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Static and dynamic properties of Josephson weak links with singlet and triplet coupling
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We theoretically study static and dynamic properties of short Josephson junctions (JJs) with singlet and triplet
Josephson coupling. In singlet Josephson weak links, two singlet superconductors S are connected with each
other by a normal film (N) or wire. Triplet JJs, which we denote Sm-N(F)-Sm, are formed by two singlet BCS
superconductors covered by a thin layer of a weak ferromagnet Fw. These superconductors Sm are separated
from the N (or F) layer by spin filters, which pass electrons with only one spin orientation. The triplet Cooper
pairs propagating from the left (right) superconductors Sm differ from each other not only in polarizations, but
also in chiralities. The latter is determined by the magnetization orientation in weak ferromagnets Fw. We obtain
analytical formulas for the critical Josephson current in both types of JJs. If the chiralities of the triplet Cooper
pairs penetrating into the N film in Sm-N(F)-Sm JJs from the left and right Sm are different, the Josephson
current is not 0 in the absence of the phase difference (spontaneous Josephson current). We also calculate the
admittance Y (�) for arbitrary frequencies � in the case of singlet JJs and for low frequencies in the case of
triplet JJs. At low temperatures T , the real part of the admittance Y ′(�) in singlet JJs starts to increase from 0 at
h̄� � �sg, but at T � �sg, it has a peak at low frequencies the magnitude of which is determined by inelastic
processes. The subgap �sg depends on the transparencies of the S/N interfaces and on the phase difference 2χ0.
The low-frequency peak in Y ′(�) in triplet JJs disappears.
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I. INTRODUCTION

The frequency dependence of the admittance Y (�) for
uniform superconductors has been calculated long ago in the
well-known papers by Mattis and Bardeen and by Abrikosov,
Gor’kov, and Khalatnikov [1–3]. It has been shown that the real
part of the admittance Y ′(�) at zero temperature is 0 unless
the frequency � does not exceed 2�/h̄. This natural result
has been confirmed experimentally [4–6]. The admittance
of weakly inhomogeneous superconductors has been deter-
mined by Larkin and Ovchinnikov [7]. Those authors have
also calculated the admittance of a strongly inhomogeneous
superconductor with a sufficiently strong Zeeman interaction
in the so-called Fulde-Ferrel-Larkin-Ovchinnikov state [8].

Strongly inhomogeneous superconductivity is realized also
in S/N structures or in Josephson weak links of different
kinds, S/N/S, S/c/S, etc., where N represents a normal film
and c indicates a constriction. Superconducting correlations
are induced in the N region due to the proximity effect so that
a subgap �sg (�sg < �) may arise in the N film [9,10]. The
admittance Y (�) for the S/N/Nres structure was calculated in
Ref. [11], where Nres represents a bulk normal metal (reservoir)
or a thick normal film attached to a thinner N film or wire. A
peak in Y ′(�) was shown to exist at a frequency corresponding
to a subgap �sg in the N film.

More attention was paid to the study of ac properties of
superconducting weak links (see reviews in Refs. [12–14]).
The interest in this study increased in recent years due to
the rapid progress in experimental techniques and possible
applications of Josephson junctions (JJs) [15–18]. The formula
for the admittance of a short S/c/S (or S/N/S) weak link was
derived in Ref. [19] and analyzed in more detail in our recent
paper, [20] (see also Ref. [21], where another approach to
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calculations is used). The admittance of long S/N/S junctions
has been calculated in Refs. [22] and [23]. In all these papers,
an anomalous enhancement of the real part of the admittance
Y ′(�) at low frequencies � has been obtained [19–23]. The
enhancement is caused by quasiparticles with energies in the
interval �sg < ε < �, where the subgap �sg depends on the
dc phase difference 2χ0.

Interestingly, collective modes may lead to peculiarities in
the admittance Y ′(�) of a uniform superconductor or weak
links under certain conditions. For example, the amplitude
mode results in a peak at � � 2� in the admittance of a
current-carrying superconductor [24], and the phase mode, or
the so-called Carlson-Goldman mode [25–30], leads to some
features in the I−V characteristics and in the dependence of
Y (�)[29,30].

On the other hand, in the last decade a great deal of
attention has been paid to the study of triplet odd-frequency
superconductivity [31], which arises in singlet superconductor
(S)/ferromagnet (F) structures (see reviews, Refs. [32–38],
and references therein). It was shown [39] that the proximity
effect induces triplet Cooper pairs in S/F structures with
an inhomogeneous magnetization M(x) in the ferromagnet
F [40]. These pairs penetrate into the ferromagnet over a
relatively large distance lT , which may be of the order
lT ∼ √

D/T , that is, much larger than the length lh ∼ √
D/h

of the condensate penetration into a homogeneous ferromagnet
with an exchange field h (D is the diffusion coefficient and
T the temperature). The long penetration of the condensate is
caused by the triplet Cooper pairs with the total spin orientation
parallel to the magnetization vector M in the ferromagnet. In
the case of a magnetically homogeneous F triplet, Cooper pairs
penetrating into the F from a singlet superconductor have the
total spin oriented perpendicular to the vector M and penetrate
the ferromagnet over a rather short distance, ∼lh.

The long-range triplet superconducting correlations may
provide, in particular, the Josephson coupling in S/F/S
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junctions with a relatively thick ferromagnetic film. The
appearance of these long-range triplet components has been
proved mainly by observing the dc Josephson effect in JJs
of different kinds with a ferromagnetic layer(s) [41–53].
Different aspects of the stationary Josephson effect in Joseph-
son junctions of various types have been analyzed in many
theoretical papers (see Refs. [54–74] as well as the references
in recent review articles, Refs. [36–38]. On the other hand, the
dynamics of the triplet component was studied only in uniform
superconductors [75,76], and not in Josephson junctions.

In this paper, we calculate and analyze the admittance
Y (�) of JJs of two types, S/N/S and Sm/N/Sm (or Sm/F/Sm),
where Sm represents a magnetic superconductor. In the latter
case it does not matter whether the superconductors Sm are
connected by a normal or a ferromagnetic wire. It is merely
important that the magnetization vector M is parallel to the
filter’s axis, i.e., M||ez. The Josephson coupling is provided
by the singlet component in JJs of the first type and by the
triplet odd-frequency component in JJs of the second type. We
consider the case of short JJs, with the distance between the
superconducting reservoirs shorter than the coherence length
ξS ∼ {√D/T ,

√
D/�}. Unlike the case studied in Refs. [19]

and [20], where the S/N interface resistance Rif was assumed
to be negligible compared with the resistance RN in the N
region, we consider here the opposite case, i.e., Rif � RN.
As in the case considered in Refs. [19] and [20], the real
part of the admittance Y ′(�) in singlet JJs has a maximum
at low � if the temperature is not too low, T � �sg. The
low-frequency behavior of Y ′(�) is described approximately
by the expression Y ′(�) ∼ [2γN/(4γ 2

N + �2)] exp(−�sg/T ).
Although the general formulas for the current obtained in this
paper for the singlet weak links, Eqs. (31), (32), and (34), look
similar to those in our previous publication, Ref. [20], they
differ essentially because the integrands in the corresponding
equations are different [77]. In the case of triplet coupling, a
slight enhancement of Y ′(�) remains only if the characteristic
exchange field h is small compared with the subgap �sg.
Otherwise no enhancement of Y ′(�) appears.

