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Charge and quadrupole fluctuations and gap anisotropy in BiS2-based superconductors
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Recent angle-resolved spectroscopy in BiS2-based superconductors has indicated that the superconducting gap
amplitude possesses remarkable anisotropy and/or a sign change on a small Fermi pocket around the X point. It
implies a possibility of an unconventional pairing state. Here we study the gap anisotropy in superconductivity
mediated by inherent charge and quadrupole fluctuations in an extended Hubbard model, which includes intersite
interaction between Bi and S atoms. The first-principles downfolded band structure is composed of Bi 6px/py

and S 3px/py orbitals on a BiS2 single layer. Evaluating the linearized gap equation, we find that the ferroic
charge and quadrupole fluctuation driven by the intersite interaction leads to a fully gapped dx2−y2 -wave pairing
state, in which the gap amplitude has sizable anisotropy on the Fermi surface.
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I. INTRODUCTION

Recently discovered BiS2-based layered superconductors,
Bi4O4S3 [1] and LnO1−xFxBiS2 (Ln = lanthanide) [2–6],
have attracted great interest as the related materials of iron-
based superconductors [7]. The highest transition temperature
Tc = 10.6 K is observed in LaO0.5F0.5BiS2 [2]. The parent
material LaOBiS2 is semiconducting and possesses a crystal
structure with alternating stacking of BiS2 twin layers and
LnO insulating blocking layers. Superconductivity emerges
via electron doping by substituting O with F. Owing to the
layered structure, the electronic structure is two dimensional,
and the BiS2 twin layers become conductive with electron
doping. The electronic band constructing the Fermi surface is
mainly composed of the Bi 6px and 6py orbitals. Therefore,
it is expected that these orbitals have a relatively large
spin-orbit coupling [8]. Moreover, due to the nonsymmor-
phic space group, the BiS2 twin layers locally break the
inversion symmetry at a Bi site. These features, shared with
superconductors with a zigzag chain, CrAs [9] and UCoGe
[10], are also fascinating in terms of noncentrosymmetric
superconductors [11].

Concerning the pairing state and mechanisms, two possi-
bilities, i.e., the conventional s wave mediated by the electron-
phonon interaction [12–14] and unconventional superconduc-
tivity driven by the purely electronic interactions [15–21], have
been theoretically investigated in the early stage of the study
[22]. Experimentally, there is no strong evidence of the electron
correlation effect. Measurements of penetration depth and
thermal conductivity indicate that NdO0.7F0.3BiS2 is a fully
gapped superconductor [23,24]. These observations imply
that the superconducting pairing mechanism in this system
is the conventional phononic mechanism. However, recent
measurements of field-angle-dependent Andreev reflection
spectroscopy [25] and muon spin relaxation [26] have reported
that the superconducting gap amplitude is highly anisotropic.
Also, angle-resolved photoemission spectroscopy (ARPES)
[27] has indicated the presence of remarkable anisotropy
and/or a possibility of sign change of the superconducting
gap on a small Fermi pocket around the X point. These

observations imply a possibility of an unconventional pairing
mechanism in this superconductor. In general, such anisotropic
gap structure needs an unconventional mechanism, for in-
stance, strongly k-dependent fluctuations, or two kinds of
competitive forces, such as electron-phonon attractive force
and electron repulsive force. In addition, the observation of
a “checkerboard-stripe” pattern in scanning tunneling mi-
croscopy/scanning tunneling spectroscopy (STM/STS) mea-
surements [28] is indicative of the importance of charge/orbital
fluctuations.

