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Mapping degenerate vortex states in a kagome lattice of elongated antidots via scanning
Hall probe microscopy
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We investigate the degeneracy of the superconducting vortex matter ground state by directly visualizing the

vortex configurations in a kagome lattice of elongated antidots via scanning Hall probe microscopy. The observed
vortex patterns, at specific applied magnetic fields, are in good agreement with the configurations obtained
using time-dependent Ginzburg-Landau simulations. Both results indicate that the long-range interaction in this
nanostructured superconductor is unable to lift the degeneracy between different vortex states and the pattern

formation is mainly ruled by the nearest-neighbor interaction. This simplification makes it possible to identify a
set of simple rules characterizing the vortex configurations. We demonstrate that these rules can explain both the
observed vortex distributions and the magnetic-field-dependent degree of degeneracy.
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I. INTRODUCTION

The physics of quantized units of flux in a superconductor
interacting with a pinning landscape continues to attract
considerable academic interest due to the implications largely
transcending the domain of superconductivity, such as Bose
condensates [1,2], colloids [3,4], semiconductors [5,6], Mott
insulator transition [7], vortex ice, spin ice, and charge ice
[8—12], skyrmions [13,14], cold-atom trapping [15], etc. The
appeal and advantage of superconducting systems is that the
size and number of the particles can be tuned by changing the
temperature and the magnetic field, respectively. In addition,
the flexibility in the design and fabrication of artificial vortex
traps in superconducting films has stimulated, during the past
decade, an in-depth investigation of the interplay between
pinning landscape and vortex pattern symmetry [16], influence
of the pinning center’s size and period [17-20], vortex
rectification on a kagome-like array [21], competition between
ordered and disordered defects [22-24], or pinning energy
dispersion [25,26], to name a few.

It has been recognized that vortex traps arranged in
complex units cells, such as honeycomb or kagome patterns
[27,28], exhibit some properties unique to them. Indeed, (i)
molecular dynamics simulations have revealed cooperative
ring elementary excitations in a kagome periodic array of
pinning sites when the temperature is varied slowly [29], (ii)
commensurate pinning enhancement takes place at magnetic
fields H/H; = n/2 (honeycomb) and H/H, = n/3 (kagome)
rather than at the standard fields H/H, = n [30], (iii) stronger
enhancement of the depinning current is observed compared

“xuecun@nwpu.edu.cn
fjunyi.ge @fys kuleuven.be
tjoris.vandevondel @kuleuven.be

2469-9950/2017/96(2)/024510(6)

024510-1

to a triangular lattice [30], (iv) spontaneous transverse voltage
and jamming effect in a honeycomb array are generated by
the dimerization of interstitial vortices [31], and (v) vortex
interaction enhanced saturation number and caging effect can
be observed [32]. Although substantial theoretical effort has
been undertaken to understand the physics of these systems, the
experimental investigations remain scarce. The few performed
experiments relied on electrical transport measurements and,
therefore, represent an indirect assessment of the actual
dynamics of the vortex matter [27,32]. In recent years, a lot of
effort has been devoted to develop techniques capable of visu-
alizing the vortex distributions with single vortex resolution.
These techniques allow one to validate the aforementioned
theoretical predictions in a direct manner. Moreover, they open
the possibility to determine the configurational entropy, which
relies on counting the available states. This direct imaging of
configurational entropy has successfully been performed in
nanostructured magnetic systems [33,34]. Bearing in mind the
tunability of a vortex system, this opens a new route to explore
degeneracy and frustration in nanostructured superconductors.

In this paper we explore the vortex distribution using scan-
ning Hall probe microscopy (SHPM) in a thin superconducting
film with an artificially introduced kagome lattice consisting of
elongated antidots [see Fig. 1(a)]. By performing consecutive
field-cooling (FC) experiments we can visualize the resulting
vortex distributions at different fractional matching fields.
The main observation is that each FC experiment at a fixed
magnetic-field value (between 0 and H,) results in a different
vortex configuration. These experiments indicate that a large
set of vortex configurations exists with nearly the same energy.
The resulting vortex patterns can be explained by the particular
design of the elongated antidot structure and its impact on
the different vortex-vortex interactions. First, the short-range
interaction between vortices located in two neighbor antidots is
enhanced due to the elongated shape of the antidots. This gives
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FIG. 1. (a) Scanning electron micrograph and (b) atomic force
microscopy image of the investigated Pb film with an artificial kagome
lattice of elongated antidots. Experimentally obtained out-of-plane
component of the magnetic-field B, and simulated current lines for
(c) an interstitial vortex located in area S; and (d) a pinned vortex in
area S,. The locations of S and S, are indicated in panel (a).

