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Excess of topological defects induced by confinement in vortex nanocrystals
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We directly image individual vortex positions in nanocrystals in order to unveil the structural property that
contributes to the depletion of the entropy jump entailed at the first-order transition. On reducing the nanocrystal
size, the density of topological defects increases near the edges over a characteristic length. Within this “healing-
length” distance from the sample edge, vortex rows tend to bend, while towards the center of the sample, the
positional order of the vortex structure is what is expected for the Bragg-glass phase. This suggests that the
healing length may be a key quantity to model confinement effects in the first-order transition of extremely
layered vortex nanocrystals.
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I. INTRODUCTION

The growing demand of miniaturization in superconduct-
ing devices applied to the detection of different types of
radiation [1–5] and magnetic signals [6–8] has triggered the
study of thermodynamic and transport properties of high-Tc

superconducting materials at the micro- and nanoscale. Since
many of these devices operate in the mixed state, understanding
the change in thermodynamic and structural properties of
vortex matter when reducing the number of vortices down to
the nanoscale is crucial for predicting their working range. For
instance, transition-edge superconducting devices are based
on the detection of a sudden increase of dissipation due to
particular events when continuously measuring voltage with a
low applied current. If confinement changes the critical current
up to which vortices do not dissipate, then the detection edge
needs to be readjusted.

From a fundamental point of view, vortex matter in type-II
superconductivity is a case study for understanding how the
physical properties and phase diagrams change when going
from macroscopic to nanocrystalline condensed matter. In the
case of hard condensed matter, nanocrystals are made up of,
at most, a few-thousand particles (atoms) [9,10]; similarly,
soft-condensed-matter “vortex nanocrystals” can be nucleated
in micron-sized samples with the same amount of vortices
[11–18]. Typically, hard-condensed-matter nanocrystals
present a decrease of transition temperatures, entropy, and
enthalpy jumps in melting and solid-solid first-order phase
transitions [9,10,19,20]. This is the consequence of a depletion
of the total binding energy since the particle’s surface-to-
volume ratio increases on decreasing the system size. In the
case of nanocrystalline vortex matter, confinement effects also
affect the transition lines and structural properties [21,22],
although different degrees of freedom and interactions are at
play. Particularly, in the case of vortex nanocrystals nucleated
in extremely layered high-temperature superconductors, the
phase diagram is finely tuned by many energy scales [23]. The
interplay among intervortex interactions, thermal fluctuations,
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pinning, and extremely anisotropic magnetic properties can be
controlled by applied field, temperature, crystalline disorder,
and oxygen doping, respectively.

Recently, some of us reported [24] on the peculiarities of
decreasing the system size in extremely layered vortex matter:
for roughly one-hundred particles (vortices), no melting-point
depression is observed, in contrast to results in hard condensed
matter [9]. The entropy jump entailed at the first-order
transition decreases on reducing the system size and we
suggested that this might have its origin in two effects that
can eventually occur simultaneously at the transition. First,
since there is evidence that the first-order transition might be
concomitant with a c-axis decoupling of pancake vortices [25],
confinement can induce an extra contribution to decoupling
and thus reduce the entropy jump. Second, confinement can
also entail a deterioration of the in-plane structural order when
nucleating vortex nanocrystals [24]. Unveiling the structural
properties of vortex nanocrystals is therefore mandatory in
order to gain insight and model the origin of the entropy-jump
depletion.

In this work, we study the evolution of the structural
properties on reducing the system size of nanocrystalline
vortex matter. We characterize the variation and spatial
distribution of elastic and plastic deformations in the quenched
nanocrystalline vortex solid. Our vortex nanocrystals with
less than 4000 vortices are nucleated in the whole area of
micron-sized engineered samples at low applied fields. We
have direct access to the static structural properties with
single-vortex resolution [26]. We present a systematic study as
a function of the number of vortices in the nanocrystal, tuned
either by sample physical size or vortex density.

II. EXPERIMENT

Nanocrystalline vortex matter is nucleated in micron-
sized Bi2Sr2CaCu2O8+y disks with diameters d in the range
30–50 μm and thicknesses between 1 and 2 μm. Disks
are engineered from optimally doped crystals (Tc = 90 K)
by combining optical-lithography and physical ion-milling
techniques [27]. During the last step of the sample fabrication
process, thin freestanding and freshly cleaved disks are
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obtained. The micron-sized samples were obtained from the
macroscopic sample studied in Ref. [28], and part of the
fabricated disks were used to investigate the phase diagram
of mesoscopic vortex matter reported in Ref. [24]. The disks
are placed on the sample holder with micromanipulators and
carefully glued with conducting epoxy such that the cleaved
surfaces remain clean.