Here, to clarify this point, we study in detail a gap
anisotropy of unconventional superconductivity induced by
purely electronic repulsive forces. First of all, we perform the
first-principles calculations [29] of LaOBiS2 without the spin-
orbit coupling. Next, we construct a downfolded eight-band
tight-binding Hamiltonian by using the maximally localized
Wannier functions (MLWFs) [30,31]. The target band consists
of 6px/py orbitals of two Bi atoms and 3px/py orbitals of two
in-plane S atoms in the unit cell. Furthermore, by neglecting
small interlayer hopping integrals, the eight-orbital model is
reduced to be the four-orbital model in a single BiS2 layer.
We elucidate charge/orbital fluctuations in this four-orbital
model for electron doping corresponding to x = 0.3 within the
random phase approximation (RPA). As the purely electronic
interactions, in addition to the conventional Hubbard-type on-
site Coulomb interactions, we consider intersite interactions
between Bi and S atoms. We find that the intersite interactions
enhance a ferroic charge fluctuation; in particular, orbital-
dependent intersite interactions lead to a ferroic quadrupole
fluctuation. This may be consistent with the checkerboard
stripe observed in STM/STS [28]. Furthermore, solving the
superconducting gap equation, we find the possibility of a
fully gapped dx2−y2 -wave (B1g) pairing state mediated by such
charge and quadrupole fluctuations. The gap amplitude on the
Fermi surface has sizable anisotropy, which is similar to the
experimental observations. Finally, we realize that the intersite
interactions between Bi and S atoms are the key ingredients to
understand the superconductivity of this material, although it
may be difficult to understand it in terms of purely electronic
interactions.
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FIG. 1. (a) Band structure obtained by the first-principles cal-
culation of LaOBiS2 (green dots) and a downfolded eight-orbital
model (red line). (b) Band structure in our four-orbital model, and
(c) the Fermi surface colored by the weight of Bi 6px (red) and
6py (blue). Here, the electron filling corresponds to x = 0.3. (d)
Schematic diagram of intersite interactions between Bi and S. V ± V ′

correspond to intra-/interorbital interactions.

II. MODEL HAMILTONIAN AND RANDOM
PHASE APPROXIMATION

The BiS2-based superconductors have a common feature
of two-dimensional Fermi surface, which mainly comes from
the Bi 6p orbitals. In order to study the characteristic
low-energy effective model, we use a downfolded band
structure of LaO0.5F0.5BiS2 as in the previous study [16]. We
start with the first-principles calculations of LaO0.5F0.5BiS2

using the WIEN2K package [29] with the experimental lattice
parameters [2]. We take RKmax = 7 and 512 k-points grid, and
adopt the generalized-gradient-approximation Perdew-Burke-
Ernzerhof (GGA-PBE) exchange-correlation functional [32].
Then, we describe the target bands near the Fermi level
based on the MLWFs [30,31] of Bi 6px/py and S 3px/py

orbitals. Finally, we obtain an effective eight-orbital tight-
binding model considering the BiS2 twin layer in the unit
cell. It well reproduces the original band structure as shown
in Fig. 1(a). In the obtained transfer integrals, we find that
the interlayer hopping integrals are very small due to the
two-dimensional structure. Indeed, we can see in Fig. 1(b) that
the four-orbital model without the interlayer hoppings [33],
i.e., the BiS2 single-layer model, relatively well reproduces
the band structure near the Fermi level. Note that the Fermi
level has been shifted to the level corresponding to F doping
x = 0.3, not x = 0.5. Figure 1(c) depicts the corresponding
Fermi surface colored by the weight of Bi 6px/py orbitals,
where the x/y direction corresponds to a Bi-Bi direction,
rotating by 45 degree from X/Y in the previous study [16].

Here we consider as usual the Hubbard-type interactions
on the Bi site,

Hintra
I =

∑
i

[ ∑
ν

Uniν↑niν↓ +
∑
μ>ν

U ′niνniμ

+
∑
μ>ν

J Ŝiν · Ŝiμ +
∑
ν �=μ

J ′c†iν↑c
†
iν↓ciμ↓ciμ↑

]
, (1)

with

niν =
∑

σ

niνσ =
∑

σ

c
†
iνσ ciνσ ,

Ŝiν =
∑
αβ

c
†
iνασ̂αβciνβ,

where σ̂ is the Pauli matrices, and ciνσ is an annihilation
operator of a spin-σ electron on the ν orbital (px or py) at
the i site. For simplicity, we fix the ratio of each interaction to
the intraorbital repulsion U as follows: U ′ = 3U/4 for the
interorbital interaction, and J = J ′ = U/8 for the Hund’s
coupling J and the pair hopping J ′. Here, we neglect the
on-site interactions on the S atom. However, this does not
affect our results since the partial density of states at the Fermi
level is small. Next, considering a wide spread of MLWFs of
Bi 6p orbitals, we include the intersite interactions V ± V ′
between the Bi and S atoms as shown in Fig. 1(d),

Hinter
I =

∑
〈i,j〉

∑
ν �=μ

(V + V ′)niνnjν + (V − V ′)niνnjμ, (2)

where 〈i,j 〉 denotes a summation for the neighboring Bi and
S atoms. Although generally V ′ �= 0, hereafter, V ′ = 0 unless
otherwise noted.

