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In solid state conductors, linear response to a steady electric field is normally dominated by Bloch state
occupation number changes that are correlated with group velocity and lead to a steady state current. Recently
it has been realized that, for a number of important physical observables, the most important response even
in conductors can be electric-field induced coherence between Bloch states in different bands, such as that
responsible for screening in dielectrics. Examples include the anomalous and spin-Hall effects, spin torques in
magnetic conductors, and the minimum conductivity and chiral anomaly in Weyl and Dirac semimetals. In this
paper we present a general quantum kinetic theory of linear response to an electric field which can be applied
to solids with arbitrarily complicated band structures and includes the interband coherence response and the
Bloch-state repopulation responses on an equal footing. One of the principal aims of our work is to enable extensive
transport theory applications using computational packages constructed in terms of maximally localized Wannier
functions. To this end we provide a complete correspondence between the Bloch and Wannier formulations of
our theory. The formalism is based on density-matrix equations of motion, on a Born approximation treatment
of disorder, and on an expansion in scattering rate to leading nontrivial order. Our use of a Born approximation
omits some physical effects and represents a compromise between comprehensiveness and practicality. The
quasiparticle bands are treated in a completely general manner that allows for arbitrary forms of the spin-orbit
interaction and for the broken time reversal symmetry of magnetic conductors. We demonstrate that the interband
response in conductors consists primarily of two terms: an intrinsic contribution due to the entire Fermi sea that
captures, among other effects, the Berry curvature contribution to wave-packet dynamics, and an anomalous
contribution caused by scattering that is sensitive to the presence of the Fermi surface. To demonstrate the rich
physics captured by our theory, we explicitly solve for some electric-field response properties of simple model
systems that are known to be dominated by interband coherence contributions. At the same time we discuss an
extensive list of complicated problems that cannot be solved analytically. Our goal is to stimulate progress in
computational transport theory for electrons in crystals.
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I. INTRODUCTION

In response to a steady electric field E, weakly disordered
Fermi-liquid conductors reach a steady state that does not
break translational symmetry. After disorder averaging, such
a steady state can be completely characterized by a nonequi-
librium single-particle density matrix, ρn′,n(k) diagonal in the
Bloch state wave vector k but not in the equilibrium band index
n. In general all single-particle observables O maintain their
crystal periodicity when they respond to E and therefore have
expectation values of the form

〈O〉 =
∑
k,n,n′

〈n,k|O|n′,k〉 ρn′,n(k). (1)

In metals linear response to a constant, uniform electric
field is normally dominated by the band-diagonal part of the
density matrix, namely n′ = n, which represents a change
in the occupation probability of the Bloch states. The past
two decades have nevertheless provided many examples of
observables in conductors whose linear response to a steady
electric field is dominated by the interband coherence (n′ �=
n) response that is normally important only in dielectrics.
Examples of linear response quantities that are often in this
category include, but are not limited to, the quasiparticle

spin-density response responsible for spin-orbit and spin-
transfer torques in ferromagnets [1–11], the anomalous Hall
effect in magnetic conductors [12–31], the spin-Hall effect
in paramagnetic semiconductors and metals [32–44], the
minimum conductivity of graphene, graphene multilayers
[45–63] and topological insulator surface states [64–68],
the chiral anomalies of Weyl and Dirac semimetals [69–79]
and interaction effects [80,81] including Coulomb drag, in
particular in chiral materials [82–95]. Related examples may
be found in ultracold atomic gases. In this paper we refer to
band off-diagonal density-matrix response to a steady electric
field generically as anomalous response.

When calculating the linear response of these observables to
an electric field, accounting for the interplay between diagonal
and off-diagonal density matrix response is vital in order
to capture the underlying physics and determine the correct
result. The response properties in which we are interested
typically involve a competition between intrinsic interband
coherence effects dependent only on the band structure of the
crystal and intraband response that is limited by scattering by
electron-phonon or electron-magnon interactions or by crystal
imperfections. The interplay has most often been addressed
theoretically using simplified models with narrow applicabil-
ity, or by using relaxation time approximations that typically
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fail to account accurately for interband coherence and complex
Fermi surface topologies. Yet many systems of interest, such as
metals and a host of recently discovered topological materials,
have complicated band structures for which few-band models
are simply unavailable or unsuitable, and accurate solutions
can only be found using computational techniques. Frequently
even the Berry curvatures can only be calculated numerically,
and incorporating interband coherence effects due to disorder
is even more challenging. Direct numerical implementation of
transport calculations is especially challenging in the DC limit
where the frequency characterizing the time dependence of the
external electric field tends towards zero.

Motivated by these observations, the goal of this paper,
which generalizes Refs. [96,97], is to devise a general transport
formalism of broad applicability that accounts for the diagonal
and off-diagonal responses, both intrinsic and extrinsic, on an
equal footing. The results we present are suitable for use in
numerical calculations that allow for general Fermi surface
topologies involving many pockets with irregular shapes. In
this way our work generalizes to the case of anomalous
response transport theories that account for Fermi surface
peculiarities, and for realistic scattering properties on those
Fermi surfaces that are not accurately captured by simplifying
relaxation time approximations. Because it requires efficient
evaluation of velocity-operator matrix elements in a repre-
sentation of orthonormal Bloch states, our intention is that
applications of our transport formalism take advantage of
recent progress in advancing maximally-localized Wannier
orbital tools [98,99] for constructing accurate representations
of crystal Hamiltonians. To this end we provide in the
present work two distinct but related sets of expressions: One
set is formulated in the crystal momentum representation,
which has been the natural language of conventional transport
theory, while an equivalent set is expressed in the Wannier
representation, which is the natural language of tight-binding
models.

Theories of the transport steady state must account for
whichever Bloch state scattering mechanisms play the domi-
nant role in limiting the repopulation of states near the Fermi
level. The theory we present treats weak elastic disorder
in the Born approximation and assumes that the Wannier
representation of the crystal’s k · p Hamiltonian is known. We
focus on the off-diagonal response of the Bloch state density
matrix which is normally dropped in theories of electronic
transport in metals. Whereas our theory is formulated in the
spirit of earlier works by Karplus, Luttinger, and Kohn, we
make full use of insights acquired in the last four decades,
in particular in the identification of topological terms in
linear response stemming from the Berry curvature of Bloch
states. At the same time our response theory retains, on the
same footing as the Berry-curvature terms, contributions to
leading subdominant order in a weak scattering expansion
of the density matrix. In this introductory paper we focus
on the case of elastic scattering from crystal imperfections
which we characterize by the variance of Wannier repre-
sentation disorder matrix elements, or equivalently through
an average over impurity configurations. Nevertheless the
theory is presented in a form that can straightforwardly be
extended to account for (i) time-dependent external fields
and disorder potentials, (ii) inelastic scattering, (iii) more

complex scattering mechanisms such as skew scattering and
side jump that require going beyond the conventional Born
approximation, and (iv) more complex averages over impurity
configurations including, e.g., terms with crossing impurity
lines describing interference between scattering at different
sites [100].

The kinetic equations have a complex matrix structure, in
particular those involving the interband part of the density
matrix. The band-diagonal response contains the usual Fermi-
surface response which diverges when disorder vanishes.
The off-diagonal response is driven by the intrinsic band
structure, which includes Berry curvature contributions, and
also indirectly by a scattering term involving only quasipar-
ticles at the Fermi surface. These will be referred to as the
off-diagonal driving term and the anomalous driving term,
respectively.

We note that the band off-diagonal response studied in this
work represents interband coherence in the same way that
off-diagonal terms in the density matrix of a quantum bit are
associated with coherence between the bit up and down states.
Likewise, the understanding of the dephasing time in quantum
computation and solid state transport is conceptually similar,
and in both cases is related to time-dependent perturbations.
Nevertheless, the bit is invariably a localized system whereas
the situations of interest in this paper concern extended
systems having a Fermi surface, for which the steady state is
qualitatively different from, e.g., transport through a quantum
dot or superconducting island. The notion of a dephasing time
relevant to our work is the same as that encountered in weak
localization. Whereas weak localization is a coherence effect
induced by impurity scattering, in which one is interested in
coherence between states in the same band but with different
wave vectors, the relevant concept in the present work is
coherence between states from different bands induced by an
external electric field.

Our paper is organized as follows. In Sec. II we introduce
the Hamiltonian and density matrix in the Bloch and Wannier
representations. In Sec. III we discuss a variety of related
models for disorder in a crystal, which provide a context
for relating disorder scattering matrix elements to the wave-
vector dependence of the orbital content of Bloch states. In
Sec. IV we use the Born approximation to derive the form
of the collision term in a general kinetic equation for the
full density matrix. In Sec. V we present a theory for the
response of the Bloch-state density matrix of a crystal to a
spatially constant electric field. The results obtained and their
implications are discussed in Sec. VI. In Sec. VII we discuss
some examples of material/observable combinations for which
off-diagonal response is often important. The paper concludes
with a summary of our conclusions and an outlook for future
work.

