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Pairing tendencies in a two-orbital Hubbard model in one dimension

N. D. Patel,1,2 A. Nocera,1,2 G. Alvarez,3 A. Moreo,1,2 and E. Dagotto1,2

1Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA
2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

3Computer Science & Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831, USA

(Received 23 May 2017; published 31 July 2017)

The recent discovery of superconductivity under high pressure in the ladder compound BaFe2S3 has opened
a new field of research in iron-based superconductors with focus on quasi-one-dimensional geometries. In this
publication, using the density matrix renormalization group technique, we study a two-orbital Hubbard model
defined in one-dimensional chains. Our main result is the presence of hole binding tendencies at intermediate
Hubbard U repulsion and robust Hund coupling JH /U = 0.25. Binding does not occur either in weak coupling
or at very strong coupling. The pair-pair correlations that are dominant near half-filling, or of similar strength as
the charge and spin correlation channels, involve hole-pair operators that are spin singlets, use nearest-neighbor
sites, and employ different orbitals for each hole. The Hund coupling strength, presence of robust magnetic
moments, and antiferromagnetic correlations among them are important for the binding tendencies found here.
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I. INTRODUCTION

High critical temperature superconductors based on iron
represent one of the most important open problems in
condensed matter physics [1–7]. Early considerations based
on Fermi surface nesting provided a robust starting point to
rationalize their properties. However, the effect of repulsion
between electrons cannot be neglected [6] as exemplified by
the existence of large magnetic moments at room temperature
[8,9], superconducting materials without hole pockets [10], as
well as unexpectedly complex spin arrangements [7]. Elec-
tronic correlation effects must be incorporated to understand
the plethora of challenging results that experiments are rapidly
unveiling.

A new avenue of research for progress in the iron supercon-
ductors family has recently opened. It has been shown exper-
imentally that BaFe2S3 [11–13] becomes superconducting at
pressures above 10 GPa with an optimal critical temperature
Tc = 24 K. What is remarkable is that this material is not
layered, like all other iron-based superconductors, but instead
has the geometry of a two-leg ladder. In other words, they have
a dominant crystal structure involving pairs of chains, “legs”,
that are coupled via bonds of strength similar to those along the
legs, dubbed the “rungs”. This same compound, but at ambient
pressure, is a Mott insulator with magnetic order involving
ferromagnetic (FM) rungs and antiferromagnetic (AFM) legs
and a Néel temperature ∼120 K [11]. Being the first iron-based
superconductor that does not rely on layers, this discovery
is conceptually exciting. From the theory perspective, one-
dimensional systems are often simpler than layers due to the
availability of powerful computational techniques, thus robust
many-body progress can be achieved in one dimension.

It is important to remark that there are other iron-based
ladder materials with intriguing magnetic properties, although
they have not been reported to be superconducting at high pres-
sures yet. For example, the two-leg ladder BaFe2Se3 [14–23] is
an insulator, with an activation energy 0.13–0.178 eV [15,17],
long-range AFM order at ∼250 K, and robust low-temperature
magnetic moments ∼2.8 μB [14–16]. The dominant magnetic
order at low temperature involves 2 × 2 iron blocks with their

moments aligned, coupled antiferromagnetically along the
legs [14,17]. For the case of KFe2Se3, another two-leg ladder
material, the magnetic state is as in BaFe2S3 with FM rungs and
AFM legs [18]. These same magnetic states were also found
theoretically using the Hartree-Fock approximation [20]. Their
origin is nontrivial: the 2 × 2 FM iron block patterns arise
from frustration effects between fully FM tendencies at very
large Hund coupling and AFM tendencies in all directions at
small Hund coupling [20]. Hartree-Fock results for layers [24]
and chains [25] also revealed a similarly complex landscape
of possible competing magnetic states once interactions are
incorporated.

For proper context, it is necessary to recall that in the context
of the copper-oxide high-Tc superconductors, the theoretical
and experimental study of two-leg ladder compounds made a
considerable impact. In general, theorists can produce accu-
rate results for quasi-one-dimensional systems and the early
predictions of subtle quantum effects, such as spin gaps and
superconducting tendencies upon doping [26–28], were later
confirmed experimentally. For instance, high-pressure experi-
ments for the two-leg ladder compound Sr0.4Ca13.6Cu24O41.84,
reported a superconducting critical temperature of 12 K [29].
A quantitative difference between Cu- and Fe-based ladders
is that the bridge between coppers is via an oxygen along the
Cu-Cu bond, while in chalcogenides the bridge between irons
is via chalcogen atoms located up and down the middle of
the iron plaquettes. As a consequence, for the chalcogenides
electronic hoppings of similar strength are to be expected along
legs, rungs, and also plaquette diagonals.