Now, let us investigate what kinds of fluctuations grow in
the extended Hubbard model within the RPA. In the present
four-orbital model, the spin and charge (orbital) susceptibilities
are evaluated through the following 8 × 8 matrices [34]:

χ̂s(c)(q) = χ̂0(q)[1̂ − �̂s(c)χ̂0(q)]−1, (3)

where q = (q,iνn) with boson Matsubara frequencies νn,
and 1̂ is an identity matrix. Each element of the irreducible
susceptibility matrix χ̂0(q) is obtained from

χ
12,34
0 (q) = − T

N

∑
k

G13
0 (k + q)G42

0 (k), (4)

where labels 1–4 symbolically denote an atom (Bi/S) and its
orbital (px/py) in the unit cell, and G13

0 (k) is the one-particle
bare Green’s function between label 1 and label 3. Moreover,
the elements of the bare interaction matrix �̂s/c are given by

�12,34
s =

{
S�1�2,�3�4 (1 − 4 ∈ Bi)
0 (otherwise), (5)

−�12,34
c =

⎧⎪⎨
⎪⎩

C�1�2,�3�4 (1 − 4 ∈ Bi)
V�1�2,�3�4 (q) (1,2 ∈ Bi and 3,4 ∈ S)
V ∗

�1�2,�3�4
(q) (1,2 ∈ S and 3,4 ∈ Bi)

0 (otherwise),

(6)
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where �1 − �4 denotes an orbital px/py on a Bi/S atom. The
on-site Coulomb repulsions Ŝ/Ĉ are as usual given by

Sl1l2,l3l4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U (l1 = l2 = l3 = l4)
U ′ (l1 = l3 �= l2 = l4)
J (l1 = l2 �= l3 = l4)
J ′ (l1 = l4 �= l2 = l3)
0 (otherwise),

(7)

Cl1l2,l3l4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U (l1 = l2 = l3 = l4)
2J − U ′ (l1 = l3 �= l2 = l4)
2U ′ − J (l1 = l2 �= l3 = l4)
J ′ (l1 = l4 �= l2 = l3)
0 (otherwise).

(8)

The additional intersite interactions V̂ (q) are expressed by

Vll,mm =
{

2γ (q)(V + V ′) (l = m)
2γ (q)(V − V ′) (l �= m), (9)

where �(m) = px/py and γ (q) = ∑
j exp(iq · Rj ), and Rj

is a relative coordinate between the neighboring Bi and S
atoms [Rj = (0,0),(0, − 1),(−1,0),(−1, − 1)]. In the form
of Eq. (3), the Stoner factors in the spin (charge) sectors,
αs(c), are defined as the maximum eigenvalue of �̂s(c)χ̂0(q).
They are measures of the dominant spin (charge) fluctuations.
When they are equal to unity, the corresponding spin or charge
(orbital) ordering can be realized.

Finally, we investigate a possible spin-singlet supercon-
ductivity mediated by these dominant fluctuations. For this
purpose, we evaluate the linearized gap equation [34],

λφ56(k) = − T

N

∑
n

∑
q

∑
1234

V 51,26
s (q,0)G13

0 (k − q,iωn)

×φ34(k − q)G24
0 (q − k, − iωn), (10)

with the pairing interaction

V̂s(q) = 1

2
[Ĉ(q) + Ŝ] + 3

2
Ŝχ̂s(q)Ŝ

− 1

2
Ĉ(q)χ̂c(q)Ĉ(q). (11)

Here, φ12(k) is a superconducting gap function between
orbitals 1 and 2, and λ is the corresponding eigenvalue, which
is unity at T = Tc. With the unitary matrix diagonalizing
the four-orbital tight-binding term, φ12(k) is transformed into

(k) in the band representation. In the present numerical
calculations, we fix T = 0.001 eV, and used 256 × 256 k-
mesh grid and 1024 Matsubara frequencies.