II. BLOCH AND WANNIER REPRESENTATIONS

Transport theory is most conveniently formulated in terms
of momentum-space orbitals, whereas disorder potentials
are best characterized in terms of their real-space orbital
matrix elements. Partly for this reason, we use both Bloch
and Wannier representations of crystalline wave functions
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throughout this paper. The two types of states are related by

|i,k〉 = 1√
N

∑
L

exp(ik · L) |i,L〉,
(2)

|i,L〉 = 1√
N

∑
k

exp(−ik · L) |i,k〉,

where i is an orbital label, L is a crystal lattice vector,
N is the number of unit cells in the crystal, k is a wave
vector in the crystal Brillouin zone and |i,k〉 = e−ik·r |uik〉
is a Bloch wave function constructed from orbital i, and
|i,L〉 is a Wannier wave function. We assume that the orbital
identifications achieve maximally localized Wannier functions
[98,99] that can be physically identified with atomic orbitals on
particular sites within the crystal’s unit cell, or with particular
chemical bonds. Note that the Bloch functions |i,k〉 are not
energy eigenstates. The construction of maximally localized
Wannier functions provides Hamiltonian representation that
in most crystals is accurate and has a reasonably small
matrix dimension and, importantly for what follows, provides
a representation of the crystal’s k · p Hamiltonian that is
independent of momentum k.

Our transport theory assumes that the Wannier representa-
tion perfect-crystal Hamiltonian:

H0 =
∑

LL′ii ′
Hii ′

LL′ |i,L〉〈i ′,L′| (3)

is known. Translational symmetry guarantees that Hii ′
LL′ de-

pends only on L − L′ for any i, i ′. The disorder models we
discuss below assume that the real-space Wannier functions
〈r|i,L〉 is localized near lattice site L. It follows from
translational symmetry that the band Hamiltonian is diagonal
in crystal momentum:

H0 =
∑
k i ′i

H ii ′
k |i,k〉〈i ′,k|, (4)

where

Hii ′
k =

∑
L

Hii ′
L exp(−ik · L). (5)

The band eigenstates εm
k are the eigenvalues of Hii ′

k , so that

H0 =
∑
km

εm
k |m,k〉〈m,k|, (6)

where m is a band index,

|m,k〉 =
∑

i

z
(m)
i |i,k〉, (7)

and z
(m)
i is the mth eigenvector of Hii ′

k . We refer to the
representation provided by the {|m,k〉} basis as the eigenstate
representation and write |m,k〉 = e−ik·r |umk〉. Our formalism
is designed to calculate the response to a steady electric field
of the single-particle density matrix, which can be expressed
in either the Wannier or the eigenstate representations:

ρ =
∑

LL′ii ′
ρii ′

LL′ |iL〉〈i ′ L′| ≡
∑

kk′mm′
ρmm′

kk′ |mk〉〈m′k′|. (8)

These two representations will be used interchangeably
throughout this work.

III. DISORDER MODELS

With the exception of special cases, such as a clean undoped
Dirac cone, response to a steady electric field is finite only in a
disordered crystal. The transport formalism used in this paper
is based on a Born approximation for the disorder potential. We
comment below on the degree to which it can be generalized
to stronger potentials by making a t-matrix expansion. As we
see below, disorder then enters through averages of products
of two eigenstate-representation disorder matrix elements
of the following form; 〈n′

1,k
′|U |n1,k〉 〈n′

2,k|U |n2,k′〉. The
average of the disorder potential is incorporated into the
band Hamiltonian so that disorder averages of a single matrix
element, 〈n′,k′|U |n,k〉, vanish by definition. We will discuss
two disorder models: a random potential model and one based
on random uncorrelated impurities.

A. Random potential

Using the relationship between Bloch and Wannier basis
functions we consider

〈i1′ ,k′|U |i1,k〉 〈i2′ ,k|U |i2,k′〉
= 1

N2

∑
Li

exp[ik · (L1 − L2′)] exp[−ik′ · (L1′ − L2)]

×〈i1′ ,L1′ |U |i1,L1〉 〈i2′ ,L2′ |U |i2,L2〉. (9)

We assume that the macroscopic response is identical for
all disorder potentials, allowing us to disorder average, and
that translational symmetry is recovered after performing this
average, implied above by the overline. It follows that

〈i1′ ,L1′ |U |i1,L1〉 〈i2′ ,L2′ |U |i2,L2〉
= 〈i1′ ,L1′ + L|U |i1,L1 + L〉 〈i2′ ,L2′ + L|U |i2,L2 + L〉.

(10)

for any L. In other words we can set one of the four lattice
vectors to zero in specifying independent disorder averages.
Interpreting the Wannier-representation matrix elements using
a tight-binding model language, matrix elements with Li �= Li ′

represent disorder in the hopping Hamiltonian while ones with
Li = Li ′ represent disorder in the atomic Hamiltonian on a
particular site. The character of the disorder in a particular
system is frequently not understood well enough to prefer
one disorder model over another. For the sake of definiteness,
we assume atomic disorder, and therefore set L1′ = L1 and
L2′ = L2, obtaining

〈i1′ ,k′|U |i1,k〉 〈i2′ ,k|U |i2,k′〉
= 1

N2

∑
L1,L2

exp[i(k − k′) · (L1 − L2)]

×〈i1′ ,L1|U |i1,L1〉 〈i2′ ,L2|U |i2,L2〉. (11)

Using translational symmetry this disorder average depends
only on L1 − L2. It follows that

〈i1′ ,k′|U |i1,k〉 〈i2′ ,k|U |i2,k′〉
= 1

N

∑
L

exp[i(k − k′) · L]

×〈i1′ ,L|U |i1,L〉 〈i2′ ,L = 0|U |i2,L = 0〉. (12)
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This is the most general disorder potential model we will
consider. The model can be simplified by assuming that there
are no spatial correlations in the disorder potential. In this case
the disorder average reads

〈i1′ ,k′|U |i1,k〉 〈i2′ ,k|U |i2,k′〉
= 1

N
〈i1′ ,L|U |i1,L〉 〈i2′ ,L|U |i2,L〉 (13)

and is independent of the wave vector. In the simplest model
the disorder fluctuations in the on-site atomiclike Hamiltonian
are rigid energy shifts, leading in the Wannier representation
to

〈i1′ ,k′|U |i1,k〉 〈i2′ ,k|U |i2,k′〉 = U 2
0

N
δi1′ ,i1δi2′ ,i2 , (14)

where U0 typically has dimensions of energy × volume. In the
Bloch representation the matrix elements reads

〈m1′ ,k′|U |m1,k〉 〈m2′ ,k|U |m2,k′〉

= U 2
0

N

∑
i1

z
(m1′ )∗
i1

z
(m1)
i1

∑
i2

z
(m2′ )∗
i2

z
(m2)
i2

. (15)

The simplified model of Eqs. (14) and (15) can account for
stronger atomic disorder potentials simply by viewing the
disorder potential as a scattering matrix but does not account
for interference between scattering at different impurity sites.
If the random potential is viewed as originating from a collec-
tion of impurities, interference between scattering processes
at different impurity locations is present in the model provided
one goes beyond the Born approximation to higher order in
the scattering potential (U 4 and higher orders). In models
that do not account for arbitrary band structures, the physics
introduced above is often expressed in terms of a continuous
disorder model in real space in which the expectation values
of the various moments of the potential U are specified
as a function of the position r . In the simplest version of
Gaussian white noise, corresponding to Eqs. (14) and (15),
one typically writes 〈U (r)U (r ′)〉 = (U 2

0 /V )δ(r − r ′), where
V is the volume. Henceforth we shall use the abbreviated
notation Umm′

kk′ ≡ 〈m,k|U |m′,k′〉, for disorder potential matrix
elements in a band eigenstate representation. The transport
theory outlined in the following section, accounts for disorder
only in terms of averages of the product of two disorder matrix
elements.

B. Uncorrelated impurities

A related model regards the disorder potential as arising
from a series of randomly distributed impurities:

U (r) =
∑

R

U(r − R), (16)

where U represents the potential of a single impurity, and R
labels the impurity locations. In the Bloch representation we
have

Umm′
kk′ = Umm′

kk′
∑

R

e−i(k−k′)·R. (17)

Since the impurity locations are random the sum vanishes.
For the second-order term in the potential it is straightforward

to prove that 〈Umm′
kk′ Um′′m′′′

k′k 〉 = niUmm′
kk′ Um′′m′′′

k′k , where ni repre-
sents the impurity density. These expressions can be converted
to the Wannier representation using the prescription outlined in
Sec. II, Eq. (7). The expansion in powers of ni can be continued
to any desired order. At order U 4, for example, interference
between scattering processes at different impurity locations R,
R′ will appear explicitly.

