices require the surface
of the TI to be in contact with ferromagnets, experiments were
also done involving surface deposition of magnetic impurities
in 3D TIs [20–24].

In a theoretical study of the Kondo effect at the surface
of a 3D TI, Žitko [25] found that the Hamiltonian of a
quantum magnetic impurity coupled to metallic topological
surface states maps into a conventional pseudogap single-
channel Anderson impurity model with SU(2) symmetry.
It was also pointed out that despite the relatively trivial
nature of the low-energy Hamiltonian, the screening Kondo
cloud should possibly display a rather complex structure,
which would be reflected in nontrivial spatial dependencies
of the spin correlations between the magnetic impurity and
the topological surface states involved in the Kondo-singlet
formation.

Motivated by Fourier-transform scanning tunneling spec-
troscopy measurements done in iron-doped Bi2Te3 [26],
which analyzed the energy-dependent spatial variations of
the local density of surface states in terms of quasiparticle
interference (QPI), Mitchell et al. [27] conducted numerical
simulations of a single Kondo impurity on the surface of
a 3D TI to identify the signatures in QPI of the Kondo
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TABLE I. The parameters characterizing graphene, silicene,
germanene, and stanene. The Fermi velocity vF is in units of 105 m/s,
λSO and λR (Rashba SOI) are in meV. θ is the bond angle. Adapted
from Ref. [4] (see also Ref. [38]).

t (eV) vF a (Å) λSO λR θ

Graphene 2.8 9.8 2.46 10−3 0 90
Silicene 1.6 5.5 3.86 3.9 0.7 101.7
Germanene 1.3 4.6 4.02 43 10.7 106.5
Stanene 1.3 4.9 4.70 100 9.5 107.1

interaction between the helical metal and the impurity. The
QPI simulation results were found to be markedly different
from those obtained for nonmagnetic or static magnetic
impurities.

The influence of the SOI on the Kondo effect in
2D TIs has been addressed in several numerical works
[28–32], particularly focusing on the behavior of the Kondo
temperature. In overall agreement with Ref. [25], Isaev et al.
[33] demonstrated that strong SOI leads to an unconventional
Kondo effect [despite being of the SU(2) kind] with an
impurity spin screened by purely orbital motion of surface
electrons. At low energies, the impurity spin forms a singlet
state with the total electron angular momentum, and the system
exhibits an emergent SU(2) symmetry, which is responsible for
the Kondo resonance.

Quantum Monte Carlo (QMC) simulations [34] applied to
a single-impurity Anderson model in a zigzag graphene edge
analyzed the influence of spin-momentum locking over the
Kondo state and found indications of a broken spin-rotation
symmetry in spin-spin correlation functions. A limitation of
this effort, stemming from constraints associated with the
QMC method, is the high value of the minimum temperature
achieved (∼1000 K for graphene).

In this work, we present results for the spin correlations
around a substitutional Anderson impurity at the edge of a
silicenelike topological insulator (more specifically, for ger-
manene and stanene; see Table I), with full spatial resolution
of the lattice. To the best of our knowledge, a detailed study
of these correlations in the Kondo ground state has not been
attempted so far.

The structure of this article is as follows: In Sec. II we
present the model and a very brief description of the numerical
method used (for details the reader is referred to previous
papers by the authors [35–37]). In Sec. III A we present the
band structure for a zigzag nanoribbon (ZNRB) in the TI
phase, focusing on the edge states. Section III B presents
local density of states (LDOS) results for sites at the edge
of the ZNRB, showing how it changes with SOI compared
to the LDOS of bulk sites. Section III C shows results for
spin correlations between the localized magnetic moment and
the conduction spins. We analyze the cases of a substitutional
impurity sitting at either crest or trough sites (as defined is Sec.
II) and study the effects of spin-orbit coupling. An analysis
of the influence of the SOI on the Kondo temperature is
performed in Sec. III D. The paper closes with a summary and
conclusions.