Although the computational study of two-leg ladder one-
orbital Hubbard and t − J models were very successful in the
context of the cuprates, the case of the iron superconductors,
even restricted to ladders, is more challenging. The reason is
that multiorbital Hubbard models are needed and even pow-
erful techniques such as the density matrix renormalization
group (DMRG) [30] have difficulty in reaching sufficient accu-
racy for conclusive results. In spite of these limitations, a recent
publication [31] reported progress in the study of a two-orbital
model for BaFe2S3. In particular, the magnetic order with FM
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rungs and AFM legs was qualitatively understood and clearly
reproduced over robust portions of parameter space [32]. How-
ever, the issue of pairing was more challenging due to severe
size restrictions. In Ref. [31] it was assumed that high pressure
causes doping of the two-leg ladders, a result supported by
recent density functional theory calculations [33], and in
agreement with the Cu-oxide two-leg ladders context where
experiments showed [34] that indeed pressure transfers charge
away from the ladders into chains effectively doping them.
Under these assumptions an intriguing result was unveiled:
using 2 × 8 clusters indications of binding of two holes were
observed at intermediate values of the on-site Hubbard U

repulsion, and for a realistic Hund coupling JH/U = 0.25.
Note that this binding does not occur at small U , so in principle
it is outside the range of weak coupling expansions, and also
does not occur in very strong coupling [31]. Remarkably, the
reported binding happens in a finite and intriguing range of
U/W , where W is the electronic bandwidth. However, the
severe limitations in size prevented us from reaching final
conclusions in Ref. [31] on whether the two-orbital model on
a two-leg ladder does superconduct or not.

To improve on the situation described above there are two
avenues that we are simultaneously pursuing. On one hand,
the numerical aspects of the two-leg ladder model analysis
described in the previous paragraph must be substantially
improved. Progress has been made and pairing on 2 × 12
ladders has been confirmed recently (unpublished). Another
avenue, pursued in the present publication, is to search for
models or geometries with similarities to those of the real
superconducting two-leg ladders but that would allow for the
study of larger systems more comfortably.

In this context, in the present publication using DMRG
we study a two-orbital model that is mathematically similar
to that used before for BaFe2S3 but now defined simply on
a chain as opposed to a two-leg ladder. When the binding
energy is calculated versus U/W the result, to be shown
below, is similar to that found in the case of the two-leg
ladder, with binding observed at intermediate couplings and
with a shape of the binding energy curve versus U/W

resembling that previously reported. Due to this similarity,
it is reasonable to believe that common physics causes the
pairing tendencies both in ladders and in chains as long as
two orbitals are active. The advantage of using chains, of
course, is that much longer systems can be analyzed thus
reducing size effects. For all these reasons, in this publication
a systematic study of a two-orbital model defined on chains
is presented, with emphasis on pairing and superconducting
tendencies. The analysis is presented in a systematic manner,
varying the many couplings and electronic densities and
even further boosting pairing tendencies by introducing extra
Heisenberg interactions. Overall, our analysis concludes that
it is the Hund coupling JH that primarily drives the pairing
tendencies, supplemented by AFM tendencies between the
effective S = 1 spins of the undoped sites. As explained below,
it is known that there are unrealistic ranges of couplings where
JH explicitly boosts hole attraction. What is remarkable of
our results described here is that similar tendencies survive
into the realistic regime JH /U = 0.25 where the model is not
explicitly attractive because of the competition between JH

with the interorbital repulsion U ′. These promising results are

preliminary steps toward a clarification of the origin of pairing
in iron-based superconductors, but more work is needed to
establish definitely that pairing of electronic origin is active in
two-orbital Hubbard models.

The organization of the manuscript is as follows. Section II
provides details of the model, technique used, and observables
measured. Section III contains the main results, addressing
both magnetic and pairing properties of the model under
scrutiny. Section IV contains our main discussion and con-
clusions.

II. MODEL AND METHOD

The multiorbital Hubbard model used in this publication is
defined as

H = −t
∑

〈ij〉
γ σ

(c†iγ σ cjγ σ + H.c.) + U
∑

iγ

niγ↑niγ↓

+ (U ′ − JH

2
)

∑

i

γ < γ ′

niγ niγ ′ − 2JH

∑

i

γ < γ ′

Siγ · Siγ ′

+ JH

∑

i

γ < γ ′

(P †
iγ Piγ ′ + H.c.), (1)

where c
†
iγ σ (ciγ σ ) creates (annihilates) an electron at site i of

a chain, with orbital γ (either a or b), and spin projection
along the z-axis σ . The first term represents the kinetic energy
of the electrons. Note that for simplicity, the 2 × 2 hopping
matrix is the unit matrix, i.e., only hoppings between the
same orbitals is allowed. Although our overarching goal is the
understanding of iron-based superconductors, these hoppings
do not intend to represent the tunneling amplitudes of any
particular material but they are chosen for simplicity. The
second is the standard onsite Hubbard repulsion U between
spins ↑ and ↓ electrons. The third term is the repulsion between
electrons at different orbitals. As shown in many previous
publications, besides the canonical U ′ repulsion the coupling
strength affecting this term contains a contribution regulated
by the Hund coupling JH . Fourth is the portion that explicitly
shows the ferromagnetic character of the Hund interaction.
The last term is the pair hopping. The number operator is
defined as niσγ = c

†
iσγ ciσγ and the pair as Piγ = ciγ↑ciγ↓.

The standard relation U ′ = U − 2JH is assumed. While many
of the results are for JH/U = 0.25, considered realistic and
used in the previous publication for ladders [31], in some of
the results below the Hund coupling is varied. The bandwidth
corresponding to the kinetic energy portion is W = 4t and the
Hubbard strength will be provided primarily as U/W . The
hopping is the unit of energy t = 1.0, unless stated otherwise.