The paper is organized as follows. In Sec. II, we present the
main equations. In Sec. III, we calculate the critical Josephson
current Ic for an S/N/S Josephson weak link with a coupling
via the singlet component. We find also a response of this JJ
to a small ac phase variation and present an expression for
the admittance of the junction Y (�). In Sec. IV, we obtain
and analyze the current Ic and the admittance Y (�) in JJs
of the Sm/N/Sm or Sm/F/Sm type, where Sm is a magnetic
superconductor serving as a source of fully polarized triplet
Cooper pairs [see Fig. 1(b)]. In Sec. V, the results obtained are
discussed.

II. BASIC EQUATIONS

We consider JJs of the two types shown in Fig. 1. The
JJ or weak links in Fig. 1(a) consist of two bulk BCS
superconductors S connected by a normal wire (or film). The
JJ depicted in Fig. 1(b) consists of two bulk agnetic supercon-
ductors Sm connected by a normal (or ferromagnetic) wire.
The superconductors Sm are formed by a BCS superconductor
covered with a thin film of a weak ferromagnet Fw with an
exchange field h. We assume that at the Sm/N interfaces

FIG. 1. Schematic of the Josephson junctions (JJs) under con-
sideration. (a) JJ with singlet coupling; (b) JJ with triplet coupling.
The magnetic superconductors Sm consist of conventional singlet
superconductors covered with thin layers of weak ferromagnets Fw

so that triplet Cooper pairs with spin polarizations in the x−z or
y−z plane penetrate into the Fw layer due to the proximity effect.
The filters Fl let pass Cooper pairs with spins parallel or antiparallel
to the z axis. If the exchange fields hR,L at the right and at the left
have different directions, a spontaneous current arises which can flow
through the loop shown.

there are spin filters which let pass electrons with only one
spin direction (s||z). The exchange field h is supposed to be
perpendicular to the z axis so that triplet Cooper pairs, which
appear in the F film, have a component along the z axis and
therefore penetrate through the filters. The singlet Cooper pairs
do not pass through the filters. We consider the diffusive case
assuming that the mean free path is shorter than the coherence
length ξS � √

D/Tc.
In order to find the current I through the system, we need

to determine the quasiclassical Green’s functions. We employ
the same basic equations for the quasiclassical matrix Green’s
functions ǧ as in Ref. [20]. In the considered one-dimensional
geometry and in the diffusive limit they obey a generalized
Usadel equation of the form [30,78–81]

−iD∂x(ǧ∂xǧ) + i(τ̌3∂t ǧ + ∂t ′ ǧτ̌3) + [
̌,ǧ]

= V (t)ǧ − ǧV (t ′), (1)

where D is the diffusion coefficient, the matrix 
̌ describes
damping, and V is the electric potential. Equation (1) describes
the Green’s function in the N film and is complemented by the
boundary condition [82–84]

ǧ∂xǧ = ±�L,R[ǧ,�̌ · Ǧ�̌]|±L, (2)

where �L,R = 1/R�L,Rσ , R�L,R is the interface resistance of
the left (right) interface per unit area, and σ is the conductivity
of the N metal. Note that this boundary condition ensures the
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continuity of the current across the Sm/N or Sm/F interfaces.
The matrix �̌ = diag{�̂,�̂} describes the action of the filters.
If the filters allow the passage of only electrons with spins
aligned parallel to the z axis, then �̂ = (T 1̂ + UX̂33)/

√
2

with T = ±U and X̂ij = τ̂i · σ̂j for i,j = 0,1,2,3, where τi

and σj are Pauli matrices operating in the Gor’kov-Nambu,
respectively, spin spaces (τ0 and σ0 are 2 × 2 unity matrices).
The probability that an electron with spin up (down) will
pass into the N wire is T↑,↓ ∝ T ± U . We set U = sT with
s = ±1 and the coefficients T and U are normalized so
that T = |U | = 1. The sign of the factor s determines the
orientation of the spins of electrons (parallel or antiparallel
to the vector ez) passing through the filters. In the case of
spin-inactive interfaces, �̂ = 1̂. We have to solve the Usadel
equation, Eq. (1), for the Green’s function ǧ in the N film with
the boundary condition, Eq. (2), that connects the Green’s
function ǧ in the N film with the known Green’s functions Ǧ

in the reservoirs (please note the use of lowercase and capital
letters to denote the Green’s functions in different systems).
We neglect the inverse proximity effect on the superconducting
reservoirs (see Appendix C).

The matrix Green’s function ǧ consists of the retarded
(advanced) Green’s functions ĝR(A) (diagonal elements) and
the Keldysh function ĝ (the off-diagonal ǧ12 element) and
obeys the normalization condition

ǧ · ǧ = 1̌. (3)

The Thouless energy ETh = D/L2 is assumed to be much
larger than � and V . This assumption means that the function
ǧ(x) is almost constant in space. Integrating Eq. (1) over x and
taking into account the boundary condition, Eq. (2), we obtain
for the Fourier component ǧ(ε,ε′)

εX̌30 · ǧ − ǧ · X̌30ε
′ = iE0[ǧ,Ǧ], (4)

where Ǧ ≡ (ǦR + ǦL)/2, X̌30 = diag{X̂30,X̂30}, and
E0 = D�/L. For simplicity we assume that the interface
resistances are equal, �R = �L ≡ �. The matrices Ǧ describe
electrons passing through the filter,

Ǧ = �̌ · Ǧ · �̌. (5)

Matrices Ǧ and Ǧ consist of the retarded (advanced) (ĜR(A))
and Keldysh (Ĝ) Green’s functions in the reservoirs,

Ǧ =
(

ĜR Ĝ

0 ĜA

)
. (6)

The retarded (advanced) Green’s functions ĜR(A) are given by

ǦR(A)(t,t ′) = Ŝ(t)[G(t − t ′)X̂30 + F (t − t ′)X̂10]R(A)Ŝ†(t ′),

(7)

where Ŝ(t) = exp(X̂30iχ (t)/2) with the phase of the or-
der parameter in the right or left reservoir, respectively,
χR,L(t) = ±[χ0 + χ�(t)]R,L. We set χR(t) = −χL(t) ≡ χ (t).
If the reservoirs are BCS singlet superconductors, the Fourier
components of the functions GR(A)(t − t ′) and FR(A)(t − t ′)
are

G
R(A)
0 (ε) = (ε ± iγ )/ζR(A), (8)

F
R(A)
0 (ε) = �/ζR(A), (9)

with ζR(A) =
√

(ε ± iγ )2 − �2 and the damping rate in the
superconducting reservoirs γ .