III. CHARGE AND QUADRUPOLE FLUCTUATIONS
AND SUPERCONDUCTIVITY

A. Gap function

First, let us discuss the dominant fluctuations and possible
gap structure obtained within the RPA. We start with the
case of V = 0 and U = 2.2 eV. Figure 2(a) depicts the
dominant spin/charge fluctuations (χmax

s /χmax
c ) along the high-

symmetry line. As expected, the magnetic fluctuation χs is
enhanced, while the charge fluctuation χc is not enhanced.
The characteristic Q structure of χmax

s originates from the

FIG. 2. Charge/spin susceptibility and gap function for each of
the symmetries A1g , B1g , and A2g at (a)–(d) (U,V ) = (2.2,0.0) eV
and (e)–(h) (U,V ) = (0.0,0.475) eV.

Fermi surface nesting. From Eqs. (7) and (8), we calculate
possible gap structures in superconductivity mediated by such
spin fluctuations. Figures 2(b)–2(d) indicate A1g , B1g , and A2g

gap structures, respectively. The leading pairing state is a B1g

state in Fig. 2(c) and an A2g state in Fig. 2(d). Eigenvalue
λ = 1.31 of the former is larger than λ = 1.17 of the latter.
The sequence can be easily changed, depending on the electron
filling, as already reported in the previous study [15]. Thus,
these superconducting states are nearly degenerate.

Next, let us consider the case of (U,V ) = (0.0,0.475) eV.
We illustrate the dominant fluctuations in Fig. 2(e) and
possible gap structures in Figs. 2(f)–2(h). In this case, the
spin fluctuations are not enhanced. The dominant fluctuation
is a ferroic charge fluctuation. Since the enhanced charge
fluctuation favors an isotropic gap on the small Fermi pocket,
the fine structure observed in Figs. 2(b)–2(d) is completely or
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FIG. 3. (a) Stoner factor αC and eigenvalue λ of each pairing
symmetry as a function of V for several U . (b) U − V phase diagram.
The broken line corresponds to a phase transition line of λ = 1.

partly lifted, and then we obtain simple gap structures, i.e.,
the fully gapped s-wave A1g state in Fig. 2(f), the dx2−y2 -wave
B1g state in Fig. 2(g), and the gxy(x2−y2)-wave A2g state in
Fig. 2(h). Interestingly, due to the smallness of the Fermi
pocket, the dx2−y2 -wave B1g state is fully gapped, and the
gxy(x2−y2)-wave A2g state has dxy-type line nodes on the Fermi
surface. The leading pairing state is an s-wave A1g state with
λ = 1.15. However, with a small but finite U , the leading
pairing state becomes the fully gapped dx2−y2 -wave B1g state.
The eigenvalue λ = 0.94 for the B1g state is slightly larger
than λ = 0.82 for the A2g state due to the presence of small
repulsive interactions developing around Q = (π/2,0) and the
equivalent Q vectors (not shown).

B. Phase diagram

In Fig. 3(a), we show eigenvalues as a function of V

for several U along with αc, which is a measure of the
Stoner factor for the charge susceptibility χc. We can see
that when αc is enhanced as increasing V , eigenvalues λ

are also enhanced and greater than 1 in a close proximity
to the phase boundary of the charge density wave (CDW)
at αc = 1. The leading pairing state is an s-wave A1g state
at U = 0.0, but a dx2−y2 -wave B1g state for finite U . As U

increases, the difference between A1g and B1g shrinks, and
then these are nearly degenerate at U = 1.6. Since these fully
gapped states have almost the same gap structure on the Fermi
surface except for the sign, it is reasonable that these are nearly
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FIG. 4. (a) Superconducting gap |
(θ )| on the Fermi surface.
The angle θ is indicated in the right bottom inset. (b) Development
of gap anisotropy in the fully gapped A1g and B1g states at U = 0.
(c) Anisotropy of the Fermi velocity |vF (θ )|.

degenerate. For U > 1.6, the dominant fluctuation changes
from the ferroic charge fluctuation into the incommensurate
spin fluctuation. The leading pairing state is a nodal dx2−y2

wave state in Fig. 2(c). These are summarized in the phase
diagram of Fig. 3(b). We conclude that the fully gapped
superconductivity driven by the ferroic charge fluctuation
appears near the CDW phase boundary, while the magnetically
driven nodal dx2−y2 -wave state appears near the spin density
wave (SDW) phase boundary.