To obtain our results we use the DMRG technique with
open boundary conditions with focus on the ground-state of
the two-orbital chain, employing at least 1600 states. Most of
the results are for a 32 sites two-orbital chain, unless stated
otherwise, while some of the results were confirmed using up
to 64 sites. Truncation error remain below ∼10−6 for all of our
results [35].
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We have measured several observables. The binding energy
that is an indicator for pairing tendencies [36] is defined as

�E = EN + EN−2 − 2EN−1, (2)

where EN , EN−1, and EN−2 are the total ground state energy of
the half-filled, 1-hole doped, and 2-hole doped systems. Here,
N = 2L with L the length of the chain. The real space charge
and spin correlations are

N (R) = 1

NR

∑

|i−j |=R

[〈ninj 〉 − 〈ni〉〈nj 〉], (3)

Sp(R) = 1

NR

∑

|i−j |=R

〈Si · Sj 〉, (4)

where NR is the number of neighbours at distance R from
site i (namely, averages over pairs of sites at equal distance
are performed). The Fourier transform of Sp(R) is the spin
structure factor Sp(k)

To study the effects of holes on the magnetic correlations,
we define a projector operator Piγ that projects out the
portion of the ground state where site i and orbital γ are
occupied [37]:

Piγ = ciγ↑c
†
iγ↑ciγ↓c

†
iγ↓. (5)

To work in the Hilbert space corresponding to nh number
of holes at specific locations, we apply a product of pro-
jectors onto the ground state with nh holes. For example,
P6aP9b|ψN−2〉 projects out the occupied part of the two-hole
ground state on orbital a at site 6, and on orbital b at
site 9. We also calculate the local spin-spin correlations
〈ψ |Siγ · Sjγ ′P|ψ〉/〈ψ |P|ψ〉, where the maximum possible
magnitude of the correlations is 3/4.

There are many possible superconducting pair correlations
that one can explore for this system. Due to the local inter- and
intraorbital Coulomb repulsion, onsite pairing is not expected
to dominate [36]. Thus, pairing operators for two electrons
at nearest-neighbor (NN) sites i and i + 1 will be considered
in analogy with the approach taken in other purely electronic
models where magnetic properties trigger pairing.

An intraorbital nearest neighbor pairing operators is

�
γγ
nn,−

†(i) = c
†
i,γ,↑c

†
i+1,γ,↓ − c

†
i,γ,↓c

†
i+1,γ,↑, (6)

which creates a pair of electrons at nearest neighboring sites
i and i + 1 in orbital γ and forming a spin singlet. The
corresponding pairing operator for the case in which the two
electrons form a spin triplet is given by

�
γγ
nn,+

†(i) = c
†
i,γ,↑c

†
i+1,γ,↓ + c

†
i,γ,↓c

†
i+1,γ,↑. (7)

Since the Hamiltonian is invariant under an orbital exchange
only orbital symmetric combinations of the intraorbital pairing
correlations have to be considered. An interorbital nearest-
neighbor pairing operator is given by

�ab
nn,−

†
(i) = c

†
i,a,↑c

†
i+1,b,↓ − c

†
i,a,↓c

†
i+1,b,↑, (8)

which creates two electrons at site i and orbital a and site i + 1
and orbital b, forming a spin singlet (the orbital exchanged
pairing operator is identical due to the orbital symmetry).

The interorbital pairing operator that creates the electrons in a
triplet state is given by

�ab
nn,+

†
(i) = c

†
i,a,↑c

†
i+1,b,↓ + c

†
i,a,↓c

†
i+1,b,↑. (9)

The pair-pair correlations are given by

Oγ γ ′
nn,±(R) = 1

2NR

∑

i

〈
�

γγ ′
nn,±

†
(i)�γγ ′

nn,±(i + R)
〉
, (10)

where ± indicates if the pair is a spin triplet or singlet, and
γ and γ ′ indicate orbitals a or b. Since the results explicitly
presented in this manuscript are for the interorbital spin singlet
Oab

nn,−(R) and triplet correlations Oab
nn,+(R), below we will

use the notation Oab
nn,−(R) ≡ Sab

nn(R) and Oab
nn,+(R) ≡ T ab

nn (R),
respectively. Analogous onsite pairing operators were also
considered but their correlations always decayed faster than
the dominant NN sites pair-pair correlation [Sab

nn(R) as shown
below]. For this reason, the actual expressions for onsite
operators are not provided explicitly.

We have measured other observables as well. For example,
by averaging the pair correlations over a finite intermediate
portion of the chain we can reduce short distance effects, that
sometimes lead to believe that pairing is dominant even if the
long distance tail is small, and also to reduce boundary effects
caused by the open boundary conditions. Here we define the
pairing strength as

D̄ =
12∑

R=7

∣∣Sab
nn(R)

∣∣, (11)

where we have used the spin-singlet nearest-neighbor com-
bination explicitly because it will be shown below that it is
dominant in our study.

III. RESULTS

In this section, the main results will be described. The
language to be used below should always be considered
in the framework of one-dimensional systems where
long-range order is not possible. For example, expressions
such as “staggered AFM order” indicate that staggered spin
arrangements decay the slowest with distance as compared
with other patterns, but eventually all correlation functions
decay to zero with increasing distance in one dimension with
short-range interactions.

As expressed before, we remind the readers that experi-
mentally in the Fe-ladders superconductivity appeared with
increasing pressure, not with explicit hole doping. However,
similarly as in the case of the Cu-ladders, it is believed that
pressure may lead to a rearrangement of charge particularly
with regards to the average number of electrons at the iron
atoms. This perception is supported by recent ab initio calcu-
lations [33]. As a consequence, in our effort described below
we will search for pairing indications by doping with holes the
half-filled system, rather than modeling pressure directly.