II. MODEL

The independent electron Hamiltonian Hband describing
the two-dimensional topological insulator corresponds to a
tight-binding band structure that is appropriate for silicene,
germanene, and stanene [4]:

Hband = −t
∑

〈i,j〉σ
c
†
iσ cjσ + i

λSO

3
√

3

∑

〈〈i,j〉〉σ
σνij c

†
iσ cjσ , (1)

where c
†
iσ creates an electron in site i with spin σ (note

that σ stands for σ =↑↓ when used as a subindex and for
σ = ± when used within equations). In addition, 〈i,j 〉 runs
over nearest-neighbor sites and 〈〈i,j 〉〉 runs over next-nearest-
neighbor sites. The first term describes nearest-neighbor
hoppings with transfer integral t . The second term is the
effective spin-orbit interaction with coupling λSO, where νij =
+1 if the next-nearest-neighbor hopping is counterclockwise
and νij = −1 if it is clockwise (in relation to the positive
z axis). The parameter values for silicene, germanene, and
stanene are given in Table I, where the corresponding values
for graphene are given for comparison (note that as graphene
does not buckle, its λSO value effectively vanishes; thus, it is
gapless and has no measurable topological properties, contrary
to silicene, germanene, and stanene). In Table I we also list the
Rashba spin-orbit interaction for each material. For the sake of
simplicity (and given its small value) we omitted it from our
calculations. The unit of energy for all results shown here is t .

In accordance with Table I, the ratios λSO/t for silicene,
germanene, and stanene are 0.0024, 0.033, and 0.077. We
will use in our calculations (unless stated otherwise) a value
three times larger than the one for germanene, i.e., λSO = 0.1.
Therefore, our results should describe the Kondo effect in
germanene and stanene. Due to its much smaller SOI, silicene
is expected to have a behavior (not shown) very similar to that
of graphene.

The total Hamiltonian HT = Hband + Himp + Hhyb in-
cludes, besides Hband, the impurity and its hybridization with
the lattice:

Himp = ε0(nimp,↑ + nimp,↓) + Unimp,↑nimp,↓, (2)

Hhyb = V
∑

σ

(c†imp,σ ckσ + H.c.), (3)

where nimp,σ = c
†
imp,σ cimp,σ and c

†
imp,σ (cimp,σ ) creates (anni-

hilates) an electron at the impurity, which is described by a
single-impurity Anderson model with Coulomb interaction U

and orbital energy ε0.
As for the hybridization between the impurity and the

lattice Hhyb, we will focus on a substitutional impurity, which
replaces an atom from either sublattice and therefore has
overlap integrals with more than one lattice site (from the
opposite sublattice). Therefore, ckσ stands for a symmetric
linear combination of two (or three, depending on which edge
site we are considering) nearest neighbors to the lattice site
occupied by the impurity. In the case of a zigzag nanoribbon
(studied in this work), with an edge geometry schematically
represented as · · · /\/\ · · · , which we denote as a sequence
of sites · · · ABABA · · · , the choice is between A sites (with
coordination three) and B sites (with coordination two). Our
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FIG. 1. (a) Sketch of the graphene geometry studied through the
Lanczos transformation for one impurity sitting at the edge (circle)
and the measurement site in the bulk at a distance R (diamond).
(b) The geometry of the equivalent problem, with the two seed
orbitals coupled to noninteracting tight-binding chains. The Lanczos
orbitals start interfering only at a distance R/2, introducing a hopping
term between the chains. There is an exact canonical transformation
connecting the two problems.

calculations show a wide variation in the results (mainly for
the spin correlations) depending on what edge site the impurity
replaces. In the following, we will refer to A and B sites in the
zigzag profile as “trough” and “crest” sites, respectively. Our
results clearly show that the metallic topologically nontrivial
states that screen the magnetic impurity reside in the crest
sites, while the trough sites and their immediate neighborhood,
as our spin correlation results have shown, behave as small
metallic “puddles”, which leak from the metallic edges and
are surrounded by the bulk.

In order to perform unbiased numerical simulations of the
model just described to calculate spin-spin correlations, we
use the so-called block Lanczos method recently introduced
by the authors [36,37] (see also Ref. [39] for an independent
development of the same ideas). This approach enables
one to study quantum impurity problems with a real-space
representation of the lattice, and in arbitrary dimensions, using
the density-matrix renormalization-group method (DMRG)
[40,41]. By generalizing the ideas introduced in Ref. [35]
for single-impurity problems, we reduce a complex lattice
geometry to a single chain or a multileg ladder in the case of
multiple impurities.

