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The algebraic structure of representation theory naturally arises from 2D fixed-point tensor network states,
and conceptually formulates the pattern of long-range entanglement realized in such states. In 3D, the same
underlying structure is also shared by Turaev-Viro state-sum topological quantum field theory (TQFT). We show
that a 2D fixed-point tensor network state arises naturally on the boundary of the 3D manifold on which the
TQFT is defined, and the fact that exactly the same information is needed to construct either the tensor network
or the TQFT is made explicit in a form of holography. Furthermore, the entanglement of the fixed-point states
leads to an emergence of pregeometry in the 3D TQFT bulk. We further extend these ideas to the case where an
additional global on-site unitary symmetry is imposed on the tensor network states.
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I. INTRODUCTION

By now it is widely accepted that topological phases
originate from the long-range entanglement existing in certain
condensed matter systems [1]. Tensor networks [2,3], which
focus on the wave functions of the system instead of the
Hamiltonian, are generally considered as a natural tool to
capture the behavior of long-range properties in a local way.
The most successful examples of tensor network states include
the matrix product states (MPS) [4–6] in 1D and the related
projected entangled pair states [7] in 2D, both of which serve
as an efficient ansatz for ground states of topological phases
in their respective dimensions.

Besides their popularity in studying strongly correlated
systems, entanglement, and tensor networks have also attracted
increasing attention from the high-energy theory community,
in various attempts of realizing [8–13] the holographic [14,15]
AdS/CFT correspondence [16], and serving as a framework
for loop quantum gravity [17–20], both under the spirit of
“geometry from entanglement”. It is thus of theoretical interest
to better understand the structure underlying tensor networks
of topological phases, so as to formulate a more definitive
theoretical framework for describing quantum entanglement.
This is the subject we are concerned about in this paper,
exemplified with a description of entanglement patterns in
2D topological phases.

A tensor network is built from graphs consisting of
interconnected tensors, imitating the structure of discrete
lattices. The geometry of the network is generated by the
pattern of interactions, namely, two sites in the network are
close to each other if and only if they are entangled. Every
tensor living on the sites of the network can be understood as
a building block of entanglement.

To illustrate this, consider, for example, the celebrated
AKLT states [21] in a spin-1 chain. Such a state can be obtained
from a parton construction. As in Fig. 1, one regards every
spin-1 degrees of freedom on site n as a composite object
consisting of two spin-1/2’s at nL and nR , and links each
spin-1/2 spin on the site nL(nR) to its nearest neighbor on
(n − 1)R [(n + 1)L] with a singlet bond. One then projects

into the physical subspace with a spin-1 degree of freedom at
each site. From the perspective of representation theory, the
two spin-1/2’s nL and nR can be combined as 1

2 ⊗ 1
2 = 0 ⊕ 1.

The operator P which projects into the physical subspace
annihilates the first term on the right-hand side and keeps
only the spin-1 representation:

P :
1

2
⊗ 1

2
→ 1. (1)

The tensor network representation of the AKLT state
consists of tensors T i

μν at every site of the lattice, where
the index i ∈ {0, ± 1} labels the physical spin-1 degrees of
freedom on site n, while μ,ν ∈ {↑ , ↓} label the auxiliary
degrees of freedom associated with spin-1/2 partons at nL and
nR . The tensor T can thus be understood as an adjoint map
T = P †.

The fusion algebra 1
2 ⊗ 1

2 = 0 ⊕ 1 is a realization of
entanglement, in the sense that after the fusion, the quantum
states can no longer be factored as a product state of its local
constituents (the spin-1/2 partons). This is manifested in the
tensor network states in two ways: (i) when viewed as the
adjoint of the projection P , the tensor T i

μν provides a way to
encode the entanglement between nL and nR; (ii) contraction of
tensors on neighboring sites introduces maximal entanglement
across the adjacent sites nL and (n − 1)R [or nR and (n + 1)L].

In two dimensions, there exist intrinsic topological orders
not protected by any symmetry. Following the discussion
above, one would expect that in order to encode the en-
tanglement of the topological phase in a tensor network,
the structure of the tensors should be similar to that of a
representation theory. Namely, it should incorporate the fusion
algebra. For an intrinsic topological phase, we further require
the entanglement to be long range. The pattern of long-range
entanglement is captured by the fixed-point tensor network
states that are invariant under renormalization group (RG)
transformations of the tensor network.

One natural question thus arises: for a general tensor
network state to capture the long-range physics and to be
a RG fixed-point state, what are the constraints that need
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nL nR (n-1)L(n-1)R

FIG. 1. A parton construction of the AKLT state (see text for
details).

to be satisfied? It turns out that in 2D, the input data for
the tensor network indeed form a representation theory, in
the form of a unitary fusion category. In Sec. II, we briefly
review the algebraic definition of a unitary fusion category
(UFC). In Sec. III, we discuss how the UFC structure arises
from the fixed-point properties of general triple-line tensor
network states, and conversely, how to generate fixed-point
tensor network states from a UFC.

In Sec. IV, we provide a geometrical point-of-view on the
structure of fixed-point tensor network states by appealing
to 3D state-sum topological quantum field theory (TQFT).
The long-range physics of a phase with topological order is
described by a TQFT [22]. The state-sum construction [23,24]
of TQFTs discretizes the underlying manifold into a “lattice”
or “graph”, making explicit the locality of the theory.

Recently, the correspondence between 1D fixed-point tenor
network states and 2D state-sum TQFT has been formulated
rigorously [25,26]. In one dimension higher, the state-sum
construction of 3D TQFT was proposed by Turaev and
Viro [23] and later generalized by Barrett and Westbury [24],
which requires a UFC C as the input data. Given the UFC
input data and a triangulation of the 3D manifold �, one can
combinatorially define a topological invariant τC(�) that is
independent of the specific triangulation.

When the underlying manifold � contains boundaries, the
TQFT can be viewed as a holographic map from its 3D bulk
to the 2D boundary. Upon applying Poincaré duality, this
map produces the desired fixed-point tensor network state.
Conversely, starting from a 2D fixed-point tensor network
state, we show the generation of pregeometries for the 3D
bulk. It is a pre-geometry in the graph-theoretical sense: it
contains vertices that correspond to points in the spacetime and
oriented edges connecting them, i.e., a specific triangulation.
The stronger concept of emergent bulk geometry would further
require the definition of a metric from entanglement measures
in the tensor network.

To elaborate the relationship between our work and the
literature, here we note that our bidirectional map is related to
the Hamiltonian construction of the Turaev-Viro TQFT using
the 2D Levin-Wen string-net model [44]. It is known [55,56]
that the vector space associated to some 2D surface of the
3D manifold by the Turaev-Viro theory can be described in
terms of the string-net model. Furthermore, the ground states
of the model have a tensor network representation [37,38]
that is invariant under RG, and it is exactly this fixed-point
tensor network that will appear on the boundary of the 3D
manifold of the TQFT. Generally, it is believed that there exists
Hamiltonian construction of state-sum TQFTs in even higher
dimensions, see, for example, Ref. [57].