A. Magnetic order and local moments

Let us start our computational analysis of the two-orbital
Hubbard model defined in the previous section by focusing on
the magnetic order. Figure 1 contains the spin structure factor
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FIG. 1. Spin structure factor vs. wave vector kx along the
chain direction. Results correspond to U/W = 1.60, JH /U = 0.25,
various hole dopings as indicated, and employing a 32-sites chain
(N = 64) and the DMRG technique. In this figure, and others not
shown at several values of U/W , the peak at kx = π denoting
staggered order at half-filling becomes incommensurate upon hole
doping.

at U/W = 1.60, a coupling strength of much importance for
pairing as shown below, for different number of holes. For the
case of half-filling, N = 64 electrons for the 32-sites chain of
focus in Fig. 1, the spin order is clearly of the staggered AFM
form as expected. In this regime of Hubbard couplings the
local spin at every site is already well developed and close
to the spin-1 limit, as shown in Fig. 2(a) for most Hund
couplings studied, with the exception of JH = 0. Thus, this
AFM correlations are compatible with the spin correlations of
a Haldane spin-1 chain. Our study of a two-orbital Hubbard
model, instead of a Heisenberg model, involves energy scales
much higher than those typical of the integer-spin chains and
for this reason we will not focus on subtle issues such as
spin-gaps in the system. Figure 2(b) shows that together with
the development of the spin-1 moments at every site also robust
AFM correlations develop at least at short distances, again with
the exception of JH = 0.

As the doping of holes increases, Fig. 1 illustrates that spin
incommensurate (IC) correlations develop smoothly. While
this spin IC order is compatible with spin excitations from the
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0.1 1
0.0

0.5

1.0 0.25
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U/W

< S
2
 > Sp(π)

U/W

(a) (b)

FIG. 2. (a) Spin squared 〈S2〉 and (b) staggered spin structure
factor Sp(π ) vs. U/W for a half-filled 8-sites system using various
Hund’s coupling (JH /U ) as indicated. At zero JH /U , local moments
are not developed up to large U/W and therefore there is no robust
magnetic ordering.

0.1 1

-0.12

-0.06

0.00

0.06

16
48

ΔE

U/W

J
H

/U = 0.25

FIG. 3. Binding energy (�E) vs. U/W at a fixed JH /U = 0.25,
and using a 16-sites chain. For intermediate interaction strength, there
is a wide range with negative binding energy indicating a region where
holes pair.

band dispersion in the kinetic energy portion of the model,
note that U/W = 1.60 is already in intermediate coupling.
Analysis of the spin-spin correlations “across holes” [38–40],
to be shown in more detail below, indicate that the spins tend
to arrange and couple in a manner qualitatively compatible
with the exact results for the one-orbital Hubbard model at
U = ∞ [41]. This arrangement is the most optimal to favor
simultaneously the hole mobility and spin correlations, and
it is qualitatively different from the analysis based on Fermi
surface characteristics.

B. Hole pairs and their internal structure

The main result of this publication is that the model studied
here presents a regime of hole pair binding that correlates with
robust pair-pair correlations in a spin-singlet channel, as will
be described below. Figure 3 shows the binding energy �E, as
defined in Eq. (2), for the case of two holes added to half-filling,
varying U/W at a fixed Hund coupling JH /U = 0.25. Starting
approximately at U/W ∼ 0.6 and up to U/W ∼ 3.0, the
binding energy is negative indicative of the formation of a
bound state of two holes. Considering recent developments
in the study of iron-based superconductors [6], this regime
of U/W is realistic. Moreover, the Hund coupling value is
also in a reasonable range for pnictides and chalcogenides that
are well known for having a robust Hund-driven physics. The
results in Fig. 3 were obtained using a 16-sites chain but they
appear robust varying the length of the system. For instance,
approximately at the minimum of the curve at U/W = 1.60
results for 48 sites are only slightly more negative than
for 16 sites. Figure 4 contains a size scaling analysis of
binding at U/W = 1.60 illustrating this conclusion. Our best
efforts indicate that size effects are small and moreover
with increasing chain length the binding magnitude slightly
increases in absolute value. Thus, the bulk-limit binding energy
at U/W = 1.60 appears to be close to −0.13 in hopping units.

Besides the surprising result that binding is possible even in
the presence of a strong Hubbard U repulsion, it is interesting
to remark the similarity of Fig. 3 with the binding results found
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J
H

/U = 0.25

FIG. 4. Scaling of �E vs. inverse chain length (1/L) at coupling
U/W = 1.60 where there is robust negative binding. In the bulk limit,
�E remains negative according to the extrapolation of these results.

before in the context of two-leg ladders (see Fig. 8 of Ref. [31]).
In both cases, ladders (short sizes were studied in Ref. [31])
and chains, �E starts positive with increasing U/W , drops to
negative at intermediate couplings where it remains into the
strong coupling regime, and then it becomes positive again
at abnormally large U/W . Note that the region where �E

is positive is not important: in the bulk limit the energy of
two holes that do not form a bound state should converge to
the energy of two independent holes, rendering �E equal to
zero. But the negative region of �E is physically realistic and
representative of pair formation: two holes lower the energy
of the system by being close to each other.