In the case of Sm superconductors, the Green’s func-
tions Ĝ(ω) have a more complicated structure [85]. In the
static case (χ = χ0 = const), in the Matsubara representation
[ε = iω ≡ iπT (2n + 1)] they have the form

Ĝ(ω) = Ŝ0[Gωh(X̂30 + sX̂03) + FωhX̂⊥]Ŝ†
0. (10)

Here, Ŝ0 = exp(X̂30iχ0/2) and

Gωh = 1

2

(ω + ih

ζω+
+ ω − ih

ζω−

)
≡ Re

(ω + ih

ζω+

)
, (11)

Fωh = �

2

( 1

ζω+
− 1

ζω−

)
≡ i�Im

( 1

ζω+

)
, (12)

with ζω± =
√

(ω ± ih)2 + �2. The factor s = ±1 character-
izes the direction of the triplet Cooper pairs with respect to the
z axis. The form of the matrix X̂⊥ depends on the direction of
the exchange field h (h||ex or h||ey):

X̂⊥ = 1√
2

{
X̂11 − sX̂22, h||ex ;

X̂12 + sLX̂21, h||ey.
(13)

We clarify the origin of matrices in this equation. If the
exchange field h is parallel to the z axis (h||ez), then the part
of the triplet condensate Green’s function is F̂ωh = FωhX̂13,
where the function Fωh is defined in Eq. (12). Rotation
around the x or y axis, respectively, with the aid of the
rotation matrix Û = cos α/2 + iX̂01(2) sin α/2, with α = π/2,
transforms the function F̂ωh → FωhX̂12 or F̂ωh → FωhX̂11.
The action of the spin filter transforms these functions into
�̂F̂ωh�̂ → Fωh(X̂12 + sX̂21) or �̂F̂ωh�̂ → Fωh(X̂11 − sX̂22).

We need to find the current I given by the expression (this
equation is written in more detailed form in Appendix D)

I = (16κR�e)−1
∫

dε̄ {(ǧ∂xǧ)K}30

= (16R�e)−1
∫

dε̄ {[ǧ,�̌Ǧ�̌]K}30 (14)

as a response to a small periodic variation of the phase
χ�(t) = χ� cos(�t) in the presence of a constant phase
difference χ0. Here, ε̄ = (ε + ε′)/2 and we have introduced
the notation {(ǧ∂xǧ)K}ij ≡ Tr{X̂ij (ǧ∂xǧ)K}/4. Therefore, we
have to solve Eq. (4) and to find the function ǧ. First, we
consider the case of singlet superconductors.

Unlike a similar system with perfectly penetrable interfaces
considered in Refs. [19] and [20], in our case there are
barriers at the S/N interfaces so that the interfaces have a finite
resistance Rif ≡ R�. Moreover, we assume that the interface
resistance is much higher than the resistance of the N layer,
RL = 2L/σ , i.e., the inequality

R� � RL (15)

is fulfilled.

III. SINGLET COUPLING

In this section, we consider an S/N/S junction in the absence
of spin filters at the interfaces, i.e., we set �̌ = 1̌. This means
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that the matrices Ĝ and Ĝ coincide. Therefore, the Josephson
coupling is realized through singlet Cooper pairs penetrating
the N region due to the proximity effect. First, we analyze the
stationary case.

A. Stationary case

In this case, it is convenient to use the Matsubara represen-
tation of the Green’s functions. The matrices [Ĝω]R,L read

[Ĝω]R,L = [GωX̂30 + Fω exp(±iχ0X̂30) · X̂10]R,L. (16)

The function Gω is equal to Gωh at h = 0 [see Eq. (11)] and
Fω = (�/ω)Gω.

From Eq. (4) we obtain an equation for the stationary
Green’s function ĝω. One can write this equation in the form

[M̂ω,ĝω] = 0, (17)

where M̂ω = ω̃X̂30 + �̃ωX̂10 and ω̃ = ω(1 + E0/ζω),
�̃ω = [E0�/ζω] cos χ0, ζω = √

ω2 + �2, ζ̃ω =
√

ω̃2 + �̃2
ω.

A solution satisfying the normalization condition, Eq. (3), is

ĝω = M̂ω

ζ̃ω

. (18)

The retarded function ĝR(ε) = gR
ε X̂30 + f R

ε X̂10, which is
equal to ĝω at ω = −iε, determines the density of states (DOS)
ν(ε) = Re(gε). One can easily obtain a transparent formula for
ν(ε) in the limiting cases of large and small E0.

For large E0 (E0 � �) we have ε̃ � ε0/ζ
R
0 and

�̃ � (ζR
0 )−1

�0 cos χ0 with ζR
0 =

√
(ε + iγN)2 − �2

0 cos2 χ0 .
We obtain the standard formula for a BCS superconductor
ν(ε) = Re(ε/

√
ε2 − (� cos χ0)2) with a gap in the quasipar-

ticle spectrum �| cos χ0|. In the opposite limit of small E0

(E0 
 �), we obtain ν(ε) = Re(ε/
√

ε2 − (E0 cos χ0)2), that
is, the energy gap or subgap �sg = E0 cos χ0 is much smaller
than � [9].

One can easily calculate the dc Josephson current IJ using
Eqs. (14) and (18). In the considered static case, the expression
for the current can be written in the form

IJ = iπT

2eR�

∑
ω�0

{[ĝω,ĜωR]}30. (19)

Here, we have used the form of the Keldysh
function ĝ = (ĝR − ĝA) tanh(εβ) [in this case,
ε = ε′ = ε̄ ≡ (ε + ε′)/2] and transformed the integral
in Eq. (14) into the sum over poles of tanh(εβ). Substituting
Eqs. (16) and (18) into this equation, we find a standard
relation for the Josephson current [12–14],

IJ = Ic sin(2χ0), (20)

where the critical current of the considered JJ with the
Josephson coupling through the singlet condensate equals

IcS = 2πT

eR�
E0�

2
∑
ω�0

1

ζ̃ωζ 2
ω

. (21)

Now we turn to the response of the singlet JJ to an ac
voltage V�.