In Sec. V, we extend the framework to symmetric fixed-
point tensor network states [27,28], which possesses a global
on-site, finite, and unitary symmetry G. The algebraic structure
of these theories is given by G extension of the UFC C, while
the pre-geometric structure is closely related to 3D homotopy

quantum field theory [29–31]. The construction is parallel to
that of symmetry-enriched string-net models [32–34].

II. REVIEW OF UNITARY FUSION CATEGORIES

To prepare for the discussion of the algebraic structure of
fixed-point tensor network states, in this section we briefly
review the concept of a unitary fusion category (UFC). For
a detailed introduction, see for example Ref. [46]. A UFC
C is a set of data {I,d,N,G} subject to some consistency
conditions. I is the set of (isomorphism classes of) simple
objects in C. We require the existence of a trivial object
0 ∈ I . For every j ∈ I , there is a number dj ∈ R called the
quantum dimension of j , with d0 = 1. The rank-3 tensor
Nijk is a non-negative integer and describes the fusion rules
between the objects i,j and k. More specifically, the direct sum
decomposition of the tensor product i ⊗ j ⊗ k will include
Nijk direct summands of the trivial object 0. It is this feature of
tensor product decomposition that gives UFC the interpretation
of a representation theory. We assume multiplicity-free fusion
rules throughout the paper, which means that we restrict to the
case of Nijk ∈ {0,1} for ∀i,j,k ∈ I . We also define the dual
object j ∗ as the unique object that realizes N0jj∗ = Njj∗0 =
Nj∗0j = 1. It satisfies j ∗∗ = j and dj = dj∗ .

The quantum dimension di is the largest eigenvalue of
fusion matrix (Ni) that is defined from the rank-3 tensor as
(Ni)jk = Nijk . The corresponding eigenvector is independent
of i and consists of all quantum dimensions: (1) [(UFC1)]
eigenvalue equation for Ni :

didj =
∑

k

(Ni)jkdk =
∑

k

Nijkdk. (2)

Finally, to every six objects i,j,k,l,m,n ∈ I , we assign
a quantum 6j symbol, which is a rank-6 tensor G

ijm

kln ∈ C
(relaxation of the multiplicity-free assumption leads to four
additional multiplicity indices for the G symbols). We will
assume full tetrahedral symmetry of the G tensors:

G
ijm

kln = G
mij

nk∗l∗ = Gklm∗
ijn∗ = αmαn G

j∗i∗m∗
l∗k∗n . (3)

The number αj is the Frobenius-Schur indicator which in
the gauge we will work in is obtained by αj = sgn(dj ). The
three equal signs correspond to the three generators of the S4

symmetric (or tetrahedral) group, thus the name tetrahedral
symmetry. Relaxing this condition leads to additional phase
factors in the above equation that are second or third roots of
unity generated by higher Frobenius-Schur indicators. Simple
examples of theories where this occurs can be found in
Dijkgraaf-Witten theories [35] and the twisted quantum double
model [36] based on three-cocycles, where time-reversal and
parity symmetry can generically be broken. Dropping the
multiplicity-free condition and relaxing tetrahedral symmetry
would complicate our analysis, but we expect the main features
of the correspondence to remain qualitatively the same.

For C to be a UFC, the above tensors need to satisfy certain
consistency conditions, including: (2) [(UFC2)] pentagon
equation: ∑

n

dnG
mlq

kp∗nG
jip
mns∗G

js∗n
lkr∗ = G

jip

q∗kr∗G
riq∗
mls∗ . (4)
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(3) [(UFC3)] orthogonality:

∑
n

dnG
mlq

kp∗nG
l∗m∗i∗
pk∗n = δiq

di

NmlqNk∗ip. (5)

A useful identity that can be derived from above axioms is

G
ijk

0kj vj vk = Nijk, (6)

where vj = 1/G
j∗j0
00j = √

dj .
A simple example of a UFC naturally arises from the

representation theory of a finite group G, i.e., C = Rep(G).
The elements in the label set I correspond to irreducible
representations of G, and the Nijk tensor corresponds to
the multiplicity of the representation k∗ in the direct sum
decomposition of the tensor product i ⊗ j . The G tensors
are simply the Racah 6j symbols of the group representation.
More generally, a UFC is the representation category of a
C∗-weak Hopf algebra.

III. ALGEBRAIC STRUCTURE OF FIXED-POINT
TENSOR NETWORK STATES

In this section, we demonstrate the correspondence between
fixed-point tensor network states and UFCs from an algebraic
point of view. Section III A derives the structure of the category
from the fixed-point property of tensor network states, while
Section III B deals with the converse.

A. Fixed-point tensor network states give rise to a UFC

An example of a general 2D tensor network is displayed in
Fig. 2. The tensors living on the vertices of the graph have one
physical index M that extends into the third dimension (out of
the paper), as well as 4 + 4 indices that correspond to internal
degrees of freedom living on the links (j ’s) and plaquettes
(μ’s) of the graph, which are auxiliary and are to be summed
over. Generally, the vertices in the network can be of valence
n, with each tensor possessing 2n + 1 total indices.

The tensor network state of Fig. 2 is

|�〉 =
∑
{Ma}

tTr
[
(T M1 )j1j2j3j4

μ1μ5μ6μ2
⊗ (T M2 )j3j5j6j7

μ2μ6μ7μ3

(7)
⊗ (T M3 )j6j8j9j10

μ3μ7μ8μ4
· . . .

]|M1,M2,M3, · · ·〉,

j1 j3 j6

j11 j13 j15

j4 j7

j2 j5

j12 j14

M1 M2

M4 M5

j9

j17

j10

j8

j16

M3

M6

μ5 μ6 μ7 μ8

μ1 μ2 μ3 μ4

μ9 μ10 μ11 μ12

FIG. 2. Example of a 2D tensor network (color online). The tensor
living on the upper left vertex has components (T M1 )j1j2j3j4

μ1μ5μ6μ2
. The

corresponding tensor network state of this graph is Eq. (7).

μ iν′

j
ν

λ′
kλ
μ′

ν′ i μ

j
λ′
ν

k
μ′

λ

FIG. 3. Triple-line structure of vertices that belong to A (left)
and B (right) sublattices. For each of the three links that originally
connected to some vertex, we sandwich it by two additional links.
Upon projecting to the configurations that satisfy μ = μ′ = · · · ,
ν = ν ′ = · · · , etc., one can see the plaquette degrees of freedom
are restored. For simplicity, the physical indices {Mi} are compressed
in the figure.

where the tensor trace tTr indicates that all the internal indices
{ji} and {μi} are contracted. Note that the tensor network
commonly used absorb all auxiliary degrees of freedom μ’s
that live on the plaquettes to the edge degrees of freedom,
making use of the deformation rules that will be introduced
later in Fig. 4.