rise to very strong local constraints. In addition, the interaction
between vortices separated by exactly one antidot (long-range
interaction) is weaker and unable to differentiate between the
various vortex distributions. As such, the long-range order is
lifted, and the vortex patterns are determined by the specific
local constraints. Moreover, the obtained degeneracy can
easily be tuned by varying the applied magnetic field, which
makes it an ideal toy model to explore degeneracy in physical
systems.

II. SAMPLE AND EXPERIMENTS

Figures 1(a) and 1(b) show the kagome lattice of elongated
antidots in an 85-nm-thick Pb film, fabricated using con-
ventional electron-beam lithography, on a Si/SiO, substrate.
The sample stage is cooled to 77 K using liquid nitrogen to
ensure a homogeneous growth. A Ge layer with a thickness of
10 nm also is deposited on top of the Pb layer to protect
it from oxidation. The source materials are 99.999%-pure
Pb and 99.9999%-pure Ge. The external magnetic field is
applied perpendicularly to the sample surface, and the vortex
configurations are visualized directly using a-low temperature
SHPM (with a magnetic-field resolution of 107> T and a
temperature stability better than 1 mK) [35,36]. All the SHPM
images of vortex patterns in our measurements are obtained
by lifting the Hall cross about 500—800 nm above the sample
surface at 7 = 4.25 K.

In analogy to other well-studied antidot systems [37,38], the
elongated antidots act as pinning centers to trap vortices. Since,
for a broad parameter range, the attractive vortex-pinning force
is much stronger than the repulsive vortex-vortex interaction,
the vortices prefer to occupy vacant antidots rather than
forming an Abrikosov lattice. Figures 1(c) and 1(d) show the
measured magnetic-field profiles and the simulated current
lines for an interstitial and trapped vortex, respectively. These
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results clearly indicate that the pinned vortex is deformed
strongly. As a result, the interaction between vortices will
depend on their exact orientation. The short-range interaction
between vortices located at neighbor antidots is very strong and
will impose strict magnetic-field-dependent constraints on the
vortex lattice. For example, the number of vortices observed in
each unit cell perfectly corresponds to the applied field value
at H = H,/3, 2H,/3, and H;.

At fields below Hj, the long-range interaction between vor-
tices separated by an empty antidot also plays an important role
in determining the energy of the vortex lattice. Previous SHPM
experiments on nanostructured Pb superconductors in this field
range show that the observed vortex patterns are the ones
maximizing the intervortex distance [39,40]. In the present
case, the anisotropy of the pinned vortices and the anisotropy
of the superconducting film due to the elongated antidots in
the introduced kagome lattice result in a complex vortex-vortex
interaction. Its impact on the final vortex distribution, defined
by the lowest-energy state, is difficult to predict. Therefore,
time-dependent Ginzburg-Landau (TDGL) simulations are
needed in order to gain insight and resolve the important factors
determining the experimentally observed vortex patterns.

III. THEORETICAL FORMALISM

The simulations are derived based on the TDGL equations,
which provide a very useful tool for modeling both dynamic
and static superconducting properties. The normalized TDGL
equations can be written as [41-43]

Wy = (V—iA*y + vy — |y|*y, (1
0 A=J, —k’V xV xA, 2)
J; = Im(y* Vi) — A|W]?, A3)

where ¥, A, and J; are order parameter, vector potential, and
supercurrent density, respectively. The length is made dimen-
sionless in units of coherence length £, time in £2/ D where D
is the diffusion coefficient, order parameter in Yo = +/]a[/b,
and vector potential in v/2x H.& where H, = \/4wa?/b.