B. Nonstationary case

We have to find the response δǧ to a phase variation
χ�(t) = χ�(t)R = −χ�(t)L or to an ac voltage V�(t) applied
to the considered JJ and coupled to χ�(t) via the Josephson
relation

2eV�(t) = h̄∂χ�(t)/∂t. (22)

In order to determine a variation of the Green’s function
in the N region δĝR(A), we linearize Eq. (4) and take into
account that in the case of harmonic variation of the phase,
χ�(t) = χ� exp(−i�t), the functions δĝR(A)(ε,ε′) can be rep-
resented in the form δĝR(A)(ε,ε′) = δĝR(A)2πδ(ε − ε′ − �).
For the functions δĝR(A) we obtain

[M̂(ε+) · δĝ − δĝ · M̂(ε−)]R(A)

= iE0{ĝ0+ · δĜ − δĜ · ĝ0−}R(A), (23)

where M̂R(A)(ε) = [εX̂30 + iEBĜ0]R(A) and εR
± = ε̄ ± �/2 +

iγN (we take into account a damping rate γN in the normal
metal N). One can represent the left-hand side in the form

[ζ̃+ĝ0+ · δĝ − δĝ · ĝ0−ζ̃−]R(A)

= iE0{ĝ0+ · δĜ − δĜ · ĝ0−}R(A), (24)

where the functions ĝ0± = ĝ0(ε̄ ± �/2) and δĜR(A) are de-
fined in Eqs. (A4)–(A6) (see Appendix A). The normalization
condition, Eq. (3), yields

(ĝ0± · ĝ0±)R(A) = 1̂, (25)

[ĝ0+ · δĝ + δĝ · ĝ0−]R(A) = 0. (26)

Using these equations, we obtain a solution of Eq. (24):

δĝR(A) =
[

iE0

ζ̃+ + ζ̃−
[δĜ − ĝ0+ · δĜ · ĝ0−]

]R(A)

. (27)

The Keldysh matrix δĝ is represented as the sum of regular
and anomalous parts, δĝreg and δĝan [30,86],

δĝ = δĝreg + n(ε̄)ĝan, (28)

where n(ε̄,�) = [ tanh(ε+β) − tanh(ε−β)] and

δĝreg = δĝR tanh(ε−β) − tanh(ε+β)δĝA. (29)

The anomalous function can be found by using the same simple
procedure as in Refs. [20] and [30]. We find

ĝan = iE0

ζ̃ R+ + ζ̃ A−

[
δĜan − ĝR

0+ · δĜan · ĝA
0−

]
. (30)

The expression for Ĝan is provided in Appendix A, Eq. (A10).
Knowing the variations of the Green’s functions, δĝR(A)

and ĝan, we determine the variation of the current
δI� = I� exp(−i�t), the Fourier component of which we
write as the sum of the regular, I reg

� , and anomalous, I an
� , parts.

The amplitude I� can be written as the sum of the regular, I reg
� ,

and anomalous, I an
� , parts,

I� = I
reg
� + I an

� . (31)
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Here,

I
reg
� = (16R�e)−1

∫
dε̄ {jR tanh(ε−β) − jA tanh(ε+β)}30,

(32)

with

jR(A) = {X̂30[(ĝ0+δĜR − δĜRĝ0−)

− (ĜR0+δĝ − δĝĜR0−)]}R(A)
30 , (33)

and

I an
� = (16R�e)−1

∫
dε̄ n(ε̄)j an, (34)

where the “anomalous current” j an coincides with jR if the
functions ĝR

0−, δĜR
R, and GR

0− in Eq. (33) are replaced with
ĝA

0−, δĜan
R , and GA

0−, respectively.
Using Eqs. (29) and (30) for the matrices in Eqs. (33), we

can write jR(A) and j an in terms of the known Green’s functions
in the reservoirs. We write j an as the sum of two currents,

j an ≡ j an
1 + j an

2 , (35)

where j an
1,2 correspond to the first (second) term in Eq. (33),

respectively. They can be written as follows (see Appendix A):

j an
1 = −i

χ�

2

[(
g̃R

0+ − g̃A
0−

)
(GR

+ − GA
−)

− (FR
+ + FA

− )(f̃ R
+ + f̃ A

− ) cos χ0
]
, (36)

j an
2 = χ�

E0

ζ̃ R+ + ζ̃ A−

[
1 + g̃R

0+g̃A
0− + f̃ R

+ f̃ A
−

]
× (FR

+ + FA
− )2 sin2 χ0. (37)

The currents jR(A) are given by the same formulas if all the
functions of the form FA

− (FR
+ ) are replaced with FR

− (FA
+ ).

One can show that the anomalous current leads to an
enhancement in the conductance Y� at low frequencies, as
it occurs in S/c/S junctions without barriers [19] and in long
S/N/S junctions [22,23]. Consider the case of low frequencies
(� 
 �sg). The main contribution to the current is due to the
first term in Eq. (36) for j an

1 and due to the “current” j an
2 . We

obtain

I an
� = V�

2R�
C� + I an

2 , (38)

where the temperature-dependent function C� is

C� =
∫ ∞

�

d(εβ)
εε̃

ζ (ε)ζ̃ (ε) cosh2(εβ)
. (39)

The first term determines the admittance of the system,
1/(2R�), in the normal state. The second term in Eq. (38)
is given by

I an
2 = − h̄�E0

16R�e
χ�

∫
dε̄ β

1 + g̃R
0+g̃A

0− + f̃ R
+ f̃ A

−
ζ̃ R+ + ζ̃ A−

×
(

FR
+ + FA

−
cosh(ε̄β)

)2

sin2 χ0. (40)

We take into account that in the interval �sg ≡
E0| cos χ0| � ε̄ 
 � the functions FR

+ = FA
− � −i and

FIG. 2. Frequency dependence of the real part of the admittance
in the case of an S/N/S Josephson junction (scaled to its value in the
normal state). Here, c = cos χ0 and the values of c are incremented
by 0.1 starting with 0.0, at the bottom right, and ending with 1.0, at the
top left. Note that at small values of c the admittance is a monotonous
function, whereas for larger c a maximum emerges.

f̃ R
+ � −f̃ A

− � f̃ R so that 1 + g̃R
0+g̃A

0− + f̃ R
+ f̃ A

− � −2(f̃ R)2 =
−2�̃2/ζ̃ 2, and ζ̃ R

+ + ζ̃ A
− � (� + 2iγN)ε̄/ζ̃ with

ζ̃ =
√

ε̄2 − �̃2. Thus, we obtain

eR�I an
2 = E2

0 sin2(2χ0)

8T | cos χ0|
2γN + i�

(2γN)2 + �2
J (χ0), (41)

where the integral J (χ0) is

J (χ0) =
∫ ∞

1

dx

cosh2(xβ̃)x
√

x2 − 12

=
{
π/2, �sg 
 2T ,

2
√

2T/�sg exp(−�sg/T ), 2T 
 �sg 
 �,

(42)

where β̃ = �sg/2T and �sg ≡ E0| cos χ0|.
This means that the real part of the admittance reaches

a maximum at � = 0 and the magnitude of this maximum is
determined by the damping in the spectrum γN and temperature
T . At temperatures T below the subgap �sg the contribution
of the anomalous current is exponentially small. In Fig. 2
we depict the frequency dependence of the real part of the
admittance Y ′

� = Re{I�/V�} at different values of χ0.