To discuss the properties of fixed-point tensor network
states, we work on a trivalent graph, or more specifically a
honeycomb lattice which is bipartite and has A,B sublattices.
More general graphs can be easily obtained from trivalent
graphs.

Assign labels i,j,k, · · · ∈ I to every oriented link of the
tensor network graph. For every j ∈ I labeling some link,
reversing the orientation of the link replaces j with a dual label
j ∗ ∈ I . We require the existence of an identity label 0 = 0∗
in I . Associate labels μ,ν,λ, · · · ∈ I to each plaquette of the
graph. These degrees of freedom are “nonlocal”, in the sense
that they can only be seen when looking at entire plaquettes. To
encapsulate them in a strictly local way, we expand the above
construction into a triple-line structure, following a procedure
similar to that in Refs. [37,38]. As shown in Fig. 3, for each
of the three links that originally connected to some vertex, we
sandwich it between two additional links (the physical indices
{Mi} are suppressed for simplicity). Upon projecting to the
configurations that satisfy μ = μ′ = · · · , ν = ν ′ = · · · , etc.,
one can see the plaquette degrees of freedom are restored.

To construct a tensor network state, we assign a physical
index M = (i,j,k) to each vertex. The tensor on the cor-
responding vertex reads (T M )ijk

μμ′νν ′λλ′ . Here the superscripts
i,j,k are labels of the links joining at the specific vertex, while
subscripts μ,ν,λ are labels of the plaquette degrees of freedom
adjacent to the vertex. (We stick to the rotationally invariant
tensor network, where the permutations of the subscripts in
Tjjj and T0jj∗ do not introduce extra phases. This property
turns out to be related to the Tetrahedral symmetry [39] of the
6j symbols in the corresponding UFC.)

In 1D, RG flow corresponds to performing scale trans-
formations by combining two or more adjacent tensors into
one composite tensor. In 2D, RG transformations for tensor
networks have been worked out in Refs. [40–42] in an
approximate way. Exact invariance of tensor network states
under RG flow in 2D can be regarded as an invariance of
the tensor network state under 2D dual Pachner moves (see
Fig. 4). These moves are discrete versions of diffeomorphisms
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�→ Σ
j′5

f1(j1, j2, j3, j4, j5, j
′
5)

�→ Σ
j4,j5,j6,µ

f2(j1, j2, j3, j4, j5, j6, µ)

�→ f3(j1, j2, j3, j4, j5, j6, µ)

j1

j2 j3

j4

j5

j1 j4

j2 j3

j′5

j1

j2

j3
j1 j6 j3

j4

j2

j5

j1 j6 j3

j4

j2

j5

j1

j2

j3

µ

µ

FIG. 4. Dual Pachner moves in 2D. The top one is the 2-2
recoupling move, while the second and third ones are the 1-3 and 3-1
moves. Since the dimension of Hilbert spaces is generically changed
during the moves, we do not combine the latter two as is usually done
in mathematical literature. The physical indices {Ma} are understood
to be attached to the vertices and thus suppressed in the figure.

of the underlying manifold. In Ref. [1], the authors discussed
similar properties of fixed-point wave functions where the
degrees of freedom live on the links of a network. The general
situation where plaquette degrees of freedom are taken into
consideration follows in a parallel way.

Each Pachner move induces a linear transformation
between the Hilbert spaces of different graphs, characterized
by the coefficients f1,f2,f3. The first move, denoted as O1,
is the 2-2 recoupling move, while the second and third ones
O2,O3 are the 1-3 and 3-1 moves. Since the size of Hilbert
spaces are changed during the moves, we do not combine the
latter two as is usually done in mathematical literature.

The physical motivation for considering these moves comes
from the fact that we are interested only in long-range physics.
The two diagrams involved in the 2-2 recoupling move, when
viewed from far away, both appear as a single four-valent
vertex. If our tensor-network state is a fixed-point one, the
two ways of decomposing this four-valent vertex into two
three-valent vertices (by singular value decomposition) should
be essentially the same, differing from one another only
by a unitary transformation. The latter two 3 ↔ 1 moves
correspond to usual local scale transformations of the graph,
which allows us to take a zoomed-out view of the tensor
network.

Note that in the 2-2 move, the plaquettes degrees of freedom
(colored cyan) are not changed. However, in the 1 → 3 (3 →
1) move, an additional closed string μ is added (removed) from
the configuration. Consequently, while f1 preserves the labels
of the plaquette degrees of freedom, f2 and f3 are functions
of μ.

In order for a tensor network state to be invariant under
the Pachner moves, we require the following two necessary
conditions. (C1) The moves should be norm-preserving if one
requires the tensor network state to be a fixed-point one.
Namely, if |� ′〉 = Oi |�〉, then 〈� ′|� ′〉 = 〈�|O†

i Oi |�〉 =
〈�|�〉. We emphasize that � ′ and � are not in the same

j2 j1 j4 j6

j7

→
j2 j1 j4 j6

j7

→
j2 j1 j4 j6

j7

→
j2 j1 j4 j6

j7

j2 j1 j4 j6

j7

j5 j3 j3

j′5
j′5
j′3

j′′5
j′3

j5
j′3

FIG. 5. The two different sequences of Pachner moves that share
the same initial and final configurations.

Hilbert space, and that Oi may not square matrices, i.e., the
inverse matrices are not defined.

If one rotates the graph by 90 degrees, then O
†
1 can be

viewed as an O1 move. The norm-preserving constraint then
reads

(O†
1O1) = 1, (O2O3) = 1, (O3O2) = 1, (8)

where the 1 are identity matrices (of different dimensions).
(C2) Two sequences of moves that result in the final tensor

network configuration should be equivalent. If a final graph
labeling {j ′

1,j
′
2, · · · } is obtained from some initial labeling

{j1,j2, · · · } through two (or more different sequences of
Pachner moves, then we require the set of tensors T1(j ′

1,j
′
2, · · · )

and T2(j ′
1,j

′
2, · · · ) on each final graph configuration to be the

same:

Oα1Oβ1Oγ1 · · · = Oα2Oβ2Oγ2 · · · . (9)

These two conditions constrain the form of the functions
f1,f2,f3 in above Fig. 4. From the first equation in (8), one
can derive, in terms of components:

δj5j
′′∗
5

=
∑
j5j

′′
5

f1(j4,j1,j2,j3,j
′
5,j

′′
5 )f1(j1,j2,j3,j4,j5,j

′
5). (10)

Similar formulas can be obtained for the other two equations
in (8).