C. Disorder average

The preceding discussion illustrates the fact that the
expansion of the density matrix in the strength of the disorder
potential can be formulated either in powers of τ (random
potential model) or in powers of the impurity density ni

(uncorrelated impurity model). In the remainder of this work
we choose the latter for concreteness. In either case the disorder
average can be constructed so as to capture the physics of the
problem under study. For example, when repeated scatterings
off the same impurity are known to be important one can
replace the potential U with the t matrix. In this manner highly
complex physics can be accounted for using our formalism,
such as the Kondo effect [101].

IV. DENSITY-MATRIX KINETIC EQUATION

The system is described by a single-particle density matrix
ρ, which obeys the quantum Liouville equation

dρ

dt
+ i

h̄
[H,ρ] = 0, (18)

where H is the total Hamiltonian of the system. It is convenient
to decompose the density matrix into two parts: One part,
denoted by 〈ρ〉, is averaged over impurity configurations, while
the remainder, which is eventually integrated over, is denoted
by g:

ρ = 〈ρ〉 + g. (19)

In this section we will use angle brackets for disorder averages.
Note that this definition implies that 〈g〉 = 0. The Hamiltonian
itself is decomposed into a band Hamiltonian, a disorder
potential, and a perturbation HE due to the electric field,
H = H0 + U + HE .

A. Scattering term in the Born approximation

The Born approximation is made to simplify the scattering
term, the disorder contribution to the quantum Liouville
equation. We now derive an expression for the scattering term
which is valid in the absence of an external electric field by
setting HE → 0. To this end we express the quantum Liouville
equation in terms of coupled equations for 〈ρ〉 and g as follows:

d〈ρ〉
dt

+ i

h̄
[H0,〈ρ〉] + i

h̄
〈[U,g]〉 = 0,

dg

dt
+ i

h̄
[H0,g] + i

h̄
[U,g] − i

h̄
〈[U,g]〉 = − i

h̄
[U,〈ρ〉].

(20)

In the Born approximation we can ignore the last two
terms on the left hand side of the equation for g because they
contribute only beyond leading order in the disorder potential.
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What remains is a first order in time inhomogeneous linear
differential equation for g which can be formally integrated to
yield

g(t) = − i

h̄

∫ ∞

0
dt ′ e−iH0t

′/h̄[U,〈ρ(t − t ′)〉]eiH0t
′/h̄. (21)

In the Born approximation we can use the disorder-free
expression for the time evolution of the density matrix:
〈ρ(t − t ′)〉 = eiH0t

′/h̄〈ρ(t)〉e−iH0t
′/h̄ to obtain

g(t) = − i

h̄

∫ ∞

0
dt ′ [e−iH0t

′/h̄UeiH0t
′/h̄,〈ρ(t)〉]. (22)

Note that we will no longer write the time dependence of 〈ρ〉(t)
explicitly. We obtain the full kinetic equation by substituting
Eq. (22) for g in the first of Eqs. (20):

d〈ρ〉
dt

+ i

h̄
[H0,〈ρ〉] + J (〈ρ〉) = 0, (23)

where the Born approximation scattering term is

J (〈ρ〉) = 1

h̄2

∫ ∞

0
dt ′ 〈[U,[e−iH0t

′/h̄UeiH0t
′/h̄,〈ρ(t)〉]]〉. (24)

B. Scattering term in the eigenstate representation

We now take advantage of the translational symmetry
recovered after impurity averaging by working in momentum
space where 〈ρ〉 is diagonal. Because J (〈ρ〉) is diagonal and
is the product of three matrices in the single-particle Hilbert
space, one of which (〈ρ〉) is itself diagonal in momentum, the
expression for J (〈ρ〉) at momentum k involves only one free
intermediate momentum k′:

Jk(〈ρ〉)= 1

h̄2

∫ ∞

0
dt ′
∑{〈

Umm′
kk′ Um′m′′

k′k

〉
e
−i

(
εm′

k′ −εm′′
k

)
t ′/h̄〈ρ〉m′′m′′′

k

− 〈
Umm′

kk′ Um′′m′′′
k′k

〉〈ρ〉m′m′′
k′ e

−i

(
εm′′

k′ −εm′′′
k

)
t ′/h̄

− 〈
Umm′

kk′ Um′′m′′′
k′k

〉
e
−i

(
εm

k −εm′
k′
)
t ′/h̄〈ρ〉m′m′′

k′

+ 〈
Um′m′′

kk′ Um′′m′′′
k′k

〉〈ρ〉mm′
k e

−i

(
εm′

k −εm′′
k′
)
t ′/h̄}

. (25)

The final expression is obtained by regularizing the time
integral by inserting a e−ηt ′ convergence factor and using

1

h̄2

∫ ∞

0
dt ′ e−i(εm′

k′ −εm′′
k −iη)t ′/h̄

= P
[

1

ih̄
(
εm′

k′ − εm′′
k

)]+ π

h̄
δ
(
εm′

k′ − εm′′
k

)
. (26)

The δ functions enforce energy conservation for real scat-
tering events, while the principal part terms account for
disorder-induced level repulsions. The complete expressions
for these two contributions to the scattering term are listed in
Appendix A.

To solve the kinetic equation, we decompose the disorder-
averaged part of the density matrix into two parts, 〈ρ〉 = n + S,
where n is diagonal in the band index, and S is off-diagonal.
Below we use the impurity density ni as a formal parameter
to distinguish effects that arise at different orders in a disorder
strength expansion. For the energy conserving scattering terms

acting on the diagonal part of the density matrix we obtain

[Jd (n)]mm
k = 2πni

h̄

∑
m′k′

Umm′
kk′ Um′m

k′k

(
nmm

k − nm′m′
k′

)
δ
(
εm

k − εm′
k′
)
;

[Jod (n)]mm′′
k = πni

h̄

∑
m′k′

Umm′
kk′ Um′m′′

k′k

[(
nmm

k − nm′m′
k′

)
δ
(
εm

k − εm′
k′
)

+ (
nm′′m′′

k − nm′m′
k′

)
δ
(
εm′′

k − εm′
k′
)]

, (27)

where the first equation is simply Fermi’s Golden Rule and
in the second equation it is understood that m′′ �= m. For the
principal part terms

[Jpp(n)]mm′′
k

= ni

ih̄

∑
Umm′

kk′ Um′m′′
k′k

[(
nm′′m′′

k − nm′m′
k′

)
P
(

1

εm′
k′ − εm′′

k

)

+ (
nmm

k − nm′m′
k′

)
P
(

1

εm
k − εm′

k′

)]
. (28)

Note that the diagonal (m = m′′) elements of the principal term
vanish and that the Born approximation collision term is linear
in 〈ρ〉. We will not consider the principal-value contributions
to the collision terms further in this work but note however
that they can be incorporated into the general solution using
the method outlined below for the elastic scattering terms.
Finally, these expressions can be converted to the Wannier
representation using Eq. (7).

C. Beyond the Born approximation

The expansion of Eqs. (22) and (23) can be continued
to higher orders in the impurity potential. The leading-order
contribution beyond the Born approximation, the scattering
term up to order ni , is

J (〈ρ〉) = − i

h̄3

∫ ∞

0
dt ′ 〈[U,[e−iH0t

′/h̄UeiH0t
′/h̄,

× [e−iH0t
′/h̄UeiH0t

′/h̄,〈ρ(t)〉]]]〉. (29)

Such an expansion is necessary when seeking to include, for
example, skew scattering terms due to spin-dependent impurity
potentials [102]. For the case of side-jump terms the correct
answer can be obtained in the Born approximation provided
the electric field term HE is included in the time-evolution
operator [103]. These specific matters will be discussed in a
future publication.

We do expect that effects not included at the Born
approximation level will sometimes be observable. One well
known example is weak localization, which can be identified
experimentally by characteristic field and temperature depen-
dences. Additionally, it has been pointed out recently [100]
that interference between scattering processes at different
impurity locations, not included in the Born approximation,
can sometimes play an important role in Hall effects. We
judge that the transport theory outlined above makes a good
compromise between wide (but not universal) applicability
and practicality for applications with realistic band structures.
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V. LINEAR RESPONSE THEORY

A. Numerical implementation procedure

We are interested in the nonequilibrium expectation values
of quantum mechanical observables, which are found by
tracing the relevant operators with the density matrix. In the
general case an operator may have a nonzero expectation value
in equilibrium, although for common observables such as the
charge current and spin polarization in paramagnetic systems
the equilibrium expectation value is zero.

The Hamiltonian is assumed given in a representation
of maximally localized Wannier functions as in Eq. (3).
Expectation values may be evaluated either directly in the
Bloch representation or using the Wannier representation. In
the Bloch representation

Tr(ρ̂Ô) =
∑
k,n,n′

Onn′
k ρn′n

k . (30)

One resorts to Eqs. (2) and (7) to transform the matrix elements
of Ô to the Bloch representation, while the matrix elements of
the density matrix are given in Eqs. (35), (42), (49), and (47).