IV. TRIPLET COUPLING

In this section, we consider a system with magnetic
superconductors Sm as reservoirs. As noted above, these
superconductors may be bulk superconductors S covered with
a thin layer of a weak ferromagnet F with an exchange field
h oriented in the x or y direction [see Fig. 1(b)]. The triplet
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Cooper pairs that penetrate into the ferromagnetic layers have
the total spin lying in the y−z or the x−z plane. The chosen
form of the matrix element of tunneling through the filters Fl
[see Eq. (2)], �̌, implies that only triplet Cooper pairs fully
polarized in the z direction can pass through the filters. Triplet
Cooper pairs penetrating into the N film from the left and from
the right differ not only in their spin polarization, but also in
their chiralities. The chiralities are not equal if the h vectors in
the left and right reservoirs have different orientations, h||ex

or h||ey . Again, we consider first a stationary case.

A. Stationary case

We take the element {11} of Eq. (4), that is, the equation for
the retarded Green’s function ĝR . First, we write this equation
for a stationary case in the Matsubara representation, i.e., we
set ε = iω and obtain

ω[X̂30,ĝω] = E0[ĝω,Ĝ], (43)

where Ĝ = Ĝ|| + Ĝ⊥ with Ĝ|| = Gωh(X̂30 + sX̂03),
s = (sR + sL)/2, and the condensate Green’s function

Ĝ⊥ = 2−1Fωh[(X̂⊥R + X̂⊥L) cos χ0

+ iX̂30(X̂⊥R − X̂⊥L) sin χ0]. (44)

The functions Gωh and Fωh are defined as Gωh = Gω+ and
Fωh = Fω− in Eqs. (11) and (12).

In the case of equal chiralities we have X̂⊥R = X̂⊥L. If
the chiralities of the left and right Sm are different, we have
X̂⊥R �= X̂⊥L, where the form of the matrices X̂⊥R,L is given by
Eq. (13).

First, we consider the case of identical chiralities, i.e.,
X̂⊥R = X̂⊥L, and polarizations (sR = sL).

1. Identical chiralities

In this case, the second term in Eq. (44) vanishes. If the
polarizations on the left and on the right are opposite, the
Josephson current is 0 [85]. A solution of Eq. (43) is searched
in the form

ĝω = a30X̂30 + a03X̂03 + b⊥X̂⊥R. (45)

From Eq. (43) we find

(ω + 2E0Gωh)b⊥ = E0Fωh(a30 + sa03) cos χ0. (46)

The normalization condition ĝω · ĝω = 1̂ yields

a2
30 + a2

03 + b2
⊥ = 1, (47)

2a30a03 + sb⊥ = 0. (48)

We find from Eqs. (46)–(48)

b⊥ = R√
1 + 2R2

(49)

and

a30 = 1 + sa03, (50)

sa03 = − R2

A[1 + A]
, (51)

FIG. 3. The energy dependence of the DOS ν(ε) = Re(gε) for
(a) Sm/N/Sm and (b) S/N/S Josephson junctions. One can see that the
correction to the DOS of the normal state is small. We set the value
of the cosine to c = 0.8. (a) The case of an Sm/N/Sm contact; the
curves correspond to h = 0.5� (red), h = 1.0� (blue), and h = 3.0�

(green). (b) The case of an Sm/N/Sm contact; we vary the parameter
E0 and the curves correspond to E0 = 0.8� (red), E0 = 1.0� (blue),
and E0 = 5.0� (green).

where A = √
1 + 2R2 and R = (ω + 2E0Gωh)−1

(E0Fωh) cos χ0.
The parameter sa03 determines a correction to the DOS

of the N region δν(ε) [δν(ε) = sa03(ω) at ω = −iε] due to
the proximity effect. In Fig. 3 we plot the DOS for E0/� = 1,
cos χ0 = 0.8, and different h values. We see that the correction
to the DOS of the normal metal [νN(ε) = 1] is small, and
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consequently, there is no gap in the spectrum [33,87]. For
comparison, we plot also the DOS of the considered singlet JJ
where there is a gap �sg in the excitation spectrum.

Expression (49) allows us to find the Josephson current IJ,

IJ = i
πT

eR�

∑
ω�0

{[ĝω,ĜωR]}30, (52)

where

ĜωR = Gωh(X̂30 + sX̂03) + Fωh(cos χ0 + iX̂30 sin χ0)X̂⊥R.

(53)

We find

IJ,a = IT,a sin(2χ0), (54)

IT,a = πT

2eR�
E0

∞∑
n�0

F 2
ωh√

(ω + 2E0Gωh)2 + 2(E0Fωh cos χ0)2
.

(55)

When the total spins of triplet Cooper pairs stemming from
the right (left) reservoirs are oriented in the same direction,
Eq. (55) determines the critical currents of a π Josephson
junction since Fωh is an imaginary quantity so that F 2

ωh < 0.
In Fig. 4 we plot the temperature and h dependence of the
critical current IT ,a . We see that the temperature dependence
of the critical current Ic(T ) is not monotonous for some values
of the exchange field h [62,63]. As a function of h, the absolute
value of the critical current |IT | increases with h from 0 and
reaches a maximum at a finite value of hm [Fig. 4(b)].

2. Different chiralities

In the case of different chiralities but equal polarizations
the solution is found in a similar way. We look for the matrix
ĝω in the form

ĝω = a30X̂30 + a03X̂03 + B⊥RX̂⊥R + B⊥LX̂⊥L. (56)

We find B⊥R = B⊥L ≡ B⊥ with

B⊥ = R(cos χ0 − s sin χ0)√
1 + 4R2(cos χ0 − s sin χ0)2

. (57)

The current is determined by Eq. (52) and we find

IJ,b = ITb cos(2χ0), (58)

IT,b = s
πT

2eR�

∞∑
n�0

× F 2
ωh√

(ω+ 2E0Gωh)2 + (E0Fωh)2(cos 2χ0 − s sin 2χ0)
.

(59)

In this case, the Josephson current appears even in the
absence of a phase difference (the so-called anomalous
current) and on the polarization of triplet Cooper pairs
[58,63,72,85,88–93]. One can easily prove that the Josephson
current is 0 if the triplet components injected from the right
and left Sm have opposite spin orientations (sR = −sL = ±1)
[85,91]. It is interesting that at a given phase difference

FIG. 4. The Josephson critical current IT,a for JJs with triplet
coupling as a function of (a) the temperature t = T/� and
(b) the exchange field h. The temperature dependence of IT,a is
not monotonous at some values of the exchange field h [62,63].
In plotting the temperature dependence in (a) we set E0 = 0.5�,
c = 0.5, and the curves correspond to h = 0.5� (red), h = 1.0�

(blue), and h = 3.0� (green). Note that the blue curve, corresponding
to h = 1.0�, is scaled by the factor of 0.3 and the unscaled curve
is shown in the inset. Plotting the h dependence we set E0 = 0.5�,
c = 0.5, and T = 0.1�.