Figure 5 provides the electronic density using a 32-sites
chain, corresponding to the orbital a (the results for b are
identical, because the model is invariant if a and b are
exchanged). For half-filling, the density is virtually equal to
one at all sites. What is interesting is that for 2 holes, there is
only 1 minimum indicative of the existence of a hole pair. For
4 holes there are 2 minima, for 6 holes there are 3 minima, and
for 8 holes there are 4 minima. All these results are at least
compatible with the existence of hole pair formation, as the
binding energy indicates.

0 10 20 30
0.80

0.90

1.00
N
N-2
N-4
N-6
N-8

U/W = 1.60

<n
ia

>

i

FIG. 5. Local charge density of orbital a at U/W = 1.60, i.e.,
in the binding region, using a 32-sites chain and JH /U = 0.25. For
a fixed number of holes nh, we find nh/2 number of “dips” in the
charge density. Note that the charge density profile of orbital b is the
same as that of orbital a, by symmetry.

0 10 20 30
i

0.00

0.05

0.10

0.15

0.20
a
b

〈P
16

a
P i

γ
〉

FIG. 6. Probability of finding a hole at site i and orbital γ given
that the other hole is projected from the two-holes ground state to be at
site 16, orbital a, of a two-orbital chain with 32 sites, at U/W = 1.60
and JH /U = 0.25. The result is normalized to 〈P16a〉. We find the
largest probability of the non-projected hole to be in the other orbital
b and at the neighboring site. In the ladder analogy of the two-orbital
chain (see Fig. 7), these dominant pairs are equivalent to pairs along
the diagonal of effective plaquettes.

What is the internal structure of this pair? In Fig. 6 the
probability of finding the second hole is shown when the first
hole is projected to be at site 16, namely at the center of
the 32-sites chain used, and at orbital a. It is clear that the
probability for the second hole is the largest close to the first
projected hole, compatible with pairing. Moreover, the second
hole is primarily at orbital b if the first is at orbital a. Thus, the
pairs unveiled here involve holes primarily located at different
orbitals. This will be shown below to be compatible with the
pair-pair correlation that is the most dominant in many portions
of the phase diagram. Figure 6 also has prominent sharp peaks
located at nearest-neighbors sites. Thus, the dominant hole
configuration in the pair is that of holes separated by just one
lattice spacing, located at different orbitals.

Projecting now one or two holes to particular locations and
analyzing the spin-spin correlations in that framework leads
to interesting conclusions. The results are shown in Fig. 7.
First, note that once the two-orbital chain results are displayed
representing each of the two orbitals by a chain, then this
illustrates that two-orbital chains can be mapped formally
into a special case of one-orbital two-leg ladders. This is
interesting in several respects, but here we wish to emphasize
the resemblance, once again, with the previously published
results for two-orbital ladders [31]. Consider Fig. 7(a) for one
hole: here the rungs of the effective ladder are ferromagnetic
and the legs are AFM. Thus, once the results are plotted as
in Fig. 7 the magnetic order resembles the “rung FM - leg
AFM” of BaFe2S3 as reported in [31]. Also the AFM spin-spin
correlation “across the hole” observed in early studies of
models for cuprates [38–40] and also found more recently in
models for iron-based ladders [31] is present in Fig. 7(a). From
the spin perspective, “across the hole” AFM correlations are
effectively equivalent to dropping sites of the chain, explaining
the spin IC tendency in Fig. 1 with increasing doping.

024520-5



PATEL, NOCERA, ALVAREZ, MOREO, AND DAGOTTO PHYSICAL REVIEW B 96, 024520 (2017)

13a

13b

14a

14b

15a

15b

16a

16b

17a

17b

18a

18b

19a

19b

20a

20b

0.40

0.12

13a

13b

14a

14b

15a

15b

16a

16b

17a

17b

18a

18b

19a

19b

20a

20b

0.40

0.12

13a

13b

14a

14b

15a

15b

16a

16b

17a

17b

18a

18b

19a

19b

20a

20b

0.20

0.06

(a)

(b)

(c)

FIG. 7. Structure of the spin-spin correlations for fixed projected
arrangements of holes, using hole configurations with large weight
in the ground states. (a) The one-hole case, (b) corresponds to
holes along the effective plaquette diagonals (largest weight for two
holes), while (c) are for holes along the effective rung. All results
are obtained using 32 sites with two-orbitals at fixed U/W = 1.60
and JH /U = 0.25. Blue lines correspond to AFM bonds while
red lines are for FM bonds. Away from the holes, the expected
pattern of FM effective rungs and AFM legs is recovered. In the
fixed hole configurations of panels (b) and (c), the normalized
probability of the holes configuration is 〈P16aP17b〉/〈P16a〉 = 0.169
and 〈P16aP16b〉/〈P16a〉 = 0.0912, respectively. In all cases there is a
prominent “across the hole” AFM correlation. The case of two holes
located along the same “leg” of the effective ladder has much smaller
weight in the two-hole ground state and it is not shown.

The results for two holes are equally interesting and also
resemble those of previous investigations for real iron-based
ladder models. Figure 7(b) contains the hole arrangement
with the largest probability in the two-holes ground state.
Similarly as in Fig. 10 of Ref. [31], the plaquette diagonal
opposite to the projected holes is FM and the “across the hole”
antiferromagnetism is robust. Figure 7(c) shows the case where
the two holes are along the rung (i.e., onsite in the real chain).
Figures 7(b) and 7(c) are smoothly connected: for instance, by
moving the electron at “17b” to “16b” in Fig. 7(c), Fig. 7(b) is
recovered if the spin correlations follow as if they were “rubber
bands” attached to the electrons. Previous studies in models
for cuprates have unveiled similar physics.