In the Wannier representation

Tr(ρ̂Ô) =
∑

L,L′,i,i ′
Oii ′

LL′ ρ
i ′i
L′ L . (31)

The matrix elements Oii ′
LL′ in the Wannier representation are

assumed known, whereupon one can use Eqs. (2) and (7) to
convert the matrix elements given in Eqs. (35), (42), (49), and
(47) to the Wannier representation.

We note that Eq. (30) as written applies as long as the
operator Ô is diagonal in the wave vector. If one is seeking
to calculate the charge or spin current expectation values in
systems in which spin-orbit terms in the scattering potential are
important (e.g., skew scattering and side-jump contributions),
the current operator in general contains terms off-diagonal in
the wave vector. In such cases Eq. (30) must be generalized to
include a sum over k-off-diagonal matrix elements of both Ô

and ρ̂.

B. Driving term and kinetic equation

When a constant uniform electric field is applied the term
HE = eE · r̂ is added to the Hamiltonian. Below we assume
that because E is small, r may be replaced by lattice vector
L in the Wannier function Hamiltonian. The electric field
therefore produces only a lattice-site dependent energy shift.
The quantum Liouville equation takes the form

dρ

dt
+ i

h̄
[H0 + U,ρ] = − i

h̄
[HE,ρ]. (32)

In linear response theory the density matrix is decomposed
into equilibrium and response components by defining 〈ρ〉 =
〈ρ0〉 + 〈ρE〉, where 〈ρE〉 is the correction to the equilibrium
density matrix 〈ρ0〉 to first order in the electric field. We shall
use this notation (subscript 0 for equilibrium, subscript E for
the electric-field correction, no subscript for the sum of the
two) for all components of the density matrix, thus nk = n0k +
nEk and so forth. By linearizing the kinetic equation with

respect to E and noting that J (ρ0) = 0, we find that

d〈ρE〉
dt

+ i

h̄
[H0,〈ρE〉] + J (〈ρE〉) = − i

h̄
[HE,〈ρ0〉]. (33)

Because all three terms on the left hand side are linear in ρE ,
the linear response can be evaluated by performing a formal
matrix inversion.

We now discuss the form of the driving term on the right
hand side of Eq. (33) using the Wannier and Bloch eigenstate
representations. In the Wannier representation the driving term
takes the form

− i

h̄
〈i,L|[HE,〈ρ0〉]|i ′,L′〉 = − ieE · (L − L′)

h̄
〈ρ0〉ii ′LL′ .

(34)

In the Bloch representation the equilibrium density matrix is
given by

〈m,k|〈ρ0〉|m′,k〉 = f0
(
εm

k

)
δmm′ ≡ nmm

0k , (35)

where f0(εm
k ) is the Fermi-Dirac distribution function evalu-

ated at energy εm
k . To obtain the driving term we substitute

HE = eE · r̂ into the commutator [HE,〈ρ0〉] and use the fact
that |m,k〉 = e−ik·r |umk〉 to re-express terms of the form

r̂|m,k〉 =
[
i

∂

∂k
e−ik·r

]
|umk〉. (36)

With this substitution the driving term can immediately be
written in the form [104]

− i

h̄
〈m,k|[HE,〈ρ0〉]|m′,k〉

= eE
h̄

·
{

δmm′ ∂f0
(
εm

k

)
∂k

+ iRmm′
k

[
f0
(
εm

k

)− f0
(
εm′

k

)]}
,

(37)

where

Rmm′
k =

〈
um

k

∣∣∣∣i ∂um′
k

∂k

〉
(38)

is a momentum space Berry (gauge) connection. This is the
part of the driving term that gives rise to the momentum-space
Berry curvature intrinsic contribution to the Hall conductivity
of systems with broken time reversal symmetry and also
to other response properties in other systems. The Fermi
occupation number difference factor f0(εm

k ) − f0(εm′
k ) makes

it evident that the term in square brackets drives off-diagonal
response, m �= m′, and therefore interband coherence contri-
butions to the electrical response of the solid. Equation (37)
specifies the full intrinsic driving term, which is determined
only by the system’s electronic structure.

C. Diagonal part of the density matrix to leading
order in the impurity density

Using Eq. (37) and the Born approximation for the collision
term, the density matrix response can be organized as in an
expansion in powers of ni . Because [H0,〈ρE〉] is purely off-
diagonal in the band index, the leading steady-state (time-
independent) response is purely diagonal and proportional to
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n−1
i , hence it is denoted by n

(−1)
Ek :

Jd

[
n

(−1)
E

]mm

k = eE
h̄

· ∂f0
(
εm

k

)
∂k

. (39)

The collision contribution to the kinetic equation can be viewed
as a matrix operator acting on the density matrix. Considering
for the moment only the diagonal response we define the
collision matrix K by

Jd (nE)mm
k = ni

∑
m′k′

Kmk,m′k′ nm′m′
Ek′ . (40)

Kd acts on the density matrix considered as a vector with
components labeled by band and wave vector. Comparing with
Eq. (27) we have that

Kmk,m′k′ = 2πni

h̄

[
δm,m′δk,k′

∑
m′′k′′

Umm′′
kk′′ Um′′m

k′′k − Umm′
kk′ Um′m

k′k

]

× δ
(
εm

k − εm′
k′
)
. (41)

Solving for nEk to leading order in ni we find that [105]

n
(−1),mm

Ek = n−1
i eE

∑
m′k′

K−1
mk,m′k′ · vm′

k′
∂f0

(
εm′

k′
)

∂εm′
k′

, (42)

where we have used vm
k = (1/h̄) (∂εm

k /∂k). Note that the total
density response summed over all bands and wave vectors
is a zero eigenvalue of Kmk,m′k′ so that K−1

mk,m′k′ is strictly
speaking undefined. However, the driving term does not act on
this eigenvector. We implicitly assume above that the matrices
K and K−1 have been decomposed to remove the total density
from the vector space. In the simplest case, that of a metal, one
may replace

∂f0
(
εm

k

)
∂εm

k

= −δ
(
εm

k − εF

)
, (43)

where εF is the Fermi energy.

D. Off-diagonal part of the density matrix
and anomalous driving term

Because [H0,〈ρE〉] is nonzero off the diagonal, the linear
response of off-diagonal density-matrix components to a
steady electric field SE does not diverge in the absence of
disorder. The leading response is therefore independent of
disorder strength and starts at the next-to-leading order in ni ,
which we can explicitly label by (0):

dS
(0),mm′
Ek

dt
+ i

h̄

[
H0k,S

(0)
Ek

]mm′ = Dmm′
Ek + D′ mm′

Ek . (44)

The right hand side in Eq. (44) has two contributions. The first
is the intrinsic off-diagonal driving term,

Dmm′
Ek = −eE

h̄
·
〈
um

k

∣∣∣∣∂um′
k

∂k

〉[
f0
(
εm

k

)− f0
(
εm′

k

)]
, (45)

which represents the Fermi sea response and contains all
the Berry-phase-like contributions. The second depends on
disorder and we refer to it below as the anomalous driving
term D′mm′

Ek = −Jod [n(−1)
Ek ]mm′

which is due to scattering and
is nonzero only on the Fermi surface. This extrinsic term will

be written in a more explicit form in Eq. (48). The solution to
Eq. (44) is straightforwardly found

S
(0)
Ek =

∫ ∞

0
dt ′ e−iH0k t

′/h̄(DEk + D′
Ek)eiH0k t

′/h̄. (46)

It is regularized by inserting an infinitesimal e−ηt ′ and taking
the limit η → 0 after integrating over time

S
(0),mm′
Ek = −ih̄P

(
Dmm′

Ek + D′mm′
Ek

εm
k − εm′

k

)

+πh̄
(
Dmm′

Ek + D′mm′
Ek

)
δ
(
εm

k − εm′
k

)
. (47)

In Eq. (47) we have separated the principal part and the
δ-function terms in the time integral. The δ-function terms
are important near points in momentum space where different
bands touch, as discussed below. The matrix elements of
Jod [n(−1)

Ek ]mm′
can be identified from Eq. (27). Using Eq. (27),

we express explicitly the anomalous driving term D′mm′′
Ek =

−Jod [n(−1)
Ek ]mm′′

as

D′ mm′′
Ek = πni

h̄

∑
m′k′

Umm′
kk′ Um′m′′

k′k

{[
n

(−1),mm

Ek − n
(−1),m′m′
Ek′

]

× δ
(
εm

k − εm′
k′
)+ [

n
(−1),m′′m′′
Ek − n

(−1),m′m′
Ek

]
× δ

(
εm′′

k − εm′
k′
)}

. (48)

Using Eqs. (45), (47), and (48) the full off-diagonal response
of the crystal can be determined to leading order in the disorder
potential.