2χ0, the direction of the Josephson current depends on the
spin polarization direction of triplet Cooper pairs, i.e., it is
determined by the sign of s. This situation is analogous to
the case of superconductors with a special type of spin-orbit
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interaction where the direction of electron motion depends on
the spin polarization [94,95].

As obtained in Ref. [91] (see also Ref. [93]), the qua-
siclassical approach leads to this correct result if the spin
selection is realized through filters. If the filters are replaced
by strong ferromagnets, the triplet Cooper pairs described in
the quasiclassical approximation penetrate into the N region
independently of the spin direction and the current IT is not 0
for either spin direction.

Consider now a linear response of the system to an applied
low ac voltage δV (t).

B. Nonstationary case

In the case of triplet coupling considered in this section
we are interested in the low-frequency range where only the
anomalous Green’s function ĝan are essential. We assume also
that the chiralities of the triplet components penetrating the N
region are identical, i.e., X̂⊥R = X̂⊥L = X̂11 − sX̂22.

The anomalous Green’s function ĝan obeys the linearized
Eq. (6),

ζR
+ ĝR

n ĝan − ĝanĝA
n ζA

−

= iE0
[
ĝR

0 Ĝan − ĜanĝA
0 − ĜR

+ĝan + ĝanĜA
−
]
, (60)

where the matrices ĝR(A)
n = ±X̂30 are the matrix Green’s

functions in the N region in the absence of the proximity effect,
ζR(A)(ε̄) = ε̄ ± iγN, that is, we take into account the damping
γN, ε± = ε̄ ± �/2, and � is the frequency of the phase
variation χ�(t) = χ� cos(�t). The matrices ĝ

R(A)
0 describe the

N (F) wire in the stationary state. The obtained results for the
N region remain valid also for the F region if the magnetization
vector M is oriented along the z axis.

The method of finding a solution for a nonstationary
equation used in Sec. III, is not applicable directly to the case
of triplet coupling. We employ here a perturbation method
regarding E0 as a small parameter and representing ĝan as a
series in the powers of E0, i.e., ĝan = ĝan

1 + ĝan
2 + ĝan

3 + · · ·.
The anomalous current I an

� is determined by the third-order
Green’s function ĝan

3 [see Eqs. (B19)–(B21) in Appendix B].
We calculate the “spectral current” j an

3 with the aid of ĝan
3 . It

has the form

j an
3 = −{

ĜR
R+ · ĝan

3⊥ − ĝan
3⊥ · ĜA

R−
}

30

= χ�

4

E3
0(cos χ0 sin χ0)2

ζR
0+ + ζA

0−

(
FR

T+ + FA
T−

)2
B(ε), (61)

where the functions F
R(A)
T± are defined in Eq. (B2) and the

function B in Eq. (B21). The anomalous part of the current is

I an
� = 1

16πeR�

∫
dε̄ n(ε̄)j an

3⊥. (62)

We consider limiting cases of large and small exchange
field h.

(a) h � �. In this case,

F
R(A)
T = �

2

[ 1

ζ (ε + h)
− 1

ζ (ε − h)

]R(A)
� ∓�ε

h2
. (63)

Therefore, we have FR
T+ + FA

T− � −��/h2. Calculating the
integral in Eq. (62) at {T ,E0} 
 �, we find for the admittance

Y an
⊥ (�)R� = − E0 sin2 2χ0

32h̄(−i� + γ )

(
E0

�

)2(
h̄�

�

)2(
�

h

)8

. (64)

We see that there is no singularity in the admittance at small �.
Since the condensate functions F

R/(A)
T are small in this case,

the anomalous contribution makes a small contribution to the
admittance in the normal state (1/2R�).

(b) h 
 �. In this case, the admittance is

Y (�)R� = −2E0 sin2 2χ0

h̄(−i� + γ )

(E0

�

)2(T

�

)2( h

�

)4
c1, (65)

where c1 = ∫ ∞
0 dx (x/ cosh x)2 ≈ 0.82.

A singularity exists in this case, but the amplitude of the
maximum of Y ′(�) at � → 0 is rather small, as the parameters
(h/�) and (E0/�) are small.

V. CONCLUSIONS

In this paper, we have analyzed the static and dynamic
properties of S/N/S and Sm/N(F)/Sm Josephson weak links.
In particular, the dc Josephson current IJ was calculated
as a function of the temperature and of the parameter
E0/�(0) = [ETh/�(0)][RL/R�], where ETh = D/(2L)2 is
the Thouless energy and RL/R� is the ratio of the resistance
RL of the N film (or wire) with dimension L to the interface
resistance (per unit area) R�. The factor RL/R� is assumed
to be small, but ETh/�(0) large, so that their product can be
arbitrary. The coupling in the S/N/S and Sm/N/Sm junctions is
realized through the singlet and fully polarized triplet Cooper
pairs, respectively. In this case, the term in the Hamiltonian
hstrX̂33, which describes the action of an exchange field hstr

on the spins of electrons, commutes with matrices in Eq. (13)
related to the triplet Cooper pairs. Therefore, for these Cooper
pairs (long-range component) it doe not matter whether the
bridge consists of a normal metal or of a ferromagnet.

The superconducting magnetic reservoirs Sm consist of
conventional BCS superconductors covered with a thin F layer
with exchange field h. Spin filters at Sm/N interfaces let pass
only Cooper pairs with the spin oriented along the z axis.
The Josephson current IJ is 0 if Cooper pairs penetrating
the N (or F) region from the left and right reservoirs have
opposite polarizations. The form of the dependence of IJ on
the phase difference 2χ0 is determined not only by the relative
polarization of triplet Cooper pairs, but also by the so-called
chiralities, that is, by the mutual directions of the vectors hR/L

in the right and left Sm reservoirs. In the case of identical
chiralities (hRhL/hRhL = 1), the Josephson current has the
standard form IJ = IT,a sin(2χ0), whereas in the case of differ-
ent chiralities (hRhL = 0), the phase difference dependence,
IJ = IT,b cos(2χ0), is rather unusual. This means that in the
second case the Josephson current flows in the absence of a
phase difference [58,63,72,85,89–91,93].

Interestingly, the current IT,b changes sign by inversion of
the polarization direction, i.e., the direction of the Josephson
current at a given phase difference (2χ0) is determined by
the polarization of the triplet Cooper pairs. This means that
one can change the direction of the Josephson current by
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reversing the polarization of the spin filters. This phenomenon,
to some extent, is similar to the spin-orbit interaction when the
direction of electron motion depends on its spin polarization
[94,95]. On the other hand, by changing the direction of the
hR,L vectors at χ0 = 0, one can switch the current IJ on or
off since the chirality is changed. Therefore, one can control
the charge current by switching the polarization of the weak
ferromagnet Fw.