Now we turn to condition (P 2), and construct commutative
diagrams from sequences of O operators that result in identical
tensor network configurations. Requiring these diagrams to
commute will allow us to place various consistency conditions
on the fi matrix elements. For tensor network configurations
with two and three uncontracted legs, there are no nontrivial
commutative diagrams. For tensor network configurations with
four uncontracted legs, the only operations we are allowed to
do are already fully captured by O2 and O3. But constraints
do arise for commutative diagrams involving tensor networks
with five uncontracted legs. Indeed, choose the two sequences
below in Fig. 5.

The constraint that the above diagram must commute leads
to ∑

j ′
5

f1(j1,j2,j
∗
3 ,j4,j

∗
5 ,j ′

5)f1(j ′∗
5 ,j2,j7,j6,j

∗
3 ,j ′

3)

× f1(j4,j1,j
′
3,j6,j

′∗
5 ,j ′′

5 )

= f1(j4,j5,j7,j6,j3,j
′
3)f1(j1,j2,j7,j

′′
5 ,j ∗

5 ,j ′
3). (11)

Below we show that the functions f1,f2,f3 are closely
related to the 6j symbols (G-tensors) introduced in the
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previous Sec. II, from which we can reconstruct the fusion rules
(N tensors) and quantum dimensions (d’s), thereby arriving at
a UFC.

We introduce a new set of symbols with six parameters by

G
ijm

kln

Gm∗m0
00m Gn∗n0

00n

= f1(i,j,k,l,m,n), (12)

the above conditions (C1) and (C2) reduce to

(P1): δj5j
′′∗
5

=
∑
j5j

′′
5

dj ′
5
vj5vj ′′

5
G

j1j2j5

j3j4j
′
5
G

j4j1j
′
5

j2j3j
′′
5
;

(P2):
∑
j ′

5

dj ′
5
G

j1j2j
∗
5

j∗
3 j4j

′
5
G

j ′∗
5 j2j

∗
3

j7j6j
′
3
G

j4j1j
′∗
5

j ′
3j6j

′′
5

= G
j4j5j3

j7j6j
′
3
G

j1j2j
∗
5

j7j
′′
5 j ′

3
. (13)

Here we have defined

vj := 1

G
j∗j0
00j

, dj := v2
j . (14)

Comparing the above equations with (4) and (5), we
recognize that the norm-preservation condition on Pachner
transformations recovers the orthogonality condition, while
the path-independence of Pachner transformations recovers
the pentagon condition in the definition of a UFC. By
appealing to the coherence theorem [43], any commutative
diagram involving two ways of relating two tensor network
configurations with n > 5 uncontracted legs to one another
will commute as long as the pentagon identity holds, and so
the above conditions exhaust the constraints we can put on the
G tensors.

The two sequences in Fig. 5 involve only the O1 move.
One can choose other sequences involving 1 ↔ 3 moves and
derive the relationship between f1, f2, and f3. They differ in
prefactors by the product of powers of d’s and D = ∑

j d2
j . We

rewrite the equation for Pachner moves introduced in Fig. 4 in
the following Eq. (15), where the plaquette labels that do not
change during the moves are suppressed:

(P1) : (T M1 )j1j2j5 (T M2 )j
∗
5 j3j4 =

∑
j ′

5

vj5vj ′
5
G

j1j2j5

j3j4j
′
5
(T M3 )j1j

′
5j4 (T M4 )j

′∗
5 j2j3 ,

(P2) : (T M )j1j2j3 =
∑

j4,j5,j6,μ

vj4vj5vj6G
j2j3j1

j∗
6 j4j

∗
5
(T M1 )

j1j
∗
4 j6

μ (T M2 )
j2j

∗
5 j4

μ (T M3 )
j3j

∗
6 j5

μ , (15)

(P3) :
∑

μ

(T M1 )
j1j

∗
4 j6

μ (T M2 )
j2j

∗
5 j4

μ (T M3 )
j3j

∗
6 j5

μ = vj4vj5vj6

D
G

j∗
3 j∗

2 j∗
1

j∗
4 j6j

∗
5

(T M )j1j2j3 .

Tetrahedral symmetry (3) is guaranteed by the rotational
invariance of the graph, or equivalently by the permutation
symmetry of the tensors Tijk = Tkij = Tjki .

To see the physical meaning of the definition in Eq. (14),
we can take j1 = j2 = j3 = 0 for the 3-1 move in Fig. 4. The
constraint j4 = j5 = j6 must be satisfied, and so (suppressing
the irrelevant plaquette degrees of freedom) the move simpli-
fies as in Fig. 6. Using tetrahedral symmetry and Eq. (14),
we see that v3

jG
000
jjj∗ = v3

jG
j∗j0
00j = v2

j = dj , consistent with the
physical meaning of the quantum dimensions.

The fusion rules are also encoded in the G symbols, as can
be observed already from Eq. (6). When one takes j2 = 0 in the
2-2 move, then j1 = j ∗

5 and j3 = j ′
5 must be satisfied. Rewrit-

ing i = j3,j = j4 and k = j5, the move reduces to Fig. 7.
Using Eq. (6), we see that vivkG

k∗0k
ij i = Nijk∗ . Consequently,

the tensor network configuration on the right is only allowed
if Nijk∗ is nonzero, i.e., if the branching rules are satisfied.
Combining the results above, we see that the fixed-point
requirement of a tensor network state leads naturally to a set
of data {I,d,N,G} that satisfy the axioms of UFC C.

�→ v3
j

D G000
jjj∗

j μ

FIG. 6. Taking j1 = j2 = j3 = 0 for the 3-1 move in Fig. 4, one
recovers the quantum dimensions dj .

B. Construction of a fixed-point tensor
network state from a UFC

Having shown how a fixed-point tensor network state
contains the data of a UFC, we now show how one can begin
with a UFC C and construct a fixed-point tensor network
state. We will use a triple-line tensor network construction,
and will color the triple-line structure by assigning the labels
i,j,k, · · · ∈ I to the central (blue) links in Fig. 3 and the
labels μ,ν,λ, · · · ∈ I to the adjacent black links as before. We
organize the labellings in a way so that for any three central
links i,j,k that point to a common vertex, Nijk �= 0.

The next step is to import the {G}-tensors from the UFC
into the tensor network. For Fig. 3, we associate to every vertex
(small triangle) a tensor T on the A and B sublattices in the
following way (parallel to Refs. [37,38]):

A: (T M )ijk

μμ′νν ′λλ′ = (vμvνvλ)1/3

√
D

√
vivjvkG

ij∗k∗
λμ∗νδμμ′δνν ′δλλ′ ,

B: (T M )ijk

μμ′νν ′λλ′ = (vμvνvλ)1/3

√
D

√
vivjvkG

i∗jk

λμ∗νδμμ′δνν ′δλλ′ ,

(16)

�→ vivkGk∗0k
iji

i

j

k

k∗ j

i

FIG. 7. Taking j2 = 0 in the 2-2 move in Fig. 4, one recovers the
fusion rules of Nijk∗ .
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FIG. 8. An illustration of the tensor network with tensors given
by Eq. (16). The upward-pointing (downward-pointing) triangles are
located on the A (B) sublattice.

where we have denoted vj = √
dj for j ∈ I . The physical

index M is defined as the triple (i,j,k). Upon contracting the
internal indices as demonstrated in Fig. 8, one arrives at a
tensor network state.