E. Diagonal part of the density matrix to next-to-leading
order in the impurity density

The subleading order contribution to the diagonal density
matrix, distinguished by the superscript (0) satisfies the equa-
tion

Jd

[
n

(0)
E

]mm

k = −Jd

[
S

(0)
E

]mm

k , (49)

where S
(0)
E ≡ S

(0)
Ek is found using Eq. (47). The RHS of Eq. (49)

plays the role of a supplementary effective diagonal driving
term that arises from the collision kernel acting on the off-
diagonal response. The RHS plays the role of a driving term
and the LHS needs to be solved. This equation can be solved
for n

(0)
Ek using the method explained above, i.e., by letting

K−1 act on the effective driving term, as in Ref. [105]. The
expansion now contains all terms in the density matrix up to
order zero in the impurity density (disorder strength), since the
next iteration of SEk will be order (1), i.e., ∝ni .

VI. DISCUSSION

Our transport theory addresses the influence of a constant
electric field on the density matrix of independent electrons in
a weakly disordered crystal. In real crystals, electron-electron
interactions always play an essential role, even when electrons
form a Fermi liquid state. In practice we imagine the indepen-
dent fermions that appear in our theory as the quasiparticles of
a mean-field-like description of a particular crystal of interest.
The Kohn-Sham quasiparticles of density-functional theory
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(DFT) are of particular interest because DFT combined with an
appropriate exchange-correlation energy functional provides
a good enough description of many important solid state
systems. Because the Kohn-Sham quasiparticles are defined
by an effective Hamiltonian that depends on electron charge
and spin- or current-density functions, which can themselves
be altered in an important way by an applied electric field,
applications of the transport theory might in many instances
require that the response be self-consistently incorporated in
the Kohn Sham Hamiltonian. This is particularly true in the
case of solid state systems with order that can be manipulated
magnetically, for example, the many interesting effects that
are important in spintronics.

A. Band-diagonal and off-diagonal contributions

The formulation of transport theory summarized above
demonstrates that, to subleading order in disorder strength,
the linear response of observables to a steady electric field
depends in general on the interplay between three contributions
distinguished by the way in which they contribute to the single-
particle density matrix in the band-eigenstate representation:
(i) a contribution to the band-diagonal part of the density matrix
which balances the intraband driving term and scattering on
the Fermi surface nd diverges in the limit of very weak disorder
scattering, (ii) a contribution to the band off-diagonal part of
the density matrix that is independent of disorder character and
hence an intrinsic band-structure property involving the entire
Fermi sea, and (iii) an extrinsic contribution to both the band
off-diagonal and the band-diagonal parts of the density matrix
that is finite in the weak disorder limit and originates from the
collision kernel acting on the leading Fermi surface response
(i). Given a Wannier interpolation of a crystal Hamiltonian it is
practical to fully and accurately solve the transport equations
we have derived using modern computational resources.

The leading band-diagonal response [(i) above] of electrons
close to the Fermi surface is the subject of most transport
theories in metals [105] and, indeed, it normally dominates
the response of most observables, longitudinal current in
particular, in reasonably good metals. It has been studied
extensively in the past and is well understood [105].

B. Contributions to interband coherence

The importance for some observables of the intrinsic
off-diagonal driving term DEk in practical solid state materials
under typical experimental conditions first came to light in re-
cent theoretical efforts to achieve a quantitative understanding
of the anomalous Hall effect, the Hall effect in the absence of
a magnetic field, which is nonzero in ferromagnetic and some
noncollinear antiferromagnetic systems [17–25,28–31]. The
intrinsic Hall current response is expressed exactly in terms
of the momentum-space Berry curvature of the crystal bands
and can be nonzero even in insulators [18,19,23,25]. In two-
dimensional insulators, the Hall conductivity is proportional
to the integral of the Berry curvature over the two-dimensional
Brillouin zone, which is a quantized topological index of the
band structure, the first theoretically understood classification
of crystal band structures [106]. The quantum Hall effect of
two-dimensional insulators is an example of an important

electric field response of an insulator, which must originate
entirely from the off-diagonal terms because of the absence of
a Fermi surface. Insulator response to an electric field is also
important in spintronics, which has witnessed an increasingly
active role for magnetic insulators. In metals, the intrinsic
response (ii) and the much more complex extrinsic subleading
response (iii) must be treated on an equal footing in order to
achieve reliable theoretical results. Our transport formalism is
motivated by the desirability of meeting this need, not only in
toy model systems, but also in crystals with complex electronic
structure. The anomalous driving term D′

Ek (iii) leads to a
scattering correction to the intrinsic response. It arises from a
projection of the collision kernel acting on the diagonal part
of the density matrix nEk, which contains a δ function at the
Fermi energy. Hence this contribution involves the carriers on
the Fermi surface. This correction can be sizable in magnitude
and in many cases cancels out the total response of observables
of interest [36,42,43,107].

The expansion in disorder strength of the off-diagonal part
of the density matrix starts at order n

(0)
i . To see this, note

firstly that the intrinsic off-diagonal driving term DEk has no
dependence on disorder. Secondly, referring to Eq. (48), in
the anomalous driving term D′

Ek the factor of ni cancels the
factor of 1/ni contained in the scattering time τm, making
this term apparently independent of the impurity density. This
is simply a reflection of the fact that (i) the nonequilibrium
correction to the density matrix is an expansion in powers of
ni and (ii) the leading term in the expansion is ∝n−1

i , since it
is linear in the transport scattering time that is needed to keep
the Fermi surface near equilibrium. The next-to-leading term
is thus of order n

(0)
i . (Alternatively, if one uses U 2 instead of ni

to characterize the strength of the disorder potential, then this
contribution to the density matrix appears to be independent
of the magnitude of the disorder potential.)

It is interesting to consider briefly the limiting case in which
interband disorder matrix elements happen to be much smaller
than intraband ones. In this case the interband coherence
contribution is dominated by the intrinsic off-diagonal driving
term, and the anomalous driving term is negligible. If, in ad-
dition, the diagonal disorder matrix elements happen to differ
strongly between two bands then effectively the dynamics is
dominated by one band. However, realistic disorder potentials,
such as bare and screened Coulomb potentials and short-range
disorder, as well as spin-dependent potentials leading to spin
flip and skew scattering, always have off-diagonal matrix
elements that are comparable in magnitude to the diagonal
ones.

C. Interband coherence effects in conductors and insulators

In most conducting crystals whether metals, semiconduc-
tors, or semimetals all three terms (i)–(iii) are present in the
linear response to an electric field. In nonmagnetic conductors
with strong spin-orbit interactions the band-diagonal part of
the density matrix is responsible for the steady-state spin
density (alternatively the current-induced spin polarization)
[36,42,43,64,108,109]. The band off-diagonal part is respon-
sible for the spin-Hall effect, which typically has sizable
contributions from both the intrinsic driving term (ii) and the
anomalous driving term (iii) [42,43,107]. In massless Dirac
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fermion systems such as graphene and topological insulators
the interband coherence terms (ii) and (iii) give rise to the
well-known Zitterbewegung contribution to the minimum
conductivity [48,49,53,57–61]. This contribution is traced to
the δ-function terms in Eq. (47), which are important at the
Dirac point, when the bands touch. Hence the off-diagonal part
of the density matrix contains a reactive response to electric
fields and is associated with nonadiabatic corrections to the
carrier motion.

In magnetically-doped conductors the band off-diagonal
part of the density matrix is responsible for the anomalous Hall
effect, which in turn has strong contributions from both the
intrinsic and anomalous driving terms [20–25]. The extreme
case of this is the quantum anomalous Hall effect occurring
in topological insulators in which the chemical potential
lies in the surface energy gap opened by the magnetization
[31]. In that case the surface valence band is full while the
surface conduction band is empty, hence the band-diagonal
part of the density matrix is zero and the anomalous driving
term likewise vanishes [30]. The quantized anomalous Hall
response results from the intrinsic off-diagonal driving term
DEk. A similarly complex interplay between the diagonal
and off-diagonal response enters the calculation of spin-orbit
torques in ferromagnetic structures (see below).

Finally, in insulators the diagonal driving term vanishes
identically at zero temperature (but not at finite temperature)
[110] and consequently the anomalous off-diagonal driving
term is also zero. The only possible response is due to the
intrinsic off-diagonal driving term, which leads to, e.g., the
interband polarization.

D. Computational applications

The aim of this work is to provide a general quantum
kinetic equation that can be easily adapted to computational
strategies to study interband coherence effects in systems with
complex band structures that cannot be described by simple
analytical models. In this subsection we discuss briefly a series
of problems that are amenable to a treatment based on the
quantum kinetic equation as presented above.