In order to measure spin-spin correlations in real space,
we need to employ the multi-impurity formulation described
in detail in Refs. [36,39]. In this approach, we use two seed
states corresponding to the impurity site and the orbital where
the correlations will be measured. A block Lanczos recursion
will generate a block tridiagonal matrix that can be interpreted
as a single-particle Hamiltonian on a ladder geometry. This
is illustrated schematically in Fig. 1(a), showing the case of
one seed state at the edge and the second one somewhere in
the bulk. The typical equivalent problem we need to solve
numerically is depicted in Fig. 1(b). Due to the presence
of spin-orbit coupling in the bulk, this geometry cannot be
further simplified. Still, the Hamiltonian in the new basis will
be one-dimensional and local, i.e., the many-body terms are
still the same as in the original Anderson impurity coupled to
the original lattice.

We want to emphasize that this mapping (see Fig. 1)
is exact and both geometries are connected by a unitary
transformation. The combination with the DMRG method
allows us to obtain exact results with real-space resolution
and uncover the marked difference between crest and trough
sites, as described above, which is inaccessible to the majority
of other methods traditionally used to study magnetic impurity
models. Results in this work were obtained by keeping up to
3000 DMRG states, which grants an accuracy of the order of
10−6 or better for the energy and correlations.

III. RESULTS

A. Zigzag nanoribbon band structure

Figure 2(a) shows the band structure obtained for Hband

in a ZNRB with periodic boundary conditions (PBCs) in the
x direction and open boundary conditions (OBCs) in the y

direction. The SOI used was λSO = 0.1, and the nanoribbon
is 80 sites across in the OBC direction. Each band is doubly
degenerate, in addition to the Kramers E(kx) = E(−kx) de-
generacy, and the energy spectrum is particle-hole symmetric
around E = 0 (half filling). In Fig. 2(b) we show a close-up
of the dashed red box in Fig. 2(a), focusing on the bands that
straddle across the valence and conduction bands. These bands
host the four helical edge states (two in each edge). Figure 2(c)
shows the same close-up, but for λSO = 0.0 (appropriate for
graphene), showing the well-studied flat bands associated with
the edge states present in a graphene ZNRB (see Ref. [42] for
details).

In Fig. 2(d) we see a plot of the coefficient squared for each
site across the ZNRB for the four edge states that are located
symmetrically around kx = π , i.e., kx1 = π − δ and kx2 =
π + δ ≡ −2π + kx2 = −kx1. Note that kx1 and kx2 are time-

FIG. 2. (a) The energy spectra of a zigzag stanene nanoribbon
for λSO = 0.1. (b) Close-up of the red dashed square in (a) showing
details of the energy dispersion of the edge states. (c) Similar to
(b), but for λSO = 0.0, which is appropriate for graphene. (d) Value
of |Ciσ |2 for the four metallic edge states associated with the wave
vectors kx1 and kx2 in (b). Note that, as discussed in more detail in
the text, they are located exclusively at crest sites, and states with
different spin polarizations propagate in opposite directions at each
edge.
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reversed momenta (Kramers related), indicating propagation
in opposite directions. The locations of kx1 and kx2 and the
associated edge states are schematically indicated in Fig. 2(b).
The results are for λSO = 0.1 and δ = π/64. For a ZNRB with
a width of N = 80 sites, each state in the 160 bands (including
spin) for an arbitrary value of kx can be written as

|Ej (kx)〉 =
∑

i,σ

Ciσ,j (kx)|iσ 〉, (4)