The magnetic field can be derived by using the Biot-Savart
law,

/ Jo(r) x (r —r')

e 4)

where r = (x,y, h), ¥ = (x’,¥’,0) and h is the distance be-
tween the Hall cross and the sample surface. The Gibbs
free-energy density of the system in units of H?V /87 can
be calculated as [42]

G =G+ Gy =V~ f 2A — AQJ, — [l (5)
1%

where Ay is the vector potential of the uniform magnetic field.
We consider an infinite sample, and periodic boundary con-
ditions are applied in the simulations. Because the thickness
of the sample is sufficiently small, the variations of the order
parameter and currents along the thickness can be neglected.
To reproduce the stable vortex patterns observed in the field-
cooling experiments, we start the simulations from different
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FIG. 2. (a) and (b) Two SHPM images (upper panels) and TDGL simulations (lower panels) of the vortex states in a kagome antibar lattice
at H, = H,;/3 and 2H, /3, respectively. (c) Free energy of the vortex state at H, = 0 (red square), the two vortex lattice configurations shown
in panel (a) at H, /3 (red-white triangle and blue pentagon), the three vortex lattice configurations at H; /2 shown in Fig. 4(b) (white diamond,
blue circle, and green triangle), the two possible states shown in panel (b) at 2H, /3 (red pentagram and white-blue circle) and, finally, the
vortex state shown in Fig. 5(b) at H; (red hexagon). (d) The unit cells (red) and conjugated unit cells (blue) in the kagome lattice. () Schematic
of possible vortex arrangements in a unit cell at H, = H,/3, 2H,/3, and H, /2.

randomly generated initial conditions [9]. Then we can obtain
many vortex ground and metastable states. We find that the
free energy of some vortex states is nearly the same, and these
vortex configurations agree well with the experimental vortex
patterns observed at specific applied magnetic fields.

IV. RESULTS AND DISCUSSIONS

In order to show the presence of degeneracy and obtain the
constraints imposed by this particular nanopatterned system,
we explore the vortex distributions at different fractional
matching fields. Figures 2(a) and 2(b) show SHPM images and
TDGL simulations of typical vortex states observed at H, =
H,/3 and 2H, /3, respectively. Good agreement is observed
between the simulated results (lower panels) and the experi-
mentally obtained data (upper panels). Moreover, the square
versus triangular packing of the vortices [shown in Fig. 2(a)]
results in a distinct average vortex-vortex distance between
both states. However, the observation of both vortex states
indicates that the difference between the vortex interactions in
the two states is too small to resolve. One could possibly argue
that the elongated antidots in between vortices in the kagome
lattice lower the free-energy difference between the square and
the triangular vortex states. This can be clarified by removing
the vacant elongated antidots in between vortices. Indeed,
the TDGL simulations indicate that the elongated antidots
in the kagome lattice effectively decrease the difference
induced by the long-range interactions between the square
and the triangular vortex patterns. At 2H, /3 the interpretation
is analogous. The interactions between the nearest-neighbor
vortices define strong local constraints, whereas very small
energy differences (about ten thousandth in units of H>V /87)
exist between the vortex states arising from the interactions

between vortices located at next-nearest-neighbor antidots. In
addition, we have calculated the free energy as a function
of the magnetic field, based on the TDGL simulations [see
Fig. 2(c)]. The free energy for different vortex distributions,
marked by different symbols, is indeed nearly the same. These
results show that the long-range interaction is unable to resolve
between different possible distributions. The free energy of
vortex states at H;/2 is situated at the midpoint between the
vortex states at H,/3 and 2H,; /3 since the energy caused by
vortex-vortex interactions increases linearly with an external
applied field.

By analyzing the obtained experimental and simulated
vortex patterns, we can identify common topological char-
acteristics regarding the resulting vortex configurations. At
H, = H,/3, exactly one-third of the antidots is filled with
vortices. By assuring homogeneity of the equilibrium state,
this constraint persists on a local scale, which results in
the occupation of one antidot at each vertex of the system.
This constraint is a natural consequence of a FC experiment
since vortices are formed starting from a homogeneous
field distribution. At H, = 2H, /3 exactly the complementary
conditions are fulfilled: (i) Two-thirds of the elongated antidots
are filled, and (ii) two antidots are occupied in each unit cell
of the system. As seen in Fig. 2(b), these constraints result in
the formation of parallel vortex strings at 2H, /3, which look
like the domain walls in the superconductor.