It was proved in Ref. [37] that these states are fixed-point
states under renormalization transformations of the tensor
network. More precisely, they are invariant under the 2D
dual Pachner moves of Fig. 4. In the Hamiltonian language,
these fixed-point states are the ground states of string-net
models [44].

Note that if the tensors appearing in Eq. (16) are to be
nonzero, we must have

A: Nμ∗iν = Nνλ∗j = Nλμ∗k = Nij∗k∗ = 1,

B: Nμ∗i∗ν = Nνλ∗j∗ = Nλμ∗k∗ = Ni∗jk = 1. (17)

Although the two sets μ,ν,λ, . . . and i,j,k, . . . both take
values in the label set I of the UFC C, they are not on the
same physical footing. The origin of the above form (16) of
tensors is the following.

Denote B
μ
p for a plaquette p of the graph as the operator

that adds a closed loop μ inside p. Further define

Bp =
∑

μ

dμ

D
Bμ

p , (18)

where the sum is over all μ ∈ I .
For a triangular plaquette, Bp = O2 ◦ O3 is the composition

of the elementary 1 − 3 and 3-1 moves. It changes the
labellings of the links surrounding the plaquette p while
keeping all the other labellings in the graph untouched.
For a general plaquette surrounded by n > 3 links, the
decomposition of Bp’s into elementary moves is not unique,
yet the following decomposition is always possible: Bp =
O

†
1 ◦ · · · ◦ O

†
1 ◦ O2 ◦ O3 ◦ O1 ◦ · · ·O1, with (n − 3) pair of

recouplings O
†
1, O1. Since all the Bp’s can be written as

sequences of elementary moves, they keep the fixed-point
tensor network state invariant.

The tensor network state can be constructed from the
plaquette operator as

|�〉 =
∏
p

Bp|0〉 =
∑

μ,ν,λ,...

dμ

D

dν

D

dλ

D
· · · |μ,ν,λ, · · ·〉coh, (19)

λ

μ ν

FIG. 9. Construction of fixed-point tensor network state using
loops.

where the state |0〉 means the graph is empty, i.e., we
assign the vacuum string 0 to every link to the graph, and
|μ,ν,λ, . . .〉coh denotes the state with μ,ν,λ, . . . as plaquette
degrees of freedom and with all links carrying the label
0. |μ,ν,λ, . . .〉coh = Bν

p1
B

μ
p2B

λ
p3

. . . |0〉 as demonstrated in the
Fig. 9. The factor dμ attributes to the fact that every closed
string μ has an amplitude of dμ. Notice that the states
|μ,ν,λ, . . .〉coh are coherent states; they are not necessarily
orthogonal. Furthermore, all the closed loops appearing in
the state |μ,ν,λ, . . .〉coh are independent of each other, i.e.,
mutually unentangled.

Since they are fixed-point states, one can further translate
the degrees of freedom from the loops to the links using dual
2D Pachner moves described in Fig. 4. This gives

|�〉 =
∑

M1,M2,···
tTr[⊗vT

Mv ]|M1,M2, · · ·〉, (20)

where the {Mi} are physical indices. The T tensors appearing
in the tensor trace take values exactly as in Eq. (16).

The above procedure presents an analogy to the 1D AKLT
example discussed in the introduction. The tensor network
representation of the AKLT state encodes entanglement in
two ways: (i) the spin-1/2 partons μ,ν, . . . on neighboring
sites [e.g., (n − 1)R and nL] are entangled as singlets, and (ii)
the partons on the same site [e.g., nL and nR] as entangled
as triplets. While the former is realized by the contraction
of tensors, the latter entanglement is carried by every single
tensor in the network.

Similarly in two dimensions, entanglement is created in
several steps. (i) In Eq. (19), one first uses the Bp operators
to generate plaquette degrees of freedom μ,ν,λ, . . . . In the
language of triple-line structure, this corresponds to taking all
the i,j,k, · · · = 0 in Fig. 3, and contracting all the partons μ =
μ′, ν = ν ′ etc. The latter creates entanglement inside every
plaquette. (ii) The next step is to project onto the physical
degrees of freedom i,j,k, . . . , which are defined on the links
and correspond to the spin-1 degrees of freedom in the AKLT
analogy. Entanglement is created when this projection takes
place, i.e. when one uses dual Pachner moves to fuse the loops
μ,ν,λ, . . . and rearrange the degrees of freedom from the
plaquettes to the links. Mathematically, this is realized by the
fusion δ tensors in the UFC. (iii) Finally, the i,j,k, . . . are
contracted, resulting in the entanglement between different
sites.

The pattern of entanglement in the second step manifests
itself as 6j G symbols in the coefficients generated by the
Pachner moves, which become encoded in the tensors T

in Eq. (16). These local tensors record the history of the
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projection in step (ii) by representing the initial mutually
unentangled parton degrees of freedom in terms of the
entangled physical degrees of freedom. If the label set of
the UFC contains only one trivial object I = {0} (and thus
D = 1), then the entanglement is short-range. Generally, if one
starts from a nontrivial UFC, the constructed fixed-point tensor
networks state will be long-range entangled. We conclude
that the local T tensors are the building blocks of long-range
entanglement in the corresponding topological phase.

IV. GEOMETRICAL PERSPECTIVE OF
THE CORRESPONDENCE

In this section, we discuss the geometric structure of fixed-
point tensor network states and its relationship to a 3D Turaev-
Viro state-sum TQFT. We briefly review a few basic TQFT
facts. On a three-dimensional manifold �, a full-extended
unitary 3D TQFT is a symmetric monoidal functor [22] from
the category of three-cobordisms to the category of vector
spaces over C:

F : 3Cob → VectC. (21)

Specifically, we assign a Hilbert space of states H to each
spatial slice (2D manifold) of a three-cobordism. If the
spatial slice contains a disjoint union of n 2D manifolds, the
corresponding Hilbert space splits through the tensor product
asH⊗n. A 3D TQFT associates to � a linear map fromH⊗ni to
H⊗no , where ni is the number of disjoint parts of the incoming
spatial slice, and no the number for outgoing spatial slice.

The cylinder map is the identity id : H → H. If the
3D manifold � is closed, then the map is a partition
function Z(�) : C → C. Other simple examples include the
cap cobordism, where the map is T r : H → C; the cup
cobordism η : C → H; the product bordism (a pair of pants)
m : H⊗2 → H; and the coproduct bordism (an inverted pair
of pants) � : H → H⊗2.

A. 3D State Sum TQFT

A state-sum construction of a TQFT is a discretization of
the above formalism. The algebraic data needed to define a 3D
state-sum TQFT form a UFC C in the following way.