C. Gap anisotropy

Recent experimental observations have implied the strong
gap anisotropy in this material [27]. Here, let us dissect
the gap anisotropy on the Fermi surface for the obtained
gap structures. Figure 4(a) depicts the angle dependence of
gap amplitude |
(θ )| on the Fermi surface for possible gap
structures. Roughly speaking, the gap amplitude is enhanced
at around θ ∼ 30◦, independent of the gap symmetry. This also
corresponds to bright spots at the corner of the Fermi pocket in
the gap structure of Fig. 2. Such features are related to strong
suppression of the Fermi velocity. Now, let us move to the
details of each gap structure.

The A2g state in Fig. 2(h), which does not appear in the
phase diagram of Fig. 3(b), has dxy-like symmetry-protected
nodes. The fully gapped A1g/B1g state in Fig. 2(f)/2(g) also
has dxy-like anisotropy, although the gap at θ = 0◦ and ±90◦
is a finite gap minima, not a gap zero. As indicated in
Fig. 4(b), such anisotropy develops in the close proximity
to a CDW phase boundary. The nodal B1g in Fig. 2(c) has fine
structure, where the nodal positions are located at θ ∼ ±15◦
and ±50◦. Experimentally, the recent ARPES data shows
a gap node/minimum at θ = 0, but its data is scattered at
around θ = 90. Then, at least, the behavior at around θ = 0
is consistent with the dxy-like gap anisotropy. However, the
symmetry-protected nodes in the A2g state, which cannot be
easily lifted, are incompatible with the fully gapped nature
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(0.0,0.475,1.22) eV. Schematic charge distribution of the (c) ferroic
charge ordering and (d) quadrupole ordering.

reported by some experiments [23,24]. Thus, the fully gapped
A1g or B1g state is a possible gap structure in this system.
In particular, the latter fully gapped dx2−y2 -wave B1g state
is stable in the wide range of the phase diagram. Also, the
anisotropy on the Fermi surface is partially consistent with
the recent ARPES data. This state is mediated by the ferroic
charge fluctuation, which is driven by the intersite interactions
between the Bi and S atom.

D. Charge and quadrupole ordering

Finally, let us discuss possible charge and quadrupole
ordering. As mentioned above, the intersite interaction V

between Bi and S atoms leads to the ferroic charge fluctuation.

As indicated in Fig. 5(a), its net component is the charge
(electric monopole) fluctuation, defined by χc = ∑

l χllll +∑
l �=m χllmm. In general, the intersite interactions are orbital

dependent, that is to say, V ′ �= 0. As indicated in Fig. 5(b),
with increasing the difference V ′, the Q22-type quadrupole
fluctuation, χQ = ∑

l χllll − ∑
l �=m χllmm, is enhanced, and

then the fully gapped B1g state is more stable (not shown).
The corresponding order is a stripe-type orbital ordering, as
illustrated in Fig. 5(d). This orbital ordering may correspond
to checkerboard-stripe charge order, observed by STM/STS
[28]. Note that V − V ′ < 0 in this region. It implies that the
intersite attractive force may be important in the emergence of
checkerboard-stripe charge order. Therefore, it may be difficult
to understand it in terms of purely electronic interactions.

IV. CONCLUSION

In the present study, we studied the superconducting gap
anisotropy in the BiS2-based superconductors. We constructed
the first-principles downfolded band structure on the basis of
Bi 6px/py and S 3px/py orbitals on a BiS2 single layer. In
the extended Hubbard model with the intersite interactions
between the Bi and S atoms, we found that the ferroic charge
and quadrupole fluctuations can be enhanced. This may be
related to the observation of checkerboard-stripe charge order.
Such charge and quadrupole fluctuations lead to the fully
gapped dx2−y2 -wave pairing state. The obtained gap amplitude
has dxy-like anisotropy on a Fermi surface, although the
gap at θ = 0◦ and ±90◦ is a finite gap minima, not a gap
zero. Such anisotropy is partially consistent with the recent
experimental observations. These results indicate that the
intersite interactions are the key ingredients to understand the
superconductivity in this system.
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