Ending this subsection, we will discuss a subtle effect
related with the spin quantum number of the two holes state.
Employing Lanczos methods we studied the total spin of the
two-holes state employing both periodic and open boundary
conditions (PBC and OBC, respectively) using chains of length
4 and 6, at various Hund couplings and U/W = 1.60. The
behavior is erratic: while for 6 sites and PBC the spin is always
0, for 4 sites with OBC it is always 1. The interpretation of these
results is difficult because of the presence of the well-known
edge states of Haldane chains when OBC are used. Considering
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FIG. 8. Real-space decay of the pair-pair (singlet and triplet),
spin-spin, and charge-charge correlations involving nearest-neighbor
sites at fixed U/W = 1.60 and JH /U = 0.25, and using a 48-sites
chain. (a) Corresponds to 2 holes doping, (b) to 6 holes doping,
(c) to 8 holes doping, and (d) to 12 holes doping.

the difficulty in distinguishing between intrinsic spin quantum
numbers of a hole pair versus those at the edge of a Haldane
chain, we do not investigate further this topic and below we
study both singlet and triplet pair channels to find out which
one dominates explicitly. The final result is that spin-singlet
pairs are dominant suggesting that the spin 1 quantum number
found for some two-holes chains originates in the edge states.

C. Pair-pair correlations and tendency to superconductivity

The existence of hole binding at half-filling is often a
precursor of superconducting tendencies increasing doping.
For this reason we have measured the pair-pair correlations
in all the channels described in Sec. II, and contrasted
their behavior with increasing distance against density-density
and spin-spin correlations to find which channel dominates.
Representative results are shown in Fig. 8. Figure 8(a) contains
results for 2 holes. Here the pair-pair correlations are robust in
the spin-singlet channel when involving different orbitals and
using nearest-neighbor sites, in agreement with the analysis
of the internal structure of the pair in the previous subsection.
The analogous spin-triplet pair correlations decay much faster,
while spin and charge correlations are in between. However,
in spite of the robustness of the singlet pair correlations in
Fig. 8(a), the ground state only has two holes and these results,
while promising, may be anomalous. More standard and
exciting are the results in Fig. 8(b) with 6 holes and a nominal
hole doping x = 6/96 = 0.0625 (N = 96 for a half-filled
48-sites cluster). The same spin-singlet inter-orbital NN-sites
pair correlation dominates here as well, as in Fig. 8(a). The
decay with distance is similar as in the charge and spin channels
but only if the maxima is used for the latter. If, instead, the
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FIG. 9. Pairing strength D̄ [see Eq. (11)] vs. U/W , parametric
with number of holes. A 32-sites chain is used and JH /U = 0.25.

minima in charge and spin correlations are included in finding
the most optimal fits then pair-pair correlations dominate. Note
that the prominent oscillations in charge and spin correlations
have been often reported before (for recent state-of-the-art
efforts, see Ref. [42]), although their origin is not fully
clear; for the pair correlations a smoother behavior is often
observed, as we found. As the number of holes increases, then
the superconducting tendencies remain robust but diminish
compared with spin and charge. In Fig. 8(c) with x = 8/96,
the pair-pair decay with distance approximately follows the
average of spin and charge indicating that they compete, while
in Fig. 8(d) with x = 12/96, pairing is already less robust
than charge and spin channels. In summary, in a range of
doping near half-filling and for the clusters that we studied,
the superconducting correlations appear to dominate, or at
the minimum decay at a similar rate as spin and charge.
With increasing hole doping the importance of the pair-pair
correlations diminishes.

In Fig. 9 we show the pairing strength D̄, defined in Eq. (11),
as an indicator of the robustness of pairing correlations
varying U/W for various number of holes. Clearly, it is
the intermediate range of U/W where pairing dominates the
most—as found in the hole binding analysis—and also when
the numbers of holes is small.

Note that the presence of robust superconducting correla-
tions in Fig. 8 occurs in the region of pair binding shown in
Fig. 3. Away from that region, for example at small Hubbard
coupling such as U/W = 0.2 or at very large Hubbard
coupling U/W = 10 pairing is not as robust as at intermediate
couplings, as illustrated in Fig. 10. Thus, once again we arrive
to the conclusion that the behavior of the binding energy and
the pair correlation is compatible with one another.