As a result of the final cleaving process, more than 90%
of the disks present submicron steps at the surface. We avoid
using these disks for our study when possible. In some cases,
we considered disks with submicron steps that divide the
sample in terraces with one of them containing less than ∼10%
of vortices. In these cases, we only consider for our analysis
the roughly 90% of vortices that are at the same terrace.

The nanocrystalline vortex solid is directly imaged with
single-vortex resolution by magnetically decorating vortex
positions at 4.2 K after field cooling the sample at low fields
from T > Tc, as described in Ref. [29]. The lattice spacing
of the vortex structure, a = 1.075

√
�0/B, was tuned by

changing the applied field that controls the magnetic induction
B. For the experiments presented here, a ranges from 0.7 to
1.2 μm (B from 50 to 16 G). These lattice-spacing values
are well above the zero-temperature penetration depth for this
material, λ(0) = 0.2 μm [23]. In field-cooling experiments,
the vortex structure decorated at 4.2 K corresponds to a
configuration frozen at length scales of lattice spacing at
a larger temperature, Tfreez [29]. The magnetic decoration
technique is not sensitive to the vortex meandering at distances
smaller than λ that can occur at T < Tfreez. For the material
studied here, Tfreez ∼ Tirr, the irreversibility temperature at
which pinning sets in [30] (Tirr ∼ 85 K for the studied field
range [28]).

III. RESULTS

Figure 1 shows real-space images of vortex nanocrystals
with a vortex density of 16 G nucleated in micron-sized
Bi2Sr2CaCu2O8+δ disks with d ranging 50 to 30 μm (with
approximately 1500 to 400 vortices). The nanocrystals have
the outer vortex compact lines slightly bent, following the
edges of the samples. In all cases, this effect is produced
without a detectable change in vortex density (within 2%)
in the whole vortex nanocrystal. Vortices at the center of the
sample form a crystallite with decreasing size on reducing
field. As observed in Fig. 1, these two structural properties are
achieved by accumulating plastic deformations towards the
edges of the nanocrystals. This is evident in the Delaunay tri-
angulations [30] of the right panels that indicate the nonsixfold
coordinated vortices, highlighted in red, and the neighborhood
of plastic deformations, highlighted in gray. These topological
defects are mainly unpaired screw dislocations, each formed
by a five- and a seven-fold coordinated vortex. The Fourier
transforms of the central panels of Fig. 1 show six diffraction
peaks that broaden on decreasing sample size. For the smallest
studied sample, these peaks split up due to the nucleation
of two crystallites of similar size with compact planes with
a very small misalignment (smaller than 5◦); see Fig. 1(c).
Therefore, plastic deformations producing topological defects
in the vortex nanocrystal proliferate on increasing confinement
effects for a fixed vortex density.

FIG. 1. Vortex nanocrystals with a vortex density of 16 G
nucleated in micron-sized Bi2Sr2CaCu2O8+δ disks with diameters of
(a) 50, (b) 40, and (c) 30 μm. Left panels: Vortices imaged in white
by means of field-cooling magnetic decorations performed at 4.2 K.
Central panels: Fourier transforms of the vortex positions. Right
panels: Delaunay triangulations of the vortex structure depicting
nonsixfold (sixfold) coordinated vortices in red (blue) with plastic
deformations highlighted in gray. The scale bar indicates 10 μm.

When increasing the vortex density to roughly two and
three times (B = 32 and 50 G), the outer vortex shells of the
nanocrystals also mimic the edges of the sample without any
noticeable local change in a; see Supplemental Material [31].
For the higher vortex densities of 32 and 50 G, the nanocrystal
is formed by a single crystal in the whole sample in contrast to
the central crystallites observed at 16 G. A particular case is
that of the 32 G vortex structure nucleated in a 50-μm-diameter
disk presenting a submicron step at the sample surface.
This feature induces a local ordering of the vortex structure
presenting one compact plane parallel to the step in a region
of less than 10a. As a result, a planar grain boundary of paired
screw dislocations is formed in the nanocrystal. Besides this
spurious effect, on enhancing the nanocrystal stiffness (by
increasing B [23]), the stress induced by the outer vortex
shells mimicking the sample edge produces a proliferation
of isolated clusters of topological defects. The size of the
clusters apparently increases with stiffness; see Supplemental
Material [31].