We have also calculated the admittance Y (�) for both
singlet and triplet JJs in the presence of a dc Josephson current.
The dependence of Y (�) for the singlet JJs has been found at
all frequencies. At low temperatures T , the real part of the
admittance Y ′(�) starts to increase at � � �sg but shows
a sharp peak at low frequencies if T is not too low. The
anomalous behavior of Y ′(�) is related to the presence of
a gap and to the contribution of quasiparticles in the energy
interval �sg < ε < �. Such anomalous behavior of Y ′(�) was
shown to be absent in triplet JJs with fully polarized Cooper
pairs because there is no gap in these JJs. Thus, measuring
the real part of the admittance Y ′(�) at low frequencies, one
can extract useful information about the odd-frequency triplet
component in Sm/N/Sm Josephson weak links.

APPENDIX A: SINGLET JOSEPHSON JUNCTION

The Green’s functions in the right (left) reservoirs, ĜR,L, in
the stationary case read

Ĝ
R(A)
R,L = [G0X̂30 + iF0(cos χ0 ± iX̂30 sin χ0)]X̂R(A)

10 , (A1)

where 2χ0 is the phase difference between superconducting
reservoirs. The Green’s function in Eq. (23) is defined as
follows:

ĜR(A) = (1/2)(ĜR + ĜL)R(A). (A2)

With the help of Eq. (A1) this equation can be written as

ĜR(A) = [G0X̂30 + iF0 cos χ0X̂10]R(A). (A3)

The variations of the Green’s functions δĜ
R(A)
R,L due to the

ac phase χ� are

δĜ
R(A)
R,L = δ{exp(iχ�X̂30/2)[G0X̂30 + iF0(cos χ0

± iX̂30 sin χ0)X̂10]R(A) exp(−iχ�X̂30/2)} (A4)

or

δĜ
R(A)
R,L = iχ�

2
[(G0− − G0+)1̂ + i(F0+ + F0−)

× (X̂30 cos χ0 ± i1̂ sin χ0)X̂10]R(A), (A5)

so that

δĜR(A) = − iχ�

2
[(F0+ + F0−)R(A) sin χ0]X̂10. (A6)

The anomalous Green’s function ĝan is determined by
Eq. (30), where the functions ĝ

R(A)
0 can be easily obtained

from Eq. (17),

ĝ
R(A)
0 (ε) = [g̃(ε)X̂30 + if̃ (ε)X̂10]R(A), (A7)

where g̃ = ε̃/ζ̃ (ε̃), f̃ = �̃2(ε̃)/ζ̃ (ε̃), ζ̃ (ε̃) =
√

ε̃2 − �̃2(ε̃),
ε̃ = ε[1 + iE0/ζ (ε)], �̃(ε) = [iE0�/ζ (ε)] cos χ0 with

ζ (ε) = √
ε2 − �2. The anomalous Green’s function in

reservoirs Ĝan is defined according to

(T+ − T−)Ĝan = δĜ − δĜRT− + T+δĜA, (A8)

where T± ≡ tanh(ε±β), and the matrices δĜ and δĜR(A)

are variations of the Keldysh and retarded (advanced)
Green’s functions in the presence of the ac phase variation
χ� = (χ�)R = −(χ�)L. The matrix Ĝan

R,L(ε,ε′) can be repre-
sented in the form Ĝan

R,L(ε,ε′) = Ĝan
R,L2πδ(ε − ε′ − �). For

the function Ĝan
R,L we obtain

Ĝan
R,L = ± iχ�

2
{X̂30 · [(ĜR

− − ĜA
−)T− − ĜR

−T− + T+ĜA
−]

− [(ĜR
+ − ĜA

+)T+ − ĜR
+T− + T+ĜA

+] · X̂30}. (A9)

Here, the matrices Ĝ
R(A)
± ≡ Ĝ

R(A)
0 (ε±) are given in Eqs. (9)

and (A2). For the matrix Ĝan = (Ĝan
R + Ĝan

L )/2 we get from
Eq. (A9)

Ĝan = − iχ�

2
(FR

+ + FA
− )X̂10 sin χ0. (A10)

The functions FR
+ = FR

0 (ε±) and FR
0 (ε) are defined in Eq. (9).

Using Eqs. (A7) and (A10), we obtain for the anomalous
Green’s function ĝan

ĝan = χ�E0

2(ζ̃ R+ + ζ̃ A− )
(FR

+ + FA
− )

× [1 + g̃+g̃− + f̃+f̃−]X̂10 sin χ0. (A11)

Using Eqs. (A1), (A7), and (A11), we obtain expression (34)
for the current, with j an

1 and j an
2 defined in Eqs. (36) and (37).

APPENDIX B: TRIPLET JOSEPHSON JUNCTION.
PERTURBATIVE APPROACH

1. Stationary case

We consider the case of a low energy E0 (E0 
 �) and
obtain corrections δĝ

R(A)
0 to the stationary Green’s functions

ĝ
R(A)
0 ≡ ±X̂30 as well as the anomalous function ĝan in a

nonstationary case. Consider first the stationary case and
represent the matrix ĝ

R(A)
st in the form of an expansion in

powers of E0, i.e., ĝ
R(A)
st = [ĝ0 + δ1ĝ + δ2ĝ + · · · ]R(A).

Equation (43) can be written for ĝ
R(A)
st in the form [for

brevity we drop the indices R(A)]

ε[X̂30,ĝst] = iE0[ĝst,Ĝ0], (B1)

where the matrix Ĝ0 is

Ĝ0 = GTX̂30 + iFT(cos χ0 + i sin χ0X̂30)X̂⊥, (B2)

with GT = 2−1[G0(ε + h) + G0(ε − h)], FT = 2−1[F0(ε +
h) − F0(ε − h)], and the functions G

R(A)
0 and F

R(A)
0 are defined

in Eq. (9). The first-order correction obeys the equation

ε[X̂30,δ1ĝ] = iE0[ĝ0,Ĝ0], (B3)

and the solution is

δ1ĝ = −E0 cos χ0

(
FT

ζ0

)
X̂⊥, (B4)
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with ζ
R(A)
0 = ±(ε ± iγ ). The second-order correction δ2ĝ

satisfies the equation

ε[X̂30,δ2ĝ] = iE0[δ1ĝ,Ĝ0]. (B5)

The normalization conditione yields

ĝ0 · δ2ĝ + δ2ĝ · ĝ0 + (δ1ĝ)2 = 0. (B6)

The solution satisfying Eqs. (B5) and (B6) is represented
in the form

δ2ĝ = aX̂30 + bX̂⊥, (B7)

with

a = − (E0 cos χ0)2

2

(
F

ζ0ζ�

)2

, (B8)

b = iE2
0

(
F

ζ0

)2

cos χ0, (B9)

where ζ� = √
ε2 − �2.