For completeness, note that previous work also unveiled
tendencies towards pairing in electronic two orbitals models
but under rather different circumstances. (i) For instance, in
Ref. [43], Kondo models for Y2−xCaxBaNiO5 were studied
using Lanczos and DMRG techniques, supplemented by AFM
Heisenberg J terms. The emphasis was on ferromagnetism
and phase separation but tendencies towards hole binding were
also briefly reported. The signal for binding was strongest at
high hole concentration such as x = 0.4 and robust values

1010
-4

10
-2

10
0

10 10
-4

10
-2

10
0

1010
-4

10
-2

10
0

10 10
-4

10
-2

10
0

|S    (R)|

|T    (R)|

|Sp(R)|

|N(R)|

N - 2

R

N - 12(c) (d)

R

U/W=10U/W=10

(a)N - 2

U/W=0.2 U/W=0.2

N - 12(b)

R R

ab

ab
nn

nn

FIG. 10. Real-space decay of the pair-pair (singlet and triplet),
spin-spin, and charge-charge correlations for 2 and 12 holes at
U/W = 0.2 and 10.0, as indicated, and at JH /U = 0.25 using a
32-sites chain. In all cases, the decay of the pairs is either faster or
approximately equal to the spin and charge correlations. Thus, the
pairing tendencies are robust at intermediate coupling, compatible
with the conclusions regarding hole binding.

of J of order one. No pair-pair correlations were calculated,
nor competition triplet versus singlet was studied. (ii) In
Ref. [44], two one-orbital Hubbard chains coupled by an
explicitly ferromagnetic Heisenberg interaction were studied
via bosonization and DMRG/Lanczos methods. Regions of
singlet and triplet superconductivity were reported, but note
that this model has an explicit Heisenberg effective attraction,
without a U ′ repulsion (similar to our previous effort [45]
to be discussed below). The goal in Ref. [44] was to study
the singlet versus triplet competition in superconductivity,
unlike our efforts that focus on unveiling pairing tendencies
from a complete two-orbital Hubbard model that is explicitly
repulsive. (iii) In Ref. [46] a two-orbital Hubbard model at
U = ∞ was studied with emphasis on the influence of the
Hund coupling. When U ′ was included, charge-density waves
were reported to dominate, while in the absence of U ′ but
with robust JH then singlet or triplet pairing dominates. Our
analysis, on the other hand, focuses on a finite intermediate
U/W range where surprisingly we found that singlet pairing
dominates even in the presence of a realistic U ′ > JH . As
U/W → ∞, we found that hole binding no longer occurs, as
shown in Fig. 3, and the charge or spin channels dominate over
pairing [see Figs. 10(c) and 10(d)] compatible with Ref. [46].
(iv) In Ref. [47], results compatible with ours were produced
via the exact diagonalization of a PBC 6-sites chain with
emphasis on Luttinger liquid parameters using a two-orbital
Hubbard model with a robust band splitting. (v) In Ref. [48],
using the statistically consistent Gutzwiller approximation for
a square lattice, conclusions similar to ours were reached,
reporting a stable spin-triplet s-wave superconducting state
for a two-orbital degenerate Hubbard model. This occurs, like
in our case, even in the case U ′ > JH and near half-filling.
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D. Role of Hund coupling and magnetic moments

The origin of the pairing tendencies unveiled here is subtle
and in this subsection we report some observations to help
clarify this matter. More work is needed to fully comprehend
this hole pair formation, so ours are just the first steps in that
direction.

One important factor correlated with the pairing we are
reporting is the presence of well-formed magnetic moments
at every site. This is along the same direction as early studies
of the t − J model for cuprates [36], where holes form bound
states to reduce the damage that mobile holes induce in an
otherwise optimal antiferromagnetic arrangement. Each hole
alters the spin order in a finite region, and pairing of holes
reduces the size of the regions where spins are not properly
arranged. This simple and well-known notion must be at least
part of the explanation for our results because pairing in �E,
as shown in Fig. 3, occurs in regions where moments are well
formed, as indicated in Fig. 2.

In addition, we have observed that the Hund coupling in our
model clearly is directly related to binding. Figure 11 shows
the binding energy in a wide range of U/W parametric with
JH /U . At the smallest JH /U shown, the binding energy is pos-
itive and pairs do not have a tendency to form. Consider now
the special value JH/U = 1/3. In this case JH = U ′ because
of the relation U = U ′ + 2JH . Thus, the natural repulsion U ′
for two electrons at different orbitals in the same lattice site is
compensated by the natural tendency to bind induced by JH .
In fact, for JH /U = 1/3, and beyond, i.e., JH /U > 1/3, the
binding energy �E is negative at all values of U/W .

The reader should note that the connection between the
realistic regime JH /U < 1/3 and the unphysical region
JH /U > 1/3 is nontrivial. Naively, one may expect �E

to be negative for all U/W for JH /U > 1/3, and positive
for all U/W for JH/U < 1/3. However, the interpolation,
while smooth, is more complex. Figure 11 shows that in the
intermediate U/W range, the binding is negative for JH/U =
0.20, 0.25, and 0.30, with a clear dip in the U/W ∼ 1 − 2
range. This dip, being smoothly connected with the broad
negative binding energy region of JH /U = 1/3, must be
caused by JH attraction effects that somehow are not fully
compensated by U ′ at intermediate couplings.
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FIG. 12. �E vs. JH /U at fixed U/W = 1.60 using 16 sites with
2 orbitals. �E becomes significantly more negative as JH /U is
increased.

The “earlier” than anticipated attractive effects of JH at
intermediate U/W are explicitly illustrated in Fig. 12 where
�E is shown at the optimal U/W = 1.60 of our focus, varying
JH /U . At least for the small system studied here, �E changes
sign before JH /U = 0.2 and it becomes increasingly negative
with further increasing JH . While the causal effect of JH is
clear, further work is needed to clarify how can this attraction
overcome the U ′ repulsion in the intermediate coupling range.
Moreover, the attraction channel favors spin-singlets involving
different orbitals at nearest-neighbor sites. In fact, pairing in
the spin-singlet interorbital NN-sites channels is enhanced
as JH increases as shown in Figs. 13(a) and 13(b). Thus,
it is a subtle combination of the Hund interaction together
with antiferromagnetic short-range order that induces singlet
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diagonal AFM Heisenberg couplings JD in panels (c) and (d). Shown
are results for 2 and 8 holes, as indicated, using in all cases a 32-sites
chain and JH /U = 0.25. Clearly increasing both JH and JD magnify
the pairing tendencies.
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pairing in this one-dimensional multiorbital model. More work
is needed to clarify this interesting effect.