where i = 1, . . . ,80 runs through the sites across the OBC
direction, σ =↑↓ indicates spin, Ej (kx) (for j = 1, . . . ,160)
runs through all the eigenenergies for a specific kx value, and
|iσ 〉 is a localized orbital state on site i with spin σ . Taking
kx = kx1,kx2 as defined above and j values corresponding
to the doubly degenerate bands connecting the valence and
conduction bands (j = 79 to 82, i.e., the four edge states), we
plot |Ciσ,j (kx)|2 for each site iσ . In reality, we plot only the
values for the edge sites (crest sites at each edge) since all
the other coefficients vanish (|C1↑|2 = 0.99017, for example).
As indicated by the labels in Fig. 2(d) (kx1 ↑ and kx2 ↓),
states in the i = 1 edge propagate in opposite directions,
with opposite spin polarizations, and the reverse occurs (kx1 ↓
and kx2 ↑) on the i = 80 edge. Therefore, these helical edge
states are very localized, propagating through what we dubbed
crest sites, presenting the characteristic locking of spin and
momentum that is associated with the nontrivial topological
phase created by the SOI [6]. In addition, narrower ZNRBs
have less localized states, with the localization varying slightly
with kx as we move away from kx = π , and the states
become (discontinuously) completely delocalized (becoming
bulk states) once these two edge bands merge with either the
conduction or the valence band.

To close this section, we make a few remarks on the effects
of electronic interactions. These are typically too weak to
introduce noticeable spin correlations in the bulk, especially
due to the vanishing density of states at the Dirac points.
However, theory has predicted that electronic repulsion causes
a hybridization between edge states on opposite sides of a
ZNRB, inducing edge ferromagnetism [43–48]. These effects
depend on both the magnitude of the interactions and the width
W of the ribbon and decay very rapidly [49] as W−2.

An analysis of the literature indicates that there is a great
deal of controversy regarding the experimental verification of
the theoretical prediction of ferromagnetic edge states at the
edges of a ZNRB [50]: for example, all the measurements
intended to uncover them are constrained to either charge
transport or scanning tunneling microscopy experiments,
whose results are open to alternative interpretations. Therefore,
the current consensus seems to be that the existence of the
magnetic edge states has not been settled yet. Clearly, mag-
netism would break time-reversal symmetry, compromising
the existence of the topological edge states. Recent work by
Lado and Fernández-Rossier [51] shows, through mean-field
calculations, that a large enough SOI can suppress the magnetic
moment of the edge states. Nonetheless, this problem falls
beyond the scope of our work, which focuses on understanding
the properties of the Kondo state in the absence of magnetism.

FIG. 3. (a) LDOS for two edge sites in the TI phase (λSO = 0.1):
the crest site LDOS [red (dark gray) curve] displays a pronounced
spectral density peak at the Fermi energy, while the trough site LDOS
[blue (light gray) curve] has very small, but finite, spectral density at
the Fermi energy. (b) Color contour plot showing the LDOS across
the width of a nanoribbon N = 80 sites wide (λSO = 0.1). Notice
how the spectral density at the Fermi energy is located mostly at the
edges [and primarily at crest sites, as shown in (a)], while the bulk
remains gapped.

B. Zigzag nanoribbon local density of states

Figure 3(a) shows the LDOS for a crest site [red (dark gray)
curve] and for a trough site [blue (light gray) curve] at the edge
of the ZNRB. In agreement with the results shown in Fig. 1(d),
the conducting edge states [with spectral density at the Fermi
energy (εF = 0)] are mostly located at crest sites. Figure 3(b)
shows a contour plot of the LDOS for all sites in the OBC
direction. The spectral density at the Fermi energy is restricted
to the edge [primarily to a crest site, as shown in Fig. 3(a)],
while all the sites away from the edge present an insulating
spectra, where the size of the gap partially derives from the
spin-orbit interaction and mostly from the confinement along
the OBC direction (the wider the nanoribbon is, the smaller
the energy gap is). It is important to notice that, unlike the
insulating bulk, the LDOS at the trough sites displays a small
but finite LDOS at the Fermi energy (for a detailed view,
with increased resolution, see Fig. 4), leaving room for the
formation of a Kondo state.

FIG. 4. Detail of the LDOS at a trough site, using a large number
of poles and a small broadening η = 0.001 of the Green’s function
imaginary part. The spectral weight in the pesudogaplike region
around the Fermi level is small but finite [52].

035109-4



SPATIAL STRUCTURE OF CORRELATIONS AROUND A . . . PHYSICAL REVIEW B 96, 035109 (2017)

FIG. 5. Variation of the LDOS with the value of λSO for a crest
site (solid lines) and a trough site (dashed lines). By varying λSO by
almost two orders of magnitude, from 10−2 (most pronounced peak at
ω = 0) to 0.8 (almost flat at ω = 0), we see that the main change in the
LDOS of a crest site is the continuous spread of the spectral weight
(located at the Fermi energy peak) into an almost flat distribution that
covers the gap. The LDOS of a trough site almost does not vary with
λSO.

