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Emergence of Luttinger liquid behavior of a superclimbing dislocation
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A generic edge dislocation with superfluid core in solid 4He represents a non-Luttinger liquid according to
the elementary scaling dimensional analysis because its compressibility is giant, that is, it diverges as square
of the dislocation length. Monte Carlo simulations, however, reveal that such a dislocation develops finite
compressibility as temperature is lowered. Furthermore, for certain parameters the dislocation can undergo a
transition into insulating state regardless of the filling factor. External macroscopically small bias by chemical
potential can restore the giant compressibility. Experimental verifications of these features are proposed in
connection with the ongoing efforts to understand the superflow-through-solid as well as the syringe effects in
solid 4He.
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I. INTRODUCTION

Emergence [1] is the topic drawing a lot of attention for
the last 50 years, with the most prominent examples being the
charge fractionalization in fractional quantum Hall effect [2]
and dynamical enlargement of the underlying symmetry at the
point of continuous phase transitions [3].

Luttinger liquid (LL) is the universal description for
one-dimensional (1D) conducting quantum systems. Both
fermionic and bosonic quantum wires are generically de-
scribed by the harmonic model of collective soundlike excita-
tions [4]. Essentially the same approach applies to spin S = 1

2
chains (see Ref. [5]). The concept of LL turns out to be relevant
to solid 4He too. As found in ab initio simulations [6], screw
dislocation with Burgers vector along the high-symmetry
axis possesses superfluid core. This 1D topological structural
defect is essentially the bosonic LL. There is, however, a
significant difference between a dislocation with superfluid
core and a conducting wire. Dislocation is a dynamical string
able to change its shape and to move within crystal. In
quantum crystals, the string dynamics must be treated quantum
mechanically. This raises a plethora of questions traditionally
more relevant to high-energy physics. One key question is
about how the dislocation dynamics interacts with its core
superfluidity.

This question is especially relevant in connection with the
superflow through solid 4He observed first in the UMASS
group [7] and then confirmed by other groups [8–10]. There is
one strikingly unexpected feature serendipitously observed in
the UMASS group [7]: during the superflow events the solid
exhibits the response on external chemical potential, practi-
cally, the same way as liquid does, i.e., it absorbs or expels a
macroscopic fraction of atoms. This effect, which was called
giant isochoric compressibility (or syringe effect) in Ref. [11],
represents a mechanism of crystal growth from inside out. Both
effects are now at the focus of the experimental and theoretical
efforts in the field of superfluidity and quantum crystals.

It is important to realize that a dislocation with superfluid
core in a crystal represents a supersolid state of matter, that
is, the coexistence of superfluidity with crystalline symmetry
both formed by the same atoms (see the discussion about
various types of supersolidity in [12]). Indeed, despite breaking
the hexagonal close packing (hcp) symmetry of the ideal

crystal, the dislocation [6] aligned with the high-symmetry
axis preserves perfect periodicity of the crystal along this
axis. It also retains the C6 symmetry of rotations with respect
to the dislocation core. This supersolid, however, is quite
different from the supersolid phase of ideal crystal confining a
condensate of zero point vacancies contemplated by Andreev
and Lifshitz [13]. As has been shown in Ref. [14], vacancies
in solid 4He attract each other and, therefore, cannot form
stable Bose-Einstein condensate at zero temperature (T ) in
ideal crystal; they tend to agglomerate into dislocation loops.
The situation is completely different in vicinity of topological
defects where local strain is topologically protected and,
thus, induces stable low-D superfluidity [15] along some
dislocations [6,11] and some grain boundaries [16].

There is a new property emerging due to the core su-
perfluidity: such a dislocation can perform nonconservative
motion, that is, climb [17,18]. In Ref. [11] this effect has
been called superclimb, climb supported by superflow along
the dislocation core. A pure screw dislocation cannot perform
superclimb. However, deviations of the core orientation from
the direction of the Burgers vector transform screw dislocation
into edge dislocation (see in, e.g., [17–19]). In this case, the
core retaining its superfluidity can perform superclimb. In this
case, as discussed in [11], spectrum of excitations is no more
linear in the momentum along the core. Thus, a superclimbing
dislocation is not expected to be LL and should be classified
as non-LL.

The superclimb has been proposed in Ref. [11] as a
possible explanation for the syringe effect. In other words,
edge dislocations with superfluid core can supply matter into
(from) the solid by building (dissolving) incomplete atomic
planes. The syringe effect has also been seen by the University
of Alberta group [8], and very recently confirmed in its most
conspicuous form in Ref. [9]. At the moment, however, there is
no direct proof that the syringe effect is due to the superclimb
of dislocations. Thus, it is important to find features of the
dislocation scenario which can be tested experimentally.