We start from a closed three-dimensional manifold �, and
define on it a triangulation T (�). An oriented coloring of the
triangulation refers to the assignment of a label j ∈ I to every
oriented 1-simplex (edge) of the triangulation. Substituting j

by j ∗ and reversing the arrow leaves the oriented coloring
invariant. Then we associate [23,24] a tensor G

ijm

kln to each
tetrahedron with edges labeled by {i,j,m,k,l,n}, as indicated
in Fig. 10. The tetrahedral symmetry condition (3) can be
understood geometrically as the requirement that viewing the
tetrahedron from four different directions give rise to the same
tensor.

The weight of a specific coloring is a number defined as the
product of all G tensors for all tetrahedra in the triangulation
and the product of all dj for all edges in the triangulation. The
Turaev-Viro invariant for the manifold � is then computed
as the summation of these weights over all colorings of the

j

kl

i

n

m

FIG. 10. Every tetrahedron is associated with a G tensor. This
specific configuration corresponds to G

ijm

kln .

triangulation T (�). Schematically, we have

τC(�) =
∑

labellings

∏
vertices

1

D

∏
tetrahedron

G
∏
edges

d, (22)

where the total quantum dimension is defined as before by
D = ∑

j∈I d2
j .

Independence of the invariant τC(�) with respect to tri-
angulations of T (�) can be shown by following a standard
procedure. Any two different triangulations in 3D can be
related by a sequence of 3D Pachner moves [45] depicted in
Figs. 11 and 12. Invariance of the state-sum under these moves
corresponds exactly to the consistency condition (UFC2)
and (UFC3) above, namely, the pentagon equation and the
orthogonality condition. We demonstrate this correspondence
in detail in Appendix VI. Consequently, the input category
C being a UFC automatically guarantees this topological
invariance.

B. Manifolds with boundary

The above discussion can be generalized to the case
where � has 2D boundaries ∂� [47]. Following the notation
of Ref. [25], we call the initial and final spatial slices of
the cobordism as cut boundaries, and all others as brane
boundaries. Cobordisms are composed along cut boundaries,
while boundary conditions need to be imposed on brane
boundaries.

For simplicity, we consider the case where � is a three-ball
with a hole in it, i.e., ∂� = S2 ∪ S2. The ball is bounded by
an S2 cut boundary on the outside, while the hole is bounded
by the S2 brane boundary.

One tetrahedron [i,j,k,μ,ν,λ] in the triangulation near the
brane boundary is depicted in Fig. 13. The faces (μ,i,ν),
(ν,j,λ) and (λ,k,μ) lie on the brane boundary, while the face
(i,j,k) is in the bulk. There can be a large number of tetrahedra
between the (i,j,k) plane and the cut boundary(initial spatial
slice), but one can use Pachner moves in Figs. 11 and 12 to
reduce the number of tetrahedra in the bulk and effectively

←→
3 − 2 move

FIG. 11. 3D Pachner 3-2 move in the triangulation picture.
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←→
4 − 1 move

FIG. 12. 3D Pachner 4-1 move in the triangulation picture.

arrive at a single “layer” of tetrahedra that looks like Fig. 13.
In other words, without loss of generality, one can view (i,j,k)
as living on the cut boundary.

Applying Poincaré duality, we can associate 3-simplices
(tetrahedra) with 0-simplices (vertices) of the dual graph, and
2-simplices (faces) with 1-simplices (edges) of the dual graph.
In the tetrahedron [i,j,k,μ,ν,λ], α is dual to the triangle
bounded by the three links (μ,i,ν), β is dual to the triangle
bounded by (ν,j,λ), γ is dual to the triangle (λ,k,μ) and the
index M is the collection (i,j,k).

The links α must match up with another link α′ in the
dual triangulation, which comes from the dual of another
tetrahedron that shares the face (μ,i,ν) with the above
tetrahedron. A similar identification occurs for β,γ , etc..
Consequently, given the topology of the cut and the brane
boundary, links carrying the indices α,β,γ, . . . form a trivalent
graph on S2, with the extra links like M dangling in the third
dimension of this graph.

The graph generated by Poincaré duality in this way
coincides exactly with the setup of a 2D tensor network. We
see that the original edges μ,ν,λ of the triangulation map to the
plaquette degrees of freedom in the dual picture. This precisely
gives rise to the triple-line structure depicted in Fig. 3.

The mapping from internal indices α,β,γ to the physical
index M can be interpreted as a boundary-to-bulk map in the
TQFT context. The factors of δμμ′δνν ′δλλ′ in Eq. (16) can now
be understood as well: these are the constraints that ensure the
plaquette degrees of freedom in the dual graph are associated
to links in the original triangulation in a well-defined way. In
other words, these constraints entangle the 2-simplices in the
same tetrahedron.

Pachner moves in the original triangulation picture Figs. 11
and 12 map to the dual Pachner moves of Fig. 4. This is
related to the fact we mentioned above: both moves correspond
algebraically to the Pentagon and Orthogonality axioms of 3D
state-sum TQFTs.

j

λμ

i

ν

k

α γ

β

M

←→3D Poincaré Duality

FIG. 13. Poincaré duality applied to a tetrahedron on the brane
boundary of �.

FIG. 14. Gluing of three tetrahedra.

Consider the situation with three tetrahedra are glued
together as in Fig. 14. In the tensor network picture (dual
to the triangulation picture), this corresponds to the triple-line
structure near a triangular plaquette (Fig. 15).

Gluing another three tetrahedra to the above picture, as
depicted in Fig. 16, corresponds to fusing another loop σ into
the triangular plaquette. In the tensor network picture, i,j,k

remains the same, while l,m,n,ρ change into l′,m′,n′,ρ ′. This
entanglement-producing procedure of fusion can be identified
as the operator Bσ

p with matrix elements

j i

k

n

ml Bσ
p

j i

k

n

ml

=vlvmvnvl vm vn Gjl∗n
σn l Gkm∗l

σl m Gin∗m
σm n , (23)

This is exactly the operator that appears in Eq. (18). Since it is
a composition of the elementary 1-3 and 3-1 moves, the tensor
network state (20) built from the UFC is an eigenstate of the
Bp operator with eigenvalue one:

Bp|�〉 = |�〉, ∀ plaquette p. (24)

Consequently, one can act with the Bp operators multiple times
while keeping the fixed-point tensor network states invariant.
As discussed above, action of such Bp operators on the tensor
network states corresponds to gluing tetrahedra in the third
dimension, thus the action of multiple Bp operators on the
same plaquette would correspond to the growth of a “tower”.

Generally, we can have plaquettes surrounded by more
than n � 3 links, as depicted in Fig. 17. The action of Bp

operators on such a plaquette would correspond to the growth
of n tetrahedra.

FIG. 15. Gluing of three tetrahedra corresponds to constructing a
triangular plaquette.
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FIG. 16. Action of Bσ
p operator corresponds to gluing another

three tetrahera.