In Fig. 5 we report the effects of SOI in the LDOS. By
increasing λSO from 0.01 to 0.8 the spectral weight peak at the
Fermi energy gradually broadens until a flat distribution closes
the gap. The results for a trough site (dashed curves) show that
aside from a slight increase in the LDOS at the edge of the gap
and a slight increase in the gap itself, the LDOS changes only
marginally. A contour plot for the LDOS across the nanoribbon
for λSO = 0.8 (not shown), similar to Fig. 3(b), shows that the
bulk sites do not qualitatively change their LDOS; that is, the
gap in the bulk remains intact.

C. Spin correlations

Our model takes into account a real-space description of the
lattice. Due to the spatial dependence of the density of states,
the physics of the magnetic impurity will vary accordingly,
displaying important differences determined by its location.
This will be clearly visible in the spin-correlation results.
Figures 6(a) and 6(b) show the spin correlations between
the impurity and the surrounding conduction electrons for a
substitutional impurity (replacing a lattice atom) sitting at crest
and trough sites, respectively. The spin correlations 〈	Simp · 	sj 〉
are calculated for sites j along the edge, as indicated. Results
correspond to values of U = 1.2 (red squares), 2.4 (green
circles), and 4.0 (blue triangles). Correlations are strong at
short distances, their magnitude falls away from the impurity,
and their range increases with U . In addition, in both cases,
correlations with sites in the sublattice opposite the one where
the impurity is located (odd sites) are antiferromagnetic, while
they are ferromagnetic for same-sublattice sites (even sites).
These results are typical of those obtained for the Kondo
effect for an S = 1/2 impurity connected to a noninteracting
chain (see, for example, Ref. [53]). Ferromagnetic correlations
dominate for crest-site impurities, as opposed to trough-site
impurities, where antiferromagnetic correlations dominate. In

FIG. 6. Spin correlations for a substitutional impurity located at
(a) crest and (b) trough edge sites. Results show correlations along
edge sites j for U = 1.2 (red squares), U = 2.4 (green circles), and
U = 4.0 (blue triangles); V = 0.65; and λSO = 0.1.

addition, crest-site correlations have higher magnitude and are
longer ranged than those for trough sites.

It is also interesting to note that an impurity located in either
a crest site or a trough site correlates much more strongly to
crest sites along the edge. In contrast, the dominant (antifer-
romagnetic) correlations for a trough-site impurity have very
short range and are essentially independent of U , while the
dominant (ferromagnetic) correlations for a crest-site impurity
decay slowly and increase slightly with U . The presence of
ferro- or antiferromagnetic correlations stems naturally from
the expected structure of the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction on a bipartite lattice [54–56]. However,
the vanishing of the correlations at even distances from the
trough sites can be attributed to the nodal structure of the
electronic wave functions near the Fermi level, which interfere
destructively to yield a very low amplitude on those sites
[36].

As seen in Fig. 7, impurities at crest sites induce large and
slowly decaying hybridization clouds with dominant ferro-
magnetic correlations that decay algebraically with distance
(red squares in Fig. 7). This can be understood in terms
of crest sites forming an effective one-dimensional channel
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FIG. 7. Comparison of spin correlations between crest (red
squares) and trough (blue triangles) sites for a substitutional impurity.
The parameter values are V = 0.65, λSO = 0.1, and U = 1.2. There
is a clear qualitative difference between impurities sitting at crest and
trough sites.

[57,58]. On the other hand, impurities at trough sites form
very small clouds (blue triangles in Fig. 7), as if sitting in small
metallic puddles that leak from the metallic edges, surrounded
by the bulk. To illustrate that the results for a trough site are
qualitatively different from those for a bulk site, Fig. 8 shows
the correlations around a substitutional impurity in the bulk,
five lattice spacings from the edge (note that the vertical axis
scale in Fig. 8 is considerably smaller than that in Fig. 7).
When located in a bulk site, the impurity forms a localized
singlet with its three neighbors, completely decoupled from
the bulk. Correlations in this case are practically identical to
the two-site problem with an Anderson impurity connected to
a single noninteracting site (not shown).