The topological characteristics of the different degenerate
vortex patterns can be deduced from simple filling rules
imposed onto the occupation of the kagome lattice unit cell.
This approach will allow us to calculate the degeneracy
as a function of the applied magnetic field. As shown in
Fig. 2(d), the kagome lattice can be divided into unit cells
and conjugated unit cells, which are labeled as C; ; and a, js
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respectively. The matrices C = [C; ;] and C= [El"j] define
the number of vortices in each unit cell and conjugated unit
cell. The aforementioned constraints can now be written down
explicitly for both magnetic-field values. In order to match
the applied magnetic field, Zi,j{C,-,j} = N/3 at H;/3 and
> j{Ci;j} =2N/3 for 2H,/3 with N as the amount of unit
cells in the sample. As a result of the second (local) constraint,
C;i j has to be 1 at H;/3, one-occupied/two-empty antidots,
and 2 at 2H; /3, two-occupied/one-empty antidot, which are
reminiscent of ice rules [8—10]. Figure 2(e) schematically
presents three equivalent vortex arrangements in the cases of
C,',j =1 andC,»,j =2.

If the adjacent unit cells are noninteracting, the vortex
distribution is highly degenerate, and the amount of degener-
acy for both field values is 3". In the case of a long-range
interaction the translational symmetry will be preserved,
and only three possible distributions exist. As such, no real
degeneracy (i.e., scaling with N) can be observed. However,
in the case of a short-range interaction the constraints are
weakened, and degeneracy is not fully lifted in this system.
The nearest-neighbor interaction adds an additional constraint
to the conjugated unit cells. More specifically, each conjugated
unit cell must contain one vortex at H;/3, i.e., a, j=1and
two vortices at 2H,/3, i.e., 61"]‘ = 2. Although it reduces the
amount of degeneracy, this constraint is much weaker than
that imposed by the long-range interaction. Based on our
numerical calculations the amount of degenerate vortex states
is Z < 1.644" (see the Supplemental Material [44]).

Moreover, with the aforementioned rules we can also con-
struct a possible vortex distribution on a larger scale. The mid-
dle panel of Fig. 3 shows a design of vortex distribution in the
large area in which the red (blue) bars represent the vortex pat-
ternat H, = H,/3 (H, = 2H;/3). Please note that the reverse
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FIG. 4. (a) Experimental SHPM images of three different degen-
erate vortex states in a kagome lattice of elongated antidots at an
applied field of H, = H,/2. (b) Three simulated vortex states at the
same magnetic-field value.

vortex patterns at H; /3 turn out to be vortex states at 2 H; /3 and
vice versa. By comparing this pattern with a variety of SHPM
images at both magnetic-field values [upper and bottom panels
of Fig. 2(e)] and keeping in mind the rotational symmetry of
the system, we indeed can confirm that all obtained vortex
distributions are reproduced by these simple rules.

As mentioned above, the number of particles can simply
be tuned by merely increasing or decreasing the external
magnetic field. Using this advantage, we also explore the
vortex state degeneracy at H;/2. As shown in Fig. 4(a),
we observe completely different vortex states at H, = H; /2.
To understand better the apparent randomness of the vortex
distribution, we also perform numerical TDGL simulations

1PV ENENENANENENENENENELNENS

FIG. 3. Schematic of a possible degenerate vortex state based on the degeneracy rules of the system at H, = H,/3 and 2H, /3 (middle
panel). The red bars represent the vortex configuration at H; /3, and the blue bars represent the vortex state at 2H; /3. Experimental vortex
states at H; /3 (left panels A1-A4) and 2H, /3 (right panels B1-B4), which exactly correspond to the local vortex patterns (the red bars with
the yellow lines in the four green boxes for the vortex configurations in the left panels and the blue bars with the white lines in the four black
boxes for the vortex configurations in right panels) in the middle panel by rotating the boxes by 30°, 90°, 150°, 210°, 270°, or 330°.
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for the vortex states at the corresponding field of H, = H, /2.
Figure 4(b) shows the obtained results, which clearly resemble
the vortex patterns observed by SHPM. Moreover, the TDGL
simulations indicate that the free energy of these different
vortex states is the same [see Fig. 2(c)].