To illustrate the consequence of action of BσL
and BσR

operators on neighboring plaquettes in the tensor network
picture, we consider the following honeycomb lattice as an
example. In the triangulation picture (Fig. 18), the two neigh-
boring plaquettes share two triangles �BPQ and �FPQ.
Action of BσL

on the left plaquette corresponds to dragging
P to P ′, connecting P ′ to the six vertices of the hexagon
ABQFGH and thus generating six tetrahedra. Then the action
of BσR

follows, dragging Q to Q′. One still connects Q′ to
the five vertices B,C,D,E,F , but not P , for P has already
been dragged to P ′ by the previous action of BσL

. Therefore
the last line to connect would be P ′Q′. In this way, we again
generate six tetrahedra BCQQ′, CDQQ′, DEQQ′, EFQQ′,
FPP ′Q′, and P ′BQQ′ and there is no space left unfilled,
i.e., we have obtained an emergent pre-geometry in the third
dimension.

Again by “pregeometry”, we mean a pregeometry in the
sense of tiling: it contains vertices that correspond to points in
spacetime and oriented edges connecting them. The stronger
concept of emergent bulk geometry would further require a
metric defined from measures of entanglement in the fixed-
point tensor network states on the boundary. This is exactly
the implication of the Holographic Principle [14–16], where
the information in the 3D bulk is fully stored in the 2D tensor
network.

We have thus shown the correspondence between fixed-
point tensor network states and TQFTs in a higher dimension.
If the 2D manifold where the tensor network lives in is closed,
i.e., has no boundary, then degeneracy of the ground states
in the topological phase described by the fixed-point tensor
network state can be expressed in terms of Bp operators [48].

FIG. 17. Plaquettes surrounded by n = 4,5,6 links are drawn in
black. The blue lines describe the dual triangulation picture. The
auxiliary μ,ν,λ, . . . degrees of freedom has been suppressed.

FIG. 18. Action of BσR
on the right plaquette after the action of

BσL
on the left of the plaquette.

To be specific, we have

GSDC(�) = tr

(∏
p

∑
σ

dσ

D
Bσ

p

)
= τC(� × S1), (25)

once the action of Bσ
p operators is identified with the gluing of

three new tetrahedra that share an edge σ .

V. SYMMETRY ENRICHED CASE

In this section, we provide an extension of the above frame-
work when a global symmetry G is present. For simplicity, we
take G to be finite, on-site, and unitary.

To start with, we review some mathematical terminology.
Given the input data of category C, one can follow the
procedure of previous Secs. III and IV to construct a tensor
network state. This state is the ground state of a topological
phase described by the Drinfeld center Z(C) of C.

It is known [49] that a large subset of G-symmetry enriched
topological phases (SETs) can be described by a braided G-
crossed extension of Z(C). To obtain such a phase, we need
to use another UFC D as the input data of the tensor network
instead of C. This D is called a “G extension of C” [50]. It is
endowed with a G-graded structure in the following way:

D =
⊕
g∈G

Dg. (26)

Writing e as the identity element of G, we require De = C. In
other words, if the symmetry group G is trivial, i.e., has only
one single element e, D reduces to the original category C.
Furthermore, we require the fusion rules in D to be compatible
with the group structure of G. This amounts to requiring

Dg ⊗ Dh ⊂ Dgh, ag ⊗ bh =
⊕

c

Nabc∗cgh. (27)

If we demand D to be the input data for the tensor network,
namely, if we require the labels i,j,k,μ,ν,λ, . . . in Fig. 3 to all
belong to the label set ID of D, then the tensor network state
will be the ground state of a “gauged” model of the G-SET in
question. In such model the global symmetry G is promoted
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μ iν′

j
ν

λ′
kλ
μ′

ν′ i μ

j
λ′
ν

k
μ′

λ

FIG. 19. Triple-line structure of vertices that belong to A (left)
and B (right) sublattices.

to a gauge symmetry and the g ∈ G fluxes become deconfined
excitations of the “gauged” model.

To return to the G-SET, one has to go through
an “ungauging” procedure [32–34]. Since all the labels
i,j,k, · · · ,μ,ν,λ, . . . belong to some Dg , they are related by
construction to a group element of G obtained by the map
Dg �→ g. For convenience, we recall the triple-line structure
Fig. 19 of tensor network below.

We then define another group element g̃ for the degrees of
freedom on the blue links in the left figure above:

g̃i = g−1
μ gν ′ , g̃j = g−1

λ′ gν, g̃k = g−1
μ′ gλ. (28)

The conventions are fixed in the following way: starting
from the blue link i in the left figure above, rotate it 90◦
counterclockwise. The head of the rotated i link points to μ and
the tail of the i link joins to the head of the ν ′ arrow. Now invert
gμ, but keep gν ′ unchanged. Similarly, rotate the link j by 90◦
counterclockwise. The head of the j link points to λ′ and its tail
to ν, and so we invert gλ′ but keep gν unchanged. One observes
that there is a gauge degree of freedom in the above definition:
if an arbitrary group element g ∈ G is left-multiplied to all
μ,μ′,ν,ν ′,λ,λ′, . . . , the definition of g̃i ,g̃j ,g̃k will remain
exactly the same.

To complete the “ungauging” procedure, we set

gi = g̃i (29)

for all blue-link degrees of freedom i,j,k, etc. The corre-
sponding tensor network state is the ground state of a G-SET
on a sphere, with the tensors on each of the sublattices of the
honeycomb lattice given by

A: (TM )ijk

μμ′νν ′λλ′

= (vμvνvλ)1/3

√
D

√
vivj vkG

ij∗k∗
λμ∗νδμμ′δνν ′δλλ′δgi g̃i

δgj g̃j
δgkg̃k

,

B: (TM )ijk

μμ′νν ′λλ′

= (vμvνvλ)1/3

√
D

√
vivj vkG

i∗jk

λμ∗νδμμ′δνν ′δλλ′δgi g̃i
δgj g̃j

δgkg̃k
,

(30)

borne in mind that all the labels belong to the label set of D,
not of C. Except for this, we notice that the form of tensors
in Eq. (30) are the same as the previous Eq. (16), only with
an additional flatness constraint on the G gauge field. The
TM tensors take such a simple form because G is on-site and
unitary. A formulation for more general symmetries is possible
and is related to the work in Refs. [33,34].

The symmetry G manifests itself as the invariance of the
tensor network state under a global action of Ug , where Ug is

defined as

Ug : gμ → gμg ∀μ, gi → g−1gig ∀i. (31)

That is, Ug acts as right multiplication by g for all the group
elements associated with the plaquette degrees of freedom, and
acts as conjugation by g for all the group elements associated
with the links.