In order to quantify the impact of pinning on increasing con-
finement, we will consider the distance evolution of the average
displacement correlator. This magnitude defined as W (r) =
〈[u(r) − u(0)]2〉/2 quantifies the average over quenched dis-
order and thermal fluctuations of the displacements of vortices
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with respect to the sites of a perfect triangular lattice, u(r).
In the case of macroscopic vortex matter, the theoretical
prediction [32] states that the displacement correlator presents
three different regimes as a function of r/a. Within the
Larkin regime expected at short distances, W (r) ∝ r and the
pinning is not yet effective in generating lattice distortions.
When the displacements reach the scale in which pinning is
effective, i.e., when [u(r) − u(0)] ∼ ξ , the system is in the
random manifold regime. In this regime, the evolution of the
displacement correlator is algebraic with distance, W (r) ∝ rν

with ν = 0.44 for three-dimensional structures. In addition,
in this regime, a constant ratio of transversal-to-longitudinal
displacement correlators is expected, WT(r)/WL(r) ∼ 1.44.
The longitudinal correlation function is defined as WL(r) =
〈[u(r) − u(0)] · r/r2〉/2. The displacements perpendicular to
the vortex structure’s main directions are quantified by the
transverse displacement correlator that can be obtained as
WT = 2W (r) − WL(r). For sufficiently large distances such
that [u(r) − u(0)] > a, the Bragg-glass structure enters in
the quasiordered regime in which the dependence of W (r)
is logarithmic with distance.

Direct imaging of vortex structures in dislocation-free
regions of Bi2Sr2CaCu2O8+δ vortex matter [33] showed the
stabilization of the Larkin and random manifold regimes.
The Bragg-glass regime was not directly observed since at
distances larger than 100a, the structure presents topological
defects and thus u(r) is not well defined. In order to estimate
W (r) in our vortex nanocrystals, we implemented an algorithm
for locally calculating the displacement correlator in the
presence of topological defects. The algorithm calculates
W (r) not in the whole vortex nanocrystal but in regions,
considering lanes of vortices in the three principal directions
of the structure. The regional lanes stop running two lattice
parameters away of any topological defect. The schematic
representation of Fig. 2 indicates how the lanes are defined
in a given vortex structure and how W (r) is calculated
for every lane. The figure also illustrates the lanes (color
lines) identified, for instance, in a 16 G vortex nanocrystal
nucleated in a 50-μm-diameter disk. The algorithm computes
the Wi

k (r),with k = 1,2,3 the three principal directions of
the structures, up to a distance equal to the length of every
ith lane. Then we average the results obtained for all the
ith parallel lanes within the k direction in order to obtain
Wk . Finally, we calculate W ∗ by averaging the three Wk

magnitudes associated to the main directions. We present the
W ∗ data for macroscopic and nanocrystalline vortex matter for
different sample sizes and applied fields of 16, 32, and 50 G in
Fig. 3.

For macroscopic Bi2Sr2CaCu2O8+δ vortex matter with a
density of 16 G, we do not observe the Larkin regime
W ∗(r) ∼ r , indicating that the Larkin length is smaller than
our spatial resolution for u(r). We do observe, however, that
W ∗(r) ∼ (r/a)ν with ν = (0.4 ± 0.1) and WT(r)/WL(r) ∼
(1.4 ± 0.5) up to the r/a ∼ 10 range [see Fig. 3(a)], as
theoretically expected for an equilibrated random-manifold
regime. In the case of the more dense macroscopic vortex
structures of 32 and 50 G, we find the same exponent for
the algebraic dependence of W ∗(r) within 5% dispersion for
such a short-distance scale. Therefore, vortex structures in
macroscopic samples are in agreement with the nucleation of

uL(r)

uT(r)

perfect lattice
sixfold
non-sixfold

1
2

3

FIG. 2. Top: Lanes considered to calculate the local vortex
displacements u(r) in the case of the 16 G vortex nanocrystal
nucleated in the 50 μm disk of Fig. 1(a). The lanes running parallel
to one of the three principal directions of the vortex structure are
identified with the same color. Bottom: Schematics of the vortex
displacements computed in order to calculate the displacement
correlator W ∗(r) along [uL(r)], and perpendicular to [uT(r)], a given
lane at a distance r from its starting point. The real positions of
the vortices are indicated with large dots, whereas the positions
corresponding to a perfect triangular lattice are shown in small gray
dots.

a Bragg-glass phase. Since the decorated structure is expected
to be a snapshot of a configuration freezed at a characteristic
temperature Tfreez ∼ Tirr [22,30], our results yield information
on creep-relaxation (random-manifold) dynamics at such a
temperature. In particular, they show that at Tfreez, length scales
as large as ∼10a and 5–15 μm can get equilibrated in the
experimental time scale.