2. Nonstationary case

Consider now the nonstationary case. In order to find the
anomalous Green’s function ĝan, we use Eqs. (B4)–(B7). This
function obeys Eq. (60), where the matrix Ĝan looks similar to
that provided in Eq. (A9),

Ĝan = − iχ�

2
[FR

+ + FA
− ]X̂⊥ sin χ0. (B10)

The first-order correction ĝan
1 obeys the equation

ε+X̂30 · ĝan
1 − ĝan

1 · X̂30ε− = iE0[ĝ0+ · Ĝan − Ĝan · ĝ0−],

(B11)

where ĝ0+ ≡ ĝR
0+ and ĝ0− ≡ ĝA

0−. Taking into account that
ĝ0+ = −ĝ0− = X̂30 and Eq. (A10), we obtain that

ĝan
1 = 0. (B12)

The second-order correction ĝan
2 satisfies the equation

ζ+ĝ0+ · ĝan
2 − ĝan

2 · ĝ0−ζ− = iE0[δ1ĝ+ · Ĝan − Ĝan · δ1ĝ−].

(B13)

We use the normalization condition

ĝ0+ · ĝan
2 + ĝan

2 · ĝ0− = 0, (B14)

so that the solution of Eq. (B13) is

ĝan
2 = gan

2 X̂30, (B15)

where gan
2 is

gan
2 = iE0

ζ+ + ζ−
Gan(δ1g+ − δ1g−). (B16)

We need to find the third-order correction ĝan
3 which obeys

the equations

ζ+ĝ0+ · ĝan
3 − ĝan

3 · ĝ0−ζ−

= iE0
[
δ2ĝ+ · Ĝan − Ĝan · δ2ĝ− + ĝan

2 · Ĝ0− − Ĝ0+ · ĝan
2

]
(B17)

ĝ0+ · ĝan
3 + ĝan

3 · ĝ0− + δ1ĝ+ · ĝan
2 + ĝan

2 · δ1ĝ− = 0. (B18)

The contribution to the current is given merely by the part
ĝan

3⊥ of ĝan
3 which is proportional to the matrix X̂⊥. We obtain

for ĝan
3⊥

ĝan
3⊥ = gan

3⊥X̂⊥, (B19)

where gan
3⊥ is given by

gan
3⊥ = χ�

4

E3
0(cos χ0)2 sin χ0

ζ+ + ζ−
(FT+ + FT−)B, (B20)

and the function B is

B =
(

FT+
ζ+

)2

− 2

(
FT+FT−
ζ+ζ−

)
−

(
FT−
ζ−

)2

. (B21)

In obtaining Eqs. (B19)–(B21) we used expressions for the
corrections δ1ĝ

R(A)
0 and δ2ĝ

R(A)
0 to the Green’s functions ĝR(A)

n
in the static case. Note that this formula is applicable both
for the triplet and for the singlet JJ, S/N/S, because the only
property we used is that the matrix

X̂⊥ =
{

X̂11 − sX̂22, triplet JJ,

X̂10, singlet JJ,
(B22)

anticommutes with the matrix X̂30.
Using Eqs. (B19)–(B21), we obtain Eqs. (61)–(62).

APPENDIX C: INVERSE PROXIMITY EFFECT

Consider, for simplicity, the contact between a singlet
superconductor S and a normal metal N shown in Fig. 1(a). The
Green’s functions in the superconductor ĜωS(z) in a stationary
case obeys the equation

− DS∂z(ĜωS · ∂zĜωS) + ω[X̂30,ĜωS] + �[X̂10,ĜωS] = 0.

(C1)

The boundary condition for ĜωS is

ĜωS · ∂zĜωS = �S[ĜωS,ĝωN], (C2)

where �S = (R�σS)−1. We integrate Eq. (C1) over the thick-
ness dS of the S film assuming that the function ĜωS(z) is
almost constant (later, we check this assumption) and taking
into account the boundary condition, Eq. (C2).

We obtain the equation

[M̂S,ĜωS] = 0, (C3)

which looks similar to Eq. (17). Here, M̂S = ω̃X̂30 + �X̂10,
ω̃ � ω + DS�S/dS. The quantity γ ≡ DS�S/dS is a damping
in the superconductor S which is induced due to inverse
proximity effect. This factor is small compared to � if the
condition DS�S/dS � 〈1 − R〉√�/τS 
 � is fulfilled, where
〈1 − R〉 is an average transmission coefficient of electron
passage through the S/N interface, which is supposed to be
small (see Ref. [11]), and R is the reflection coefficient. We
assumed that dS � ξS, where ξS is the correlation length in
the superconductor S and τS is the momentum relaxation time
there. However, even if the condition above is not fulfilled,
but the thickness dS is larger than ξS, the results obtained
remain valid with a reduced value of � at the S/N interface
[�(0) < �(dS)].
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APPENDIX D: FORMULA FOR AN ac CURRENT

We write Eq. (14) for the ac current δI (t) (for brevity we set �̌ = 1̌ so that there is no difference between matrix Ǧ and matrix
Ǧ) in the form

δI (t) = (16κR�e)−1
∫

dt1 {[δǧ(t,t1),Ǧ0(t1 − t)]K + [ǧ0(t − t1),δǦ(t1,t)]
K}30. (D1)

Consider the first term in Eq. (D1) (the second term can be recast in the same way):

δI1(t)(16κR�e) = {[δǧ(t,t1) · Ǧ0(t1 − t) − Ǧ0(t − t1) · δǧ(t1,t)]
K}30 (D2)

=
∫

dt1

∫
dε

∫
dε1

2π

∫
dε2

2π
{[δǧ(ε,ε1) · Ǧ0(ε2) exp[−iεt + iε1t1 − iε2(t1 − t)]

− Ǧ0(ε) · δǧ(ε1,ε2) exp[−iε(t − t1) − iε1t1 + iε2t]]K}30

=
∫

dε

∫
dε1

2π
{[δǧ(ε,ε1) · Ǧ0(ε1) − Ǧ0(ε) · δǧ(ε,ε1)]K}30 exp[−i(ε − ε1)t].

Taking into account that δǧ(ε,ε1) = 2πδ(ε − ε1 − �)δǧ, we obtain

δI (t) = (16κR�e)−1 exp[−i�t]I�, (D3)

where

I� = (16κR�e)−1
∫

dε̄{[δǧ · Ǧ0(ε−) − Ǧ0(ε+) · δǧ]K + [ǧ(ε+) · δǦ − δǦ · ǧ(ε−)]K}30. (D4)

The current I� is related to the admittance according to the standard expression I� = Y (�)V�.
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