A considerable amount of research has focused on the
possibility of switching the magnetization of a ferromagnet by
passing an electrical current through it. Initial studies focused
on spin-transfer torques, which exploited the inhomogeneity
in the magnetization in the vicinity of an interface. Recent
research has highlighted the role of spin-orbit torques in
materials with strong spin-orbit interactions. The calculation
of the spin-orbit torque is equivalent to finding the steady-state
spin density induced by an external electric field, which lends
itself to the treatment introduced in this work. Computational
methods in this case are indispensable since the materials under
study are typically metals with complicated band structures
involving several bands with complex topologies intersecting
the Fermi surface.

An interesting recent development in this direction con-
cerns interfacing ferromagnets with topological materials with
strong spin-orbit coupling. Experimental work has shown that
the steady-state spin density in a topological insulator gives rise
to a sizable spin-orbit torque in an adjacent ferromagnet [11].
In principle, for a topological insulator one can use a simple

two-band Dirac model to determine the spin density given
a certain disorder realization. Yet one recognized limitation
of using topological insulators is that the spin density lies
only in the plane containing the interface. This has led
to the exploration of novel topological materials such as
transition metal dichalcogenides. Among these the type-II
Weyl semimetal WTe2 has been shown to give rise to a
strong out-of-plane spin-orbit torque due to the absence of
mirror symmetry [79,111–113]. An accurate calculation of this
torque can only be done numerically due to the complexities
of the band structure of WTe2. A simple analytical model
of WTe2 consists of a tilted Dirac cone such that one band
becomes effectively flat and the Fermi surface appears to be
open. This unphysical feature is not present in the numerically
calculated band structure, yet no accurate analytical model
currently exists. In addition, the Fermi surface has been shown
to be complex, with electron and hole pockets concomitantly
present.

Likewise the spin-Hall and inverse spin-Hall effect in
metals continue to be the subject of a significant amount of
work and controversy [44]. The kinetic equation has been
shown to capture this effect accurately. Moreover, a numerical
formulation can accommodate different boundary conditions
with relative ease, a fact that is of the utmost importance in
this problem, since the effect of the spin-Hall current can
only be detected through the spin accumulation it generates
at the boundary of the sample. The theoretical framework can
be extended to cover spin-dependent scattering mechanisms
leading to skew scattering and side jump, as well as to the
correct definition of the conserved spin current [114], which
is cumbersome to deal with analytically.

As a final example, we note that the kinetic equation can
be straightforwardly extended to describe magnetotransport
in materials with arbitrary band structures, revealing the
physical origin of complex phenomena involving both Berry
phase and scattering effects, such as the chiral anomaly
of Weyl semimetals. This will be done in a forthcoming
publication [115].

E. Comparison with equivalent formulations
of linear response theory

The formulation of linear response theory that we present
converts the quantum Liouville equation into an effective
semiclassical kinetic equation that is exactly equivalent to the
quantum Boltzmann equation. It is very similar in spirit to
the Keldysh method [116]. In the same way as the quantum
Boltzmann equation our approach can be generalized to
inhomogeneous systems by taking the Wigner transform of
the density matrix and making a gradient expansion in the
spatial variable. However, the approach presented in this work
is considerably more intuitive and transparent than the Keldysh
method since the kinetic equation is formulated in terms of the
density matrix, which can be directly associated with quantum
mechanical expectation values. It avoids the cumbersome
steps needed to convert the Keldysh Green’s function into
an effective distribution function, such as the necessity of an
ansatz for the Keldysh component and integration over an
additional energy variable, which become increasingly opaque
in complex, multiband systems.
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The method we propose has a strong parallel with the
Kubo approach based on the fluctuation-dissipation theorem.
Whereas the starting point of both approaches is the quantum
Liouville equation, the Kubo approach focuses on solving the
quantum Liouville equation immediately in integral form and
then expanding this solution in the strength of the disorder
potential. The Kubo method may thus be termed the integral
approach to the kinetic equation, while the method we discuss
could be viewed as the differential approach. The propagators
appearing as part of the Kubo method are equivalent to the
time-evolution operators in our density-matrix language. The
main methodological difference is in the way the disorder
is treated: The Kubo approach essentially incorporates the
disorder potential U directly into the time-evolution operator
and then expands this in the strength of the disorder potential.
The density-matrix approach builds up the disorder expansion
order by order before solving for the density matrix using
the time evolution operator for the clean system. The vertex
correction due to the disorder ladder diagrams, which in
the Kubo formalism leads to the correct expression for the
momentum relaxation time, is equivalent to the scattering-in
term in the kinetic equation and is much easier to obtain
in the language discussed in this work. It does not require
summation over an infinite series of terms, which would be
rather inconvenient for numerical implementations.

All the results we have obtained using the density-matrix
approach to date have matched those obtained using the
Kubo formalism. This includes the steady-state spin density
and spin current [42,43,117], as shown below, the skew
scattering and side-jump contributions to the spin-Hall effect
both in the presence and in the absence of band structure
spin-orbit coupling [102,103,118,119], the anomalous Hall
effect [30], and the longitudinal conductivity of graphene and
the minimum conductivities of intrinsic monolayer and bilayer
graphene [58–60].

Aside from its intuitive transparency and straightforward
physical interpretation, the advantage of the density-matrix
method is that one can immediately separate intrinsic effects,
extrinsic effects, and effects that combine interband coherence
and disorder. For example, in the density-matrix language it is
immediately obvious that the well-known vertex correction to
the spin-Hall current represents the presence of a steady-state
spin density [42,43]. Building on this insight, the vanishing
of this vertex correction to the spin-Hall effect in models
such as the cubic Dresselhaus and spherical Luttinger models
becomes self-explanatory, since a steady-state spin density in
these nongyrotropic systems is forbidden by symmetry.

We stress that the choice of disorder model is independent
of the approach used. The models we discussed above for the
case of the quantum Liouville equation—a random disorder
potential and uncorrelated impurities—are frequently used
in conjunction with the Kubo formula and the Keldysh
formulation.

VII. APPLICATIONS OF THE THEORY

In this section we discuss the application of the general
theory developed above to a few specific simple model
examples, fully recovering results derived previously using
a variety of different techniques. Our intention in this section

is to establish using a few specific examples, that our Born
approximation theory contains all recognized physical effects.
It is however formulated in this paper in a way which is
appropriate for arbitrarily complex band structures.

For the sake of simplicity the focus of this section will
be on spin-dependent effects in spin-orbit coupled semi-
conductors described by the Rashba model, including the
electric-field induced spin polarization, the spin-Hall effect,
and the anomalous Hall effect. We stress that, very generally,
whenever intrinsic interband coherence effects are strong,
extrinsic effects are also expected to be important. This fact
emerges explicitly in the examples given below. A related
example, not studied in detail here but considered in a recent
publication [30], is that of the anomalous Hall effect in
topological insulators doped with magnetic impurities. In this
case, as shown in Ref. [30], the intrinsic contributions due
to the conduction and valence bands cancel each other out,
leaving the extrinsic contribution due to the anomalous driving
term as the only sizable contribution to the anomalous Hall
effect. This highlights the importance of studying intrinsic and
extrinsic terms on the same footing.

A. Linear Rashba model for a nonmagnetic semiconductor

The Hamiltonian for an inversion asymmetric two-
dimensional electron gas is

H0k = h̄2k2

2m∗ + α(σxky − σykx)

= h̄2k2

2m∗ + αk

[
0 ie−iθ

−ieiθ 0

]
, (50)

where m∗ is the electron effective mass, α the spin-orbit
constant, σi are the Pauli matrices, and θ the polar angle of the
wave vector. The eigenvectors are

|u±
k 〉 = 1√

2

[
e−iθ

∓i

]
, (51)

and the energies are ε±
k = h̄2k2/2m∗ ± αk. The two band

indices here are n = ±. We assume impurities to be short
ranged so that there is only one relaxation time for each band
(Bloch lifetime = momentum relaxation time) which we call
τ±.

1. Diagonal part of the density matrix and spin density

The diagonal part of the density matrix at T = 0 is

n
(−1),±±
Ek = −eE · k̂τ±

h̄

(
h̄2k

m∗ ± α

)
δ(ε±

k − εF ), (52)

where k̂ = (kx/k,ky/k) is a unit vector along the k direc-
tion. We consider a short-range (on-site) disorder of the
form U (r) = U0

∑
i δ(r − r i) and assume that the correlation

function satisfies 〈U (r)U (r ′)〉 = niU
2
0 δ(r − r ′) with ni the

impurity density. The relaxation times τ± for short-range
impurities are found through

1

τ±(k)
= niU

2
0

h̄

∫
dk′ k′ δ(ε±

k′ − ε±
k ) = nim

∗U 2
0

h̄3

(
1

1 ± m∗α
h̄2k

)
.