This scale of equilibration of the random-manifold regime
is of the order of the vortex nanocrystals that we study. The
displacement correlator in nanocrystalline vortex matter, as
a function of field and sample physical size, is shown in
Figs. 3(b) and 3(c). The absolute value of W ∗(r)/a2 for vortex
nanocrystals is more than 30% larger than for macroscopic
samples. The r/a evolution of the displacement correlator is
algebraic even for the smallest nanocrystal with roughly 400
vortices.
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FIG. 3. Evolution of the normalized displacement correlator
W ∗(r)/a2 with r/a for vortex nanocrystals nucleated in micron-sized
Bi2Sr2CaCu2O8+δ disks. (a) Data for 16 G vortex structures nucleated
in macroscopic samples (full squares) and disks (open symbols). The
inset shows the transversal-to-longitudinal displacement correlator
ratio and dashed lines indicate the 1.44 value expected theoretically.
Magnetic field evolution of the displacement correlator for disks of
(b) 50 and (c) 40 μm diameters. Full lines are fits to the data with an
algebraic decay with an exponent ν (with an error of ±0.1) indicated
for each case at the right.

The exponent ν and the WT/WL ratio have values expected
for the random-manifold regime within the error, but in the case
of the smallest 16 G nanocrystal, both magnitudes increase
considerably. Indeed, the Delaunay triangulation of Fig. 1(c)
shows a structure with very small crystallites. When increasing
the vortex density for the same sample size, the structure
also presents an algebraic W ∗(r) with an exponent of roughly
0.4 within the error of 0.1, whereas it slightly enhances on
increasing vortex density; see Figs. 3(b) and 3(c). The increase
of ν when enhancing confinement can be due to the bending of
vortex rows close to the sample edge dominating the nucleation
of the smallest studied nanocrystal.

In order to study these edge effects, we quantify the
proliferation of topological defects with the radial density
of topological defects, ρdef(r) = Ndef(r)/Nv(r). We actually
consider Ndef and Nv at a radius r as the number of defects
and of vortices included in a circular shell with inner radius
r − δr/2 and outer radius r + δr/2. The calculations are
performed considering concentric circular shells of width δr =
2a and taking the origin at the center of the vortex nanocrystal.
The top panel of Fig. 4 shows the spatial distribution of defects
in the considered circular shells. Figure 4(a) shows ρdef(r) at
a fixed vortex density of 16 G for samples with three different
radii, whereas Fig. 4(b) shows the results at densities of 16,
32, and 50 G for the same sample size of 50 μm. The error
bars in the data correspond to the standard deviation of the
values obtained in different magnetic decorations for the same
sample diameter and B.

In all cases, ρdef(r) increases dramatically on approaching
the sample edge (indicated in the figures with dashed lines)
and stagnates on the center of the nanocrystals. These
saturation values roughly approach, within the dispersion of
values for different experimental realizations, the density of
defects found in macroscopic samples for each B, ρmacro

def =
Nmacro

def /Nmacro
v . For the macroscopic parent sample from which

the disks were engineered, ρmacro
def ∼ 11, 3, and 2% for 16, 32,

and 50 G structures, respectively [22] (see horizontal lines
in Fig. 4). The total density of topological defects for the
nanocrystals, ρdef = Ndef/Nv, is always larger than ρmacro

def . For
a fixed B, ρdef enhances on increasing confinement. On the
other hand, for a fixed sample size, ρdef increases when the
structure softens on lowering B.

The abrupt increase of ρdef(r) at the vicinity of the sample
edge occurs in a larger typical distance when increasing
the nanocrystal flexibility (decreasing B). We quantified
this tendency by fitting the data with a ρdef(r) = A1 +
A2 exp [(r/a − d/2a)/α] dependence; see full lines in Fig. 4.
The parameter α can be interpreted as a number of lattice
parameters in which the vortex nanocrystal relaxes the shear
stress induced by the bending of the outer vortex lines towards
the center of the sample. This relaxation is performed via the
nucleation of plastic deformations. We will thus regard a · α

as a characteristic “healing length.” The evolution of α with
d for the three studied vortex densities is shown in Fig. 4(c).
The length α, in lattice parameter units, increases with sample
size. This indicates that for larger nanocrystals, the nucleation
of topological defects for mimicking the sample edge is
performed more gradually than for smaller nanocrystals. In
addition, for a fixed sample size, α increases on softening the
vortex nanocrystal.