FIG. 8. Spin correlations for a substitutional impurity located five
lattice spacings, counting from the edge, into the bulk for U = 1.2
(red squares), U = 2.4 (blue triangles), and λSO = 0.1. The impurity
forms a localized singlet with the three neighboring spins, different
from a trough site, whose correlations extend along the edge [see
Fig. 6(b)]. Note that the line of j sites probed is parallel to the edge.

FIG. 9. Effect of SOI on spin correlations for substitutional
impurity at (a) crest and (b) trough sites. Results are for U = 2.4.
The SOI causes an overall increase in the spin correlations.

We proceed to compare spin correlations with and without
SOI to understand how it changes the coupling of a magnetic
impurity to the edge states. Figure 9 shows results for
a substitutional impurity, at both crest and trough sites,
demonstrating an overall increase in the correlations when
the SOI is introduced. At first glance, these results seem to
indicate that the SOI does not change the results qualitatively.
However, it is important to notice that the SOI induces an
anisotropy in the spin correlations (〈Szsjz〉 
= 〈Sxsjx〉) that
stems from an emergent Dzyaloshinskii-Moriya interaction
between the impurity and the conduction electrons [29,32],
as illustrated in Fig. 10. This effect is clearly visible for
the case of impurities sitting at crest sites, with transverse
XY correlations (red squares) and those along the Z direction
(blue circles) having opposite sign, indicating helical order.
However, for impurities located at trough sites [Fig. 10(b)]
this effect is very small or practically nonexistent.
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FIG. 10. Comparison between 〈Sxsjx〉 and 〈Szsjz〉 for a sub-
stitutional impurity at (a) a crest site and (b) a trough site for
U = 4.0, V = 0.65, and λSO = 0.1. The anisotropy is expected as
a consequence of the spin-orbit interaction [29,32]. As can be seen
by comparing (a) and (b), the anisotropy is much larger for a crest
site, and it increases with U [see Fig. 6(a)].

As demonstrated above, the spatial resolution of our
calculations is instrumental in determining the full structure
of the spin correlations and uncovering the response of
the edge states to the presence of substitutional magnetic
impurities. Results for a crest-site impurity are summarized
in Fig. 11. Figure 11(a) presents a color map of the impurity
spin correlations in an extended region surrounding the
substitutional atom. Details along the bulk and edge directions
are shown in Figs. 11(b) and 11(c), respectively. The actual
positions of the j sites for Figs. 11(b) and 11(c) are indicated
in Fig. 11(a). From these results it emerges that the edge
state is scattered and “snakes” or circles around the impurity
[57]. This effect implies that the problem may not be trivially
studied using a one-dimensional lead to represent the edge.
This was already pointed out through a no-go theorem in
Ref. [57] stating that a helical liquid with an odd number of
modes cannot emerge from a purely one-dimensional model. In
addition, even though the impurity is substitutional, it appears
as though it is side coupled to the edge [32] and not embedded
in it.

FIG. 11. (a) Color map of the spin correlations for a substitutional
impurity at a crest site for U = 2.4, V = 0.65, and λSO = 0.1. (b) and
(c) Results along the edge and perpendicular to it, respectively, for
λSO = 0.0 (red squares) and λSO = 0.1 (blue triangles). The actual
positions of the j sites in (b) and (c) are indicated in (a).

D. Kondo temperature

Anderson showed [59], with his “poor-man’s scaling”, that
the Kondo problem can be treated perturbatively at energies
larger than the so-called Kondo temperature TK , which is
the only relevant energy scale, and does not depend on the
high-energy details. A renormalization-group analysis shows
that the system flows toward an attractive strong-coupling
fixed point, described by a tightly bound state formed by the
impurity and the conduction electrons, the “Kondo singlet”.
In this regime one can show that many quantities satisfy a
universal scaling characterized precisely by TK . This quantity
has a strict universal meaning in the thermodynamic limit (or,
rather, in the universal scaling regime). In finite systems, like
the one we presently discuss, one can define a similar energy
scale as the energy gained by the system by forming a Kondo
singlet, the correlation energy:

Ecorr = E0 − Eproj, (5)

where E0 is the ground-state energy and

Eproj = 〈g.s.|S−
impHS+

imp|g.s.〉
〈g.s.|S−

impS+
imp|g.s.〉 , (6)

with |g.s.〉 being the ground state. The operators S±
imp act on

the impurity site and project the ground-state singlet onto a
state where the impurity and the bulk are disentangled, thus
forming a product state. This clearly is a variational estimate
of the correlation energy, and comparisons to the dynamical
spin correlations show that, indeed, it is an accurate measure of
TK [60]. Notice that, even though the Hamiltonian is gapless,
Ecorr is finite.

Our results for Ecorr, for an impurity at a crest site, are
shown in Fig. 12(a) as a function of the interaction U for
different values of SOI (0.0 � λSO � 0.1) and in Fig. 12(b)
as a function of λSO for different values of interaction 1 �
U � 6 (varying in steps of 1). Unlike prior work by Zarea
et al. [29] that predicts an exponential enhancement of the
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FIG. 12. Characteristic energy scale Ecorr (see text for definition),
which is a measure of the Kondo temperature, as a function of (a) the
Coulomb interaction U and (b) the spin-orbit coupling λSO. Results
in (b) are for the same values of U as in (a), and the strength of the
interaction increases as indicated by the arrow.

Kondo temperature in the presence of SOI, we find that this
enhancement is very weak [see Fig. 12(b)], in agreement with
numerical renormalization-group treatments of this problem
[28,30].

IV. SUMMARY AND CONCLUSIONS

We have applied the Lanczos transformation method
combined with the DMRG [35–37] to study the many-body
ground state of a quantum (S = 1/2) impurity (modeled as an
Anderson impurity) coupled to the edge of a zigzag nanoribbon
of stanene, a slightly buckled (nonplanar) honeycomb lattice
of Sn atoms, which hosts a topologically protected metallic
edge state. The main motivation was to study the detailed
spatial structure of the spin correlations between the quantum
impurity and the electrons in the host, which characterize the
Kondo ground state. We identified marked differences between
the results for the two distinct sites in the zigzag edge, namely,
an outermost one and an innermost one, which we dubbed
crest and trough sites, respectively.

The behavior observed through the spin correlations is quite
complex and rich. For substitutional impurities located at either
crest or trough sites, the spin correlates primarily with electrons
along the edge and decouples from the bulk. Furthermore,
irrespective of the position of the impurity (crest or trough

site), spin correlations with conduction electrons located at
crest sites are larger than for trough sites. The sign of the spin
correlations is determined by the spins belonging to the same
sublattice or opposite sublattices. In addition, for impurities
at crest sites, ferromagnetism dominates, while the opposite
occurs for trough sites.

The effects of SOI in the TI phase are mostly present
for impurities sitting at crest sites, increasing the range
of the correlations and introducing helical order along the
edge that originates from an effective Dzyaloshinskii-Moriya
interaction. Remarkably, the SOI does not affect the spin
symmetry for an impurity on a trough site, another indication
that edge states reside mostly on crest sites.

Unlike previous calculations that consider the coupling of
the impurity to one-dimensional effective modes [25,32], in
our formulation the helical liquid arises naturally as an edge
effect of the 2D bulk. It has been observed that helical liquids
with an odd number of modes cannot be obtained from one-
dimensional lattice models [57]. In our treatment, the edge has
unequivocally a single-mode contribution, even away from the
particle-hole symmetric point.

From the real-space picture obtained from our method
we are able to resolve the structure of the correlations at
different sites along the zigzag edge and into the bulk. We
find that substitutional impurities sitting at a trough site form
a localized bound state with conduction electrons in a small
metallic puddle that leaks out of the edge. On the other hand, a
crest-site impurity scatters the edge state around it, resulting in
the formation of a long-range screening cloud along the edge.

Finally, we have used a variational estimate of the corre-
lation energy to obtain a measure of TK in our finite system
as a function of both U and λSO. Our results show that the
Kondo temperature for a substitutional impurity at a crest
site is very weakly enhanced by the introduction of SOI, in
agreement with numerical renormalization-group calculations
of a similar problem [28,30].
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