(53)
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We can write the relaxation times as a single matrix in the 2D
manifold

τ± = h̄3

nim∗U 2
0

(
1 ∓ m∗α

h̄2k

)
→ τ = τ0

(
1 − m∗α

h̄2k
σz

)
,

(54)

where τ0 = h̄3/(nim
∗U 2

0 ). We keep only terms up to first order
in α and we define ε0

k = h̄2k2/2m∗. The nonequilibrium spin
polarization stems from

n
(−1)
Ek ≈ eαm∗ E · k̂τ0

h̄3 σz

[
1

k
δ(k − kF ) − ∂

∂k
δ(k − kF )

]
.

(55)

Here kF = (2πn)1/2 with n the electron number density.
Without loss of generality consider E ‖ x̂. In the eigenstate
basis, the spin-y operator is given by sy = −h̄/2(cos θσz +
sin θσy). Then the expectation value of the y component of the
spin is obtained as

〈sy〉 = Tr
[
syn

(−1)
Ek

] = −eαm∗Exτ0

2πh̄2 , (56)

as expected [36,120,121].

2. Anomalous driving term and vanishing spin-Hall conductivity

We compute the spin-Hall conductivity of the system.
The spin-Hall conductivity comes from the off-diagonal part
of the density matrix. First we calculate the contributions from
the Berry connection Rk. According to Eq. (51), we obtain

Rk = θ̂

2k
(1 + σx), (57)

where θ̂ = (− sin θ, cos θ ) is the polar unit vector in reciprocal
space. Then the intrinsic off-diagonal driving term becomes

DEk = −eE · θ̂

2h̄2k
[f0(ε+

k ) − f0(ε−
k )]σy, (58)

from which the intrinsic off-diagonal density matrix is ob-
tained as

S
(0)int
Ek = eE · θ̂

4h̄αk2
[f0(ε+

k ) − f0(ε−
k )]σx. (59)

Next we calculate the Fermi surface contribution, i.e.,
the contribution from the anomalous driving term D′

Ek =
−Jod [n(−1)

Ek ]. The matrix elements of the scattering potential
are given by U++

kk′ U+−
k′k = (iU 2

0 /2) sin γ and U+−
kk′ U−−

k′k =
−(iU 2

0 /2) sin γ . Here, we have defined γ = θ ′ − θ . For n
(−1)
Ek

we use Eq. (52), yielding the off-diagonal scattering terms
from Eq. (27) (see Appendix B for details)

Jod

[
n

(−1)
Ek

]+− = ieExαm∗ sin θ

h̄3k
δ(k − kF ),

Jod

[
n

(−1)
Ek

]−+ = − ieExαm∗ sin θ

h̄3k
δ(k − kF ). (60)

Here, we have expanded the delta functions in Jod (nEk) and
retained the terms up to linear order in α as δ(ε+

k − ε−
k′) ≈

δ(ε0
k − ε0

k′) + α(k + k′)∂δ(ε0
k − ε0

k′)/∂ε0
k. Then we obtain the

intrinsic off-diagonal density matrix as

S
(0)ext
Ek = −eExm

∗ sin θ

2h̄2k2
δ(k − kF ) σx. (61)

The spin current operator (in the y direction) is given by
jz
s = 1

2 (szvy + vysz) = (h̄2ky/m)sz. In the eigenstate basis, we
have sz = (h̄/2)σx . With the use of the expression for the off-
diagonal part of the density matrix (47), the spin-Hall current
is given by jz

y = Tr[jz
s S

(0)
Ek], where S

(0)
Ek = S

(0)int
Ek + S

(0)ext
Ek . We

find that the spin-Hall current contributions from the intrinsic
driving term DEk [jz

y (DEk) = eEx/(8π )] and the extrinsic
(anomalous) driving term D′

Ek [jz
y (D′

Ek) = −eEx/(8π )] can-
cel out, yielding a zero total spin-Hall current

jz
y = 0, (62)

as expected [36].

B. Anomalous Hall effect in paramagnetic semiconductors
with linear Rashba spin-orbit coupling

We now consider the case in which a magnetization M

exists in the system, pointing along the ẑ axis. The Hamiltonian
of the system reads

H0k = h̄2k2/2m∗ + α(σxky − σykx) + Mσz. (63)

The energies are ε±
k = h̄2k2/2m∗ ± λk with λk =√

α2k2 + M2, where M for simplicity has units of energy. We
define the two Fermi wave vectors kF± by setting ε±

k = εF . As
M → 0 they both tend to a common value referred to as kF .
Below we will assume αkF ,M � εF , but no assumptions are
made about the relative size of αkF and M . The eigenvectors
are

|u+
k 〉 = 1√

2λk

[
αk√

λk−M
e−iθ

−i
√

λk − M

]
,

|u−
k 〉 = 1√

2λk

[
αk√

λk+M
e−iθ

i
√

λk + M

]
. (64)

The Berry connection is

Rk = θ̂

2k

(
1 + M

λk

σz + αk

λk

σx

)
. (65)

The intrinsic off-diagonal driving term becomes

DEk = −eE · θ̂

2h̄k

αk

λk

[f0(ε+
k ) − f0(ε−

k )]σy, (66)

from which the intrinsic off-diagonal density matrix is ob-
tained as

S
(0)int
Ek = eE · θ̂α

4λ2
k

[f0(ε+
k ) − f0(ε−

k )]σx. (67)

Without loss of generality consider E ‖ x̂. Then the intrinsic
anomalous Hall conductivity from the Berry phase term is
calculated to be

σ 0
xy = Tr

[
(−e)vyS

(0)int
Ek

]
/Ex

= −e2M

2h

⎛
⎝ 1√

α2k2
F+ + M2

− 1√
α2k2

F− + M2

⎞
⎠. (68)
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In the regime M � αkF , we get

σ 0
xy = e2M

2h

2α2m∗

h̄2λ2
kF

, (69)

where λkF
≡ λk(k = kF ), vy = ∂H0k/∂ky is the velocity op-

erator in the eigenstate basis, and kF+ − kF− ≈ 2αm∗/h̄2.
Next we compute the contribution to the anomalous

Hall conductivity from the anomalous driving term D′
Ek =

−Jod [n(−1)
Ek ]. We consider a short-range (on-site) disorder of the

form U (r) = U0
∑

i δ(r − r i) and assume that the correlation
function satisfies 〈U (r)U (r ′)〉 = niU

2
0 δ(r − r ′) with ni the

impurity density. The diagonal part of the density matrix takes
the form

n
(−1),nn

Ek = −eE · k̂τn

h̄

∂εn
k

∂k
δ(εn

k − εF ). (70)

Once more we write the relaxation times as a matrix

τ = τ0

(
1 − m∗α2

h̄2
√

α2k2 + M2
σz

)
, (71)

where τ0 = h̄3/(nim
∗U 2

0 ). This tends to the result for the
nonmagnetic case when M = 0, and to the correct, M-
independent result when α = 0. Intuitively, for α = 0 and
M �= 0 the eigenstates are pure spin up and down, and the
scalar potential cannot give interband scattering, which would
be equivalent to spin flip. In that limit U±± tends to a constant
and U±∓ = 0. The anomalous driving term can be evaluated
in the same way as Eq. (60) by expanding the delta functions
and retaining the terms up to linear order in λk . The final form
reads

Jod

[
n

(−1)
Ek

]+− =
(

eExαMm∗ cos θ

λkkh̄3 + ieExαm∗ sin θ

kh̄3

)
× δ(k − kF ), (72)

from which the extrinsic off-diagonal density matrix is
obtained as

S
(0)ext
Ek = −δ(k − kF )

[
eExαm∗M cos θ

2λ2
kkh̄2 σy

+ eExαm∗ sin θ

2λkkh̄2 σx

]
. (73)

This extrinsic off-diagonal density matrix contributes to the
anomalous Hall conductivity as

σ ′
xy = Tr

[
(−e)vyS

(0)ext
Ek

]/
Ex = − e2

2h

2α2m∗M
h̄2λ2

kF

. (74)

In the regime M � αkF , we have vanishing total anomalous
Hall conductivity due to the cancellation of the intrinsic and

extrinsic contributions

σ 0
xy + σ ′

xy = 0, (75)

as expected [20,122].