The previous analysis shows that the relevance of bulk
pinning for vortex nanocrystals with 400–1500 vortices does
not differ quantitatively from what is expected for macroscopic
vortex matter. Physical properties that are affected by confine-
ment in nanocrystalline vortex matter are thus controlled by
the vortices located in a strip of width of the order of a · α from
the sample edges. The larger a · α as compared to the sample
diameter d, the more important are confinement effects. In
summary, except for those cases in which more than 20% of
vortices are located at the nanocrystal surface and therefore
confinement effects are dominant, in the interior of samples,
vortex nanocrystals nucleate and are able to locally equilibrate
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FIG. 4. Radial density of topological defects ρdef(r) as a function
of r/a for nanocrystalline Bi2Sr2CaCu2O8+δ vortex matter. (a) Vortex
nanocrystals with a density of 16 G nucleated in 30, 40, and 50 μm
diameter disks. Top panel: Circular shells considered to calculate this
magnitude and location of topological defects (indicated with dots).
(b) Vortex nanocrystals with densities of 16, 32, and 50 G nucleated
in 50-μm-diameter disks. Vertical dashed lines indicate the sample
edge, d/2, and horizontal lines indicate the topological defect density
for the parent macroscopic sample, ρmacro

def . The full lines are fits
to the data with a function ρdef(r) = A1 + A2 exp [(r/a − d/2a)/α].
(c) Evolution of the healing length of vortex nanocrystals, α · a, with
the sample diameter d for the three studied vortex densities.

a structure consistent with the Bragg-glass phase [32]. More
precisely, for distances from the edge towards the center of
the sample larger than a · α, nanocrystalline vortex matter is
equilibrated in the random-manifold regime.

The healing length a · α described above may be a useful
quantity to model the B and d-dependent entropy-jump
depletion in the vortex first-order transition. This depletion
refers to the observation of a smaller 	S/	S0 at the first-
order melting transition of nanocrystalline vortex matter as
compared to the case of macroscopic samples; see inset to
Fig. 4 in Ref. [24]. The entropy-jump depletion can have two
extra contributions on top of the configurational one of the
vortex solid phase. The first one can come from a change on
the coupling of pancakes making up the outermost vortex lines
when reducing the nanocrystal size. The second one can come
from the possibility of the sample surface straightening the
outermost vortices as any correlated disorder would produce.
In any case, the existence of the characteristic length a · α

quantifying the crossover towards bulk behavior may be a
useful empirical quantity for modeling these three plausible
effects.

In this respect, it is worth noting that the value α

we detect is finite and no appreciable spatial gradient in
vortex density is observed in the decoration results presented
here. This is in sharp contrast to the effects observed in
other soft-condensed-matter systems such as disk-confined
one-component plasmas, where the density is nonuniform
and topological defects appear in the whole system [34].
Nevertheless, this finding qualitatively agrees with simulations
for the case of systems with short-range interactions [35] which
are more adequate to model vortex-vortex interactions in thick
superconducting samples. However, unlike these theoretical
case studies, vortices are line objects that interact with bulk
point disorder and, in the case of vortex nanocrystals, they
also interact with the sample surface that aligns the outermost
vortices along its border and bends vortex rows. This makes our
problem much more complex. In particular, (a) the expected
equilibrium bulk order is not the crystalline Abrikosov order,
and (b) the equilibration dynamics is expected to be glassy
(much slower than for a clean system) such that the equilibrium
may not be reached completely in a decoration experiment.

IV. CONCLUSION

We have shown that confinement affects the structure of vor-
tex nanocrystals nucleated in micron-sized Bi2Sr2CaCu2O8+δ

samples producing an excess of topological defects within a
characteristic healing-length distance from the edge. Towards
the center of the nanocrystal, the vortex lattice recovers the
bulklike structure observed in macroscopic samples, consistent
with the nucleation of a Bragg-glass phase.

The existence of a finite healing length may help to
explain why decreasing the system size to a few-hundred
vortices does not induce any melting-point depression as
observed for nanocrystals of hard condensed matter [10], but
entails a progressive depletion of the entropy jump at the
first-order transition [24]. Further experimental and theoretical
investigations on the magnetic field, temperature, and sample-
size dependence of the healing length would thus be promising
in order to build a simple phenomenological model for the
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anomalous properties of small confined systems of vortices
and alike.
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