Let us now identify the topological characteristics of the
different degenerate vortex patterns in Figs. 4(a) and 4(b). First,
since the applied magnetic field is H;/2 and a FC procedure
was used, only half of the antidots are occupied with vortices
and the remaining half are empty. Second, the tendency of
the system to keep a homogeneous field distribution results
in the absence of completely empty unit cells and completely
filled unit cells. As aresult C; ; has to be 1, one-occupied/two-
empty antidots, or 2, two-occupied/one-empty antidot, which
are reminiscent of ice rules. The obtained patterns are a
combination of the six building blocks [presented in Fig. 2(e)]
used to construct the vortex distribution at H, = H;/3 and
H, =2H,/3. In this case, we easily can pinpoint the initial
constraints 1< C;; <2 and 3, {C;; — 1} =N/2. It is
interesting to note that the reverse patterns of vortex states
at H;/2 also are degenerate vortex states. For instance, as
shown in Fig. 4(b), the vacant antibars (white dashed bars) also
are degenerate vortex states at H; /2. If no interaction exists
between these unit cells, the aforementioned constraints result

in an amount of degeneracy equal to Z = K;ﬁ% Based on

Stirling’s approximation, Z = ,/ %61" (see the Supplemental

Material [44]). However, also at this magnetic-field value two
additional constraints appear due to the interplay between
neighbor unit cells. These constraints can be well identified
using the conjugated unit cells: (i) Similar to the regular unit
cells, there must be one or two vortices in every conjugated unit
cell,ie.,1 < Ei, j < 2.(ii) The number of conjugated unit cells
with one vortex must be N /2, i.e., Zi,j{a',j —1}=N/2.

Finally, a general constraint was observed, combining both
the regular and conjugated unit cells in order to avoid the
accumulation of one-vortex unit cells or two-vortex unit cells
in a larger area (overall uniformity of the magnetic-field
profile), and every unit cell and its three conjugated unit
cells (also every conjugated unit cell and its three unit
cells) are neither all two-vortex unit cells nor all one-vortex
unit cells based on the experimental and simulated vortex
patterns (see Fig. 4),i.e.,5 < C; j + a,lqj + aﬁj,l + a-'j <
7,5< a-,j +Cij+Cijy1+Ciy1j < 7. Because of these
constraints, the degeneracy is reduced. For example, the degen-
eracy in 16 unit cellsis Z < 6.17 x 10° (see the Supplemental
Material [44]), which is much less than possible vortex states
with 16 unit cells (5.54 x 10'!) in the noninteracting case.
However, compared to H, = H;/3 or 2H, /3 the degeneracy
is increased strongly at H, = H, /2.

It has already been well established that not all nanoscale
ferromagnetic islands comply with ice rules in the spin ice
system. In the vortex system, additional vortices (vortex
defects) can be introduced by detuning the external field.
Figure 5(a) shows the experimental SHPM vortex pattern
at H, = 0.792 G (0.741H,). The simulated result, shown in
Fig. 5(c), is in very good agreement with the experimental
result. Some of the vortex strings intersect at some vertices
where three neighbor antibars are all occupied by vortices.
Such defects will have an impact on the degeneracy of the

PHYSICAL REVIEW B 96, 024510 (2017)

(a)m (b)E

7, \‘ (d) 'l.\'l.\‘
/,

\I\
\l\
..,

I \

C

N\
'I\

l‘\

)
(7 \
\ - l \’
L\ l \) I‘

FIG. 5. (a) and (b) Experimental observation of vortex states in a
kagome antibar lattice at H, = 0.792 G (between 2H, /3 and H;) and
H, = H; via SHPM. Simulated vortex distributions at H, = 0.801 G
and at H, = H,; are shown in panels (c) and (d), respectively.

total system. With increasing field, the amount of the defects
increases, and the superconducting stripes are divided into
more isolated areas. The increasing number of defects causes
areduction of degeneracy of the vortex states. Finally, as shown
in Fig. 5(b), every antibar traps exactly one vortex to form a
large vortex net at H;. The vortex state at H; is unique, and
degeneracy is completely suppressed.

V. CONCLUSION

To summarize, we investigate vortex matter in a supercon-
ducting film with a kagome lattice of elongated antidots. This
particular structure enhances the first-neighbor vortex-vortex
interaction, whereas the long-range vortex-vortex interaction
is unable to lift the degeneracy between different possible
distributions. As a result we observe many distinct vortex states
and alarge configuration entropy at several fractional matching
fields. Based on the experimental data and TDGL simulations,
we identified the rules characterizing the vortex configurations
at H,/3, H;/2, and 2H, /3, respectively. In addition, vortex
defects lead to a reduction of the degeneracy. The elongated
antidot system in the form of a kagome antibar lattice provides
new possibilities for studying vortex degeneracy using scan-
ning Hall probe microscopy, and it demonstrates the potential
of similar vortex systems as a highly tunable playground to
explore the interplay between frustration and degeneracy.
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