VIII. CONCLUSIONS

We have described a general way of evaluating the linear
response of a crystal to an electric field, accounting for both
the intraband and interband response. The intraband response
is captured by the band-diagonal part of the density matrix,
in the Born approximation is inversely proportional to the
strength of the disorder potential to leading order, and is
responsible for properties such as the longitudinal conductivity
and current-induced spin polarizations in spin-orbit coupled
systems. Interband coherence makes a sizable contribution
to the linear response of crystals. It is captured by the
band off-diagonal part of the density matrix, it has strong
intrinsic as well as extrinsic contributions, and its leading
contribution is of zeroth order in the disorder potential. It
is responsible for properties such as the spin-Hall effect,
the anomalous Hall effect, the minimum conductivity of
massless Dirac fermions. In particular, our theory can capture
correctly chiral-anomaly-induced transport phenomena such
as the negative magnetoresistance of Weyl semimetals [115].
The interplay of the diagonal and off-diagonal parts of the
density matrix is important in determining the linear response
of ferromagnets to an electric field, including contributions
such as spin-orbit torques. The method described in this
work can be generalized to include extrinsic spin-dependent
scattering effects [103,118], and these will be the topic of a
future publication.
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APPENDIX A: COMPLETE EXPRESSIONS FOR THE SCATTERING TERM

Here we give the complete expressions for the scattering term Jk(〈ρ〉) [Eq. (25)]. The complete expression for the energy-
conserving δ-function scattering terms is

Jδ(〈ρ〉)mm′′′
k = π

h̄

∑
m′m′′k′

{〈
Umm′

kk′ Um′m′′
k′k

〉〈ρ〉m′′m′′′
k δ

(
εm′

k′ − εm′′
k

)+ 〈
Um′m′′

kk′ Um′′m′′′
k′k

〉〈ρ〉mm′
k δ

(
εm′

k − εm′′
k′
)

− 〈
Umm′

kk′ Um′′m′′′
k′k

〉〈ρ〉m′m′′
k′ δ

(
εm′′

k′ − εm′′′
k

)− 〈
Umm′

kk′ Um′′m′′′
k′k

〉〈ρ〉m′m′′
k′ δ

(
εm

k − εm′
k′
)}

, (A1)
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where we have used Jδ = Jd + Jod , as in Eq. (27). The principal part terms take the form

Jpp(〈ρ〉)mm′′′
k = 1

ih̄
P

∑
m′m′′k′

{〈
Umm′

kk′ Um′m′′
k′k

〉〈ρ〉m′′m′′′
k

1

εm′
k′ − εm′′

k

+ 〈
Um′m′′

kk′ Um′′m′′′
k′k

〉〈ρ〉mm′
k

1

εm′
k − εm′′

k′

− 〈
Umm′

kk′ Um′′m′′′
k′k

〉〈ρ〉m′m′′
k′

1

εm′′
k′ − εm′′′

k

− 〈
Umm′

kk′ Um′′m′′′
k′k

〉〈ρ〉m′m′′
k′

1

εm
k − εm′

k′

}
. (A2)

To get the corresponding expressions for the band off-diagonal part of the density matrix, Smm′
k , one simply replaces 〈ρ〉 → Sk

in the above.

APPENDIX B: DETAILED DERIVATION OF THE ANOMALOUS DRIVING TERM IN THE RASHBA MODEL

Here we show a detailed derivation of Eq. (60), the anomalous driving term D′
Ek = −Jod [n(−1)

Ek ] in the Rashba model. The
spin-Hall conductivity comes from the off-diagonal part of the density matrix. The anomalous driving term arises from the
following scattering term [Eq. (27)]

Jod

[
n

(−1)
Ek

]+− = π

h̄

∑
k′

〈U++
kk′ U+−

k′k 〉{[n(−1),++
Ek − n

(−1),++
Ek′

]
δ(ε+

k − ε+
k′) + [

n
(−1),−−
Ek − n

(−1),++
Ek′

]
δ(ε−

k − ε+
k′)
}

+ π

h̄

∑
k′

〈U+−
kk′ U−−

k′k 〉{[n(−1),++
Ek − n

(−1),−−
Ek′

]
δ(ε+

k − ε−
k′) + [

n
(−1),−−
Ek − n

(−1),−−
Ek′

]
δ(ε−

k − ε−
k′)
}
. (B1)

We use Eq. (52) for n
(−1),±±
Ek , and the matrix elements of the scattering potential are

U++
kk′ U+−

k′k = iU 2

2
sin γ, U+−

kk′ U−−
k′k = − iU 2

2
sin γ, (B2)

where γ = θ ′ − θ , and we have used U±±
kk′ = U/2(e−iγ + 1) and U±∓

kk′ = U/2(e−iγ − 1). Only the terms with n
(−1),±±
Ek′ survive

the angular integration:

Jod

[
n

(−1)
Ek

]+− = iπniU
2

2h̄

∑
k′

sin γ
{
n

(−1),−−
Ek′ [δ(ε+

k − ε−
k′) + δ(ε−

k − ε−
k′)] − n

(−1),++
Ek′ [δ(ε+

k − ε+
k′) + δ(ε−

k − ε+
k′)]

}
. (B3)

We substitute explicit forms of n
(−1),±±
Ek′ from Eq. (52), yielding

Jod

[
n

(−1)
Ek

]+− = iπniU
2

2h̄

eE
h̄

·
∑

k′
sin γ

{
−τ−

∂ε−
k′

∂k′ δ(ε−
k′ − εF )[δ(ε+

k − ε−
k′) + δ(ε−

k − ε−
k′)]

+ τ+
∂ε+

k′

∂k′ δ(ε+
k′ − εF )[δ(ε+

k − ε+
k′) + δ(ε−

k − ε+
k′)]

}
. (B4)

We can turn the summations into integrations, and do the integrals over angle first, taking E ‖ x̂ and noting that∫
dθ ′

2π
cos θ ′ sin γ = − sin θ

2
. (B5)

This gives

Jod [n(−1)
Ek ]+− = iπniU

2

8πh̄

eE sin θ

h̄

∫
dk′ k′

{
τ−

∂ε−
k′

∂k′ δ(ε−
k′ − εF )[δ(ε+

k − ε−
k′ ) + δ(ε−

k − ε−
k′)]

− τ+
∂ε+

k′

∂k′ δ(ε+
k′ − εF )[δ(ε+

k − ε+
k′) + δ(ε−

k − ε+
k′)]

}
. (B6)

Let us evaluate the τ− term in Eq. (B6):

Jod (τ−) = iπniU
2τ0

8πh̄

eE sin θ

h̄

∫
dk′ h̄2k′2

m∗

(
1 + m∗α

h̄2k′

)(
1 − m∗α

h̄2k′

)
δ(ε−

k′ − εF )[δ(ε+
k − ε−

k′ ) + δ(ε−
k − ε−

k′)]

= ieEh̄3 sin θ

8m∗2

∫
dk′ k′2 δ(ε−

k′ − εF )[δ(ε+
k − ε−

k′) + δ(ε−
k − ε−

k′ )] + O(α2). (B7)
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We expand the delta functions up to the first order in the spin-orbit coupling strength α as

δ(ε+
k − ε−

k′) ≈ δ
(
ε0

k − ε0
k′
)+ α(k + k′)

∂

∂ε0
k

δ
(
ε0

k − ε0
k′
)
,

δ(ε−
k − ε−

k′) ≈ δ
(
ε0

k − ε0
k′
)− α(k − k′)

∂

∂ε0
k

δ
(
ε0

k − ε0
k′
)
,

δ(ε+
k − ε−

k′) + δ(ε−
k − ε−

k′) ≈ 2δ
(
ε0

k − ε0
k′
)+ 2αk′ ∂

∂ε0
k

δ
(
ε0

k − ε0
k′
)
,

δ(ε−
k′ − εF ) ≈ δ

(
ε0

k′ − εF

)− αk′ ∂

∂ε0
k′

δ
(
ε0

k′ − εF

)
. (B8)

We only need to evaluate the terms of first order in α out of the above expression, which gives

Jod (τ−) = ieEαh̄3 sin θ

4m∗2

∫
dk′ k

′3
{
δ
(
ε0

k′ − εF

) ∂

∂ε0
k

δ
(
ε0

k − ε0
k′
)− δ

(
ε0

k − ε0
k′
) ∂

∂ε0
k′

δ
(
ε0

k′ − εF

)}

= ieEαh̄3 sin θ

4m∗2

{
∂

∂ε0
k

∫
dk′ k

′3 δ
(
ε0

k′ − εF

)
δ
(
ε0

k − ε0
k′
)}−

∫
dk′ k

′3 δ
(
ε0

k − ε0
k′
) ∂

∂ε0
k′

δ
(
ε0

k′ − εF

)}

= ieEαh̄3 sin θ

4m∗2

m∗3

h̄6

{
1

k

∂

∂k

∫
dk′ k′ δ(k′ − kF ) δ(k′ − k)} −

∫
dk′ k

′2 δ(k′ − k)
∂

∂k′
1

k′ δ(k′ − kF )

}

= ieEαm∗ sin θ

2h̄3k
δ(k − kF ). (B9)

We can easily see that the τ+ term in Eq. (B6) will give the same result as the τ− term. Thus we arrive at Eq. (60):

Jod

[
n

(−1)
Ek

]+− = ieEαm∗ sin θ

h̄3k
δ(k − kF ), Jod

[
n

(−1)
Ek

]−+ = − ieEαm∗ sin θ

h̄3k
δ(k − kF ), (B10)

where we have used the Hermiticity of the scattering term to get Jod [n(−1)
Ek ]−+.
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