E. Influence of additional interorbital Heisenberg interactions

For completeness, we have also added an extra term to the
Hamiltonian in order to boost pairing tendencies. This term
is simply a Heisenberg spin-spin interaction with strength JD

defined as

HD = JD

∑

〈ij〉
Sia · Sjb. (12)

The motivation for adding this term is two folded. First,
it plays a role similar to that of “J ” in the standard t − J

model, and we know that increasing J increases pairing
tendencies [36]. Second, the new term links the spins of two
electrons located at NN sites and at different orbitals [note
orbital indexes in Eq. (12)], resembling the structure of the
pairs that we have found above. In agreement with these
expectations indeed we have observed that pairing tendencies
in the dominant spin-singlet NN-sites inter-orbital channel are
enhanced as shown in Figs. 13(c) and 13(d). A similar analysis
adding instead a NN Heisenberg coupling between electrons
in the same orbital only showed minor changes in the decay of
the correlations (not shown). Clearly the electrons and holes in
the dominant pairs have a preference to be in different orbitals.
Future studies of superconductivity in the two-orbital Hubbard
model analyzed here can benefit from enhanced pairing effects
by including JD .

IV. CONCLUSIONS

In this publication we have investigated the magnetic,
hole pairing, and superconducting properties of a two-orbital
Hubbard model defined on a chain. The primary motivation is
the recent report of hole binding tendencies in a similar model
but defined on a two-leg ladder geometry [31], motivated by the
discovery of superconductivity under high pressure in the lad-
der compound BaFe2S3 [11]. In that previous computational
effort, the binding tendency was found to be negative, thus sig-
naling pairing, but the results could not be confirmed beyond
small systems 2 × 8. In addition pair-pair correlations were not
measured in that early effort. In the present work much longer
chains can be studied and a variety of correlation functions
were measured and their decay with distance compared to de-
cide which is dominant. In the same spirit as in Ref. [31], here
our search for superconducting tendencies was based on hole
doping while the experimental setup relied on pressure. The
ab initio calculations in Ref. [33] justify our theoretical
approach because they reported that pressure leads to mod-
ifications in the average electronic density at the iron atoms.

Our results are interesting for several reasons. The data
reported here for the binding energy resemble those of the
ladder, but on chain sizes up to 64 sites. Size scaling shows that
the results survive the bulk limit. Qualitatively both for ladders
and chains it is the intermediate region of U/W were binding
does occur. Having almost saturated magnetic moments is
important together with a robust Hund coupling. Neither very
weak nor very strong U/W coupling seem suitable for pairing,
a conceptually interesting result. The absence of pairing at

very large U/W may be related with competing ferromagnetic
tendencies when holes are added, as in double exchange
models. This line of research is being investigated at present.

Moreover, by measuring pair-pair correlations in the spin
singlet channel, and using pair operators involving different
orbitals and nearest-neighbor sites, a region of hole density and
couplings was identified where superconducting correlations
decay slower, or at least at the same rate, than spin and charge
correlations. Having different orbitals and nearest-neighbor
sites is compatible with the internal structure of the pair.

By varying the Hund coupling into the region believed to
be unphysical where JH becomes as large as U ′ (this occurs
at JH/U = 1/3 if the standard relation U = U ′ + 2JH is
assumed [45,49]), then an unexpected smooth continuity was
observed between JH /U > 1/3, where binding occurs at all
values of U/W because JH becomes an effective attraction
when it overcomes U ′, and the region widely believed to
be realistic JH /U ∼ 0.25. This smooth continuity occurs
primarily at intermediate U/W couplings. Thus, for reasons
that still need better clarification the effective JH attraction
at JH /U > 1/3 can become operative even at smaller Hund
couplings in a reduced U/W range. The chosen dominant
channel involves holes in different orbitals, a spin-singlet
combination, and nearest-neighbors sites.

The observation that pairing, charge, and spin correlations
are sometimes of similar strength, as in Fig. 8(c) for N − 8
electrons (48 sites), suggests that future work should also
address the possible formation of “pair density waves”. These
are subtle broken-symmetry states that intertwine charge den-
sity waves, spin density waves, and superconducting orders.
In this state the superconducting order parameter is spatially
modulated in such a way that the uniform component is zero or
very small, but it has a strong oscillatory component [50–52].

In summary, these results contribute towards understand-
ing pairing tendencies in quasi-one-dimensional iron-based
superconductors. Binding was found to occur at intermediate
couplings, a regime that previous studies showed to be realistic
for chalcogenides [6,7]. There is plenty of work ahead. While
superconducting correlations already appear to dominate at
low hole doping, these results must be confirmed using even
longer chains. Moreover, although it seems clear that a robust
Hund coupling and robust magnetic moments are needed,
developing an even more detailed qualitative understanding
of the origin of pairing is important. Our group will continue
working along these lines in the near future.
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