On the mathematical side, the TQFT that incorporates the
G symmetry is known as homotopy quantum field theory
(HQFT), which was proposed by Turaev [29–31]. HQFT is
a version of TQFT defined on some G-manifold �, which is
a manifold endowed with a G gauge field, i.e., a homotopy
class of maps � → BG from the manifold to the classifying
space BG. For connected manifolds �, homotopy classes of
such maps correspond bijectively to the set of homomorphisms
Hom(π1(�),G), which in turn completely determine [35]
principle G bundles over �.

From an algebraic perspective, any braided G-crossed
extension of Z(C) gives rise to a HQFT with target space
BG [30]. Physically, every realization of symmetry G-enriched
topological phase is described by a HQFT with target space
BG.

The related symmetry-enriched TV-invariant can be con-
structed following Refs. [24,30]. The formulation is exactly
parallel to that of the tensor network above. For a triangulation
of a 3D manifold with boundary, we first assign oriented
labels in ID to the 1-simplices of the triangulation. For a
given homotopy class of maps � → BG, we then choose
a representative map g that sends all the vertices of the
triangulation to a base point of BG. We then assign to each
1-simplex a group element in G: μ �→ gμ, μ∗ �→ g−1

μ . Similar
to the constraint of Eq. (29), we then impose the flatness
condition for all 2-simplices in the bulk of the triangulation. In
other words, we require there to be no localG-symmetry fluxes.
Importantly, we further require the assignments μ �→ gμ to be
compatible with the G-grading structure of D. Namely, we
require the group element gμ assigned to edge μ to be such
that μ ∈ IDgμ

.
After performing this construction, one obtains the TV-

invariant τ (�) of the G-manifold � in a way similar to
the case without symmetry [24]. Since Pachner moves can
be extended naturally to the symmetry-enriched case, one
can readily prove that τ (�) is independent of the chosen
triangulation. Furthermore, τ (�) is also independent of the
choice of representative g in the homotopy class of classifying
maps [30].

VI. SUMMARY AND OUTLOOK

We have identified the algebraic structure of 2D fixed-
point tensor network states as unitary fusion categories,
which are also known as representation theories of C∗-weak
Hopf algebras. We illustrated how the pattern of long-range
entanglement of fixed-point tensor network states arises in
such a picture.

Geometrically, we demonstrated how to construct a 2D
fixed-point tensor network state from a 3D state-sum topologi-
cal quantum field theory. The long-range entangled fixed-point
tensor network state lives on the 2D boundary of the 3D
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TQFT, and encodes the same amount of information as the
latter, which is a characteristic feature of holography. The
significance of this holographic mapping lies in the fact that
one can go both ways: one can invert the above process to
reconstruct the 3D bulk from just the 2D surface. We showed
how the emergence of bulk pre-geometry arises from the

long-range entanglement of the fixed-point tensor network
states on the boundary. We further extended the correspon-
dence when a finite unitary symmetry is present.

The correspondence between the data of fixed-point tensor
network states, 3D state-sum TQFT and unitary fusion
category is summarized in the following table.

State Sum TQFT Tensor Network Unitary Fusion Category Entanglement

Edges on the brane boundary Interal d.o.f.s in the plaquettes μ,ν,λ, . . . ∈ I . Mutually unentangled partons
Edges on the cut boundary Physical d.o.f.s on the links i,j,k, . . . ∈ I Entangled physical d.o.f.s
Faces (triangles) Triple-line strucutre (μ,i,ν),(ν,j,λ),(λ,k,μ), . . . Projections μ ⊗ ν → i etc.
Tetrahedra Vertices and tensors (T M )ijk

μνλ G
ijk

μνλ, . . . Carriers of entanglement
Invariance under Pachner move Invariance under RG Pentagon & Orthogonality Long-range Entanglement

One future direction would be to define the fixed-point
tensor network states in terms of the more familiar lan-
guage of algebras, rather than categories. Namely, instead of
isomorphism classes of simple objects in C, we could use
basis elements of a C∗-weak Hopf algebra W as the link
labels of the trivalent graph. This requires application of the
Tannakian duality C � Rep(W), see for example Ref. [51].
In the simplest case of finite groups, this duality has a simple
interpretation as a generalized “Fourier transformation” [52].
The more interesting quantum group cases, however, requires
additional care. This idea is closely related to the work [53],
where the authors constructed tensor network states using
matrix product operators and a C∗ algebra. Topological
phases are then described by the central idempotents of the
corresponding C∗ algebra.

Another extension would be to relax the Nijk = {0,1}
or/and the tetrahedral symmetry of the G symbols [Eq. (2)].
The Nijk > 1 case can be obtained by a straightforward
generalization: the 6j -G symbols will become 10j symbols,
with the four additional parameters labeling the multiplicities
on each vertex. The conditions (3) (UFC2) (UFC3) can be
easily modified to account for this situation. For models that
violate tetrahedral symmetry, one needs to keep track of the
S4 permutation of the four vertices in one tetrahedron. These
information will enter the above construction in the form of
additional phase factors, see, for example, Refs. [58,59]. When
the topological order is based on a finite group (C = Rep(G)),
one can also use the twisted quantum double Dα(G) discussed
in Ref. [36] to find a tensor network representation of the

j

kl

i

n

m
←→

Duality
l k

n

i
j

m

FIG. 20. Faces of the tetrahedron are mapped to the vertices of
the dual diagram, edges are mapped to links, and vertices are mapped
to triangles.

system, where α is a 3-cocycle that belongs to the cohomology
group H 3(G,U(1)) of G.

One can go beyond the ground state subspace as well. The
structure of fixed-point tensor network states that are excited
states of a topological phase is expected to be characterized
by a TQFT defined on a manifold with boundary components
that are marked by labels drawn from the excitation spectrum
of the theory.
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APPENDIX: 3D PACHNER MOVES AND CONSISTENCY
CONDITIONS FOR THE G TENSORS

In this appendix, we sketch how the pentagon equation (4)
and orthogonality condition (5) are related to the three-
dimensional Pachner moves.

Every 3-simplex in the 3D triangulation can be mapped [54]
to a two-dimensional categorical diagram, see Fig. 20. Here,
faces of the tetrahedron are mapped to the vertices of the dual
diagram, edges are mapped to links, and vertices are mapped
to triangles. When two tetrahedra in the triangulation share

←→3 − 2 move
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FIG. 21. 3D Pachner 3-2 move.
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FIG. 22. 3D Pachner 4-1 move.

a face, the dual diagram possesses two triangles that share a
vertex. In these cases, we draw the diagrams separately and
connect the common vertex with a dashed line.

These 2D diagrams naturally inherit an action of the
Pachner moves from the 3D triangulation. Algebraically, since

every 3-simplex is directly related to a 6j symbol (as illustrated
in Sec. IV A), so is every 2D categorical diagram. Below we
show in Figs. 21 and 22 that algebraic expressions for the
invariance under Pachner moves in the categorical diagrams
are exactly the pentagon and orthogonality constraints.
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