The main prediction about superclimb put forward in [11]
is about edge dislocation aligned with single Peierls potential
(see [17–19]) valley. Such a dislocation becomes self-trapped
by the potential at T = 0. Thus, if all the edge dislocations with
superfluid core were self-trapped, the syringe effect should
vanish. However, a generic dislocation network in real crystals

2469-9950/2017/96(2)/024505(11) 024505-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.024505


M. YARMOLINSKY AND A. B. KUKLOV PHYSICAL REVIEW B 96, 024505 (2017)

is mostly disordered. Thus, there should be dislocations which
are not aligned with the Peierls valleys. Accordingly, such
dislocations are characterized by finite density of jogs (see
[18]) which form a quantum fluid supporting superclimb even
at T = 0 [20].

Here, we revise the conjecture [20] based on the standard
analysis of the relevance of Peierls potential. Our main result
is that, as temperature decreases, superclimb of a generic edge
dislocation (that is, not aligned with one Peierls valley) with
superfluid core must be suppressed. This reinstates the linear
excitation spectrum and, consequently, the LL character of the
superfluidity along the core. Below we will, first, briefly review
the superclimb effect. Then, we will discuss the results of large-
scale simulations of the model of the superclimbing dislocation
and will present the evidence for the emergence of the LL
behavior as well as its destruction by bias. Finally, we will
discuss the features to look for in experiment in order to test the
dislocation scenario for the superflow and the syringe effects.

II. SUPERCLIMB AND THE GIANT
ISOCHORIC COMPRESSIBILITY

Dislocations are most typical 1D structural topological
defects in crystals (see Refs. [17–19]). These are characterized
by position and shape of its core as well as by the Burgers
vector which is determined by the crystalline symmetry.
Symmetry relevant to solid 4He is the hexagonal close packed
(hcp) structure (see Refs. [17,18]). Its highest-symmetry axis
is called C axis and it has C6 symmetry. It is perpendicular
to the basal planes which are triangular two-dimensional (2D)
lattices. The hcp structure has two basic types of dislocations:
with Burgers vector belonging to the basal plane and along the
C axis.

Ab initio simulations of dislocations with the Burgers vector
along the C axis have found that these dislocations in solid 4He
have superfluid core. Superfluidity of the screw dislocation
(with the core and the Burgers vector being along the C axis)
has been reported in Ref. [6]. Similarly, the superfluid core has
been found in the edge dislocation with the Burgers along C

axis, and it has been reported in Ref. [11].
There is a significant difference between the two disloca-

tions: while the edge dislocation can perform superclimb [11]
as a linear response on chemical potential μ, the screw one
cannot. Thus, a dislocation with superfluid core meandering
through solid should consist of edge and screw segments. A
possible resulting network of such dislocations is shown in
Fig. 1. One superclimbing segment of length L of the network
is schematically shown in Fig. 2. The matter can be fed into
the dislocation from its ends contacting other dislocations with
superfluid core or a reservoir with superfluid. As a result, extra
matter is supplied to or taken away from an incomplete basal
plane of atoms. Accordingly, the dislocation core (depicted by
the ragged solid line in Fig. 2) can shift (up or down).

It is important to discuss the role of external bias by
chemical potential μ. A small change of chemical potential
imposed on a liquid results in a small change of the liquid
density ρ. The corresponding dependence ρ versus μ is
smooth with the finite slope dρ/dμ which is the isochoric
compressibility. In a standard LL this quantity is independent
of the length L. The situation is very different in the case
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L 

FIG. 1. A forest of dislocations with Burgers along the hcp axis
(Z axis) containing edge superclimbing segments (thick solid lines
aligned with X axis) and pure screw ones (dashed lines along Z axis).
Superclimb of the edge segments occurs in the XY planes along the
Y axis.

of the superclimbing dislocation: imposing a finite bias by
μ does not produce any significant change of the superfluid
density inside the core. Instead, the core shifts (up or down
as sketched in Fig. 2) by the amount exactly determined by
the number of atoms N traveled along the core to build an
incomplete atomic plane (shown by dashed lines in Fig. 2).
In this case, the isochoric compressibility κ = L−1dN/dμ

becomes “giant” [11], that is, κ ∝ L2. For consistency, this
feature reported in Ref. [11] will be explained in detail below.

A superclimbing dislocation [11] is modeled as an elastic
string of length L. In the absence of the Peierls potential it is
represented by the action in imaginary time τ :

S =
∫ β

0
dτ

∫ L

0
dx

[
− i(y + n0)∂τφ + ρ0

2
(∂xφ)2

+κ0

2
(∂τφ)2 + G

2
(∂xy)2 − μy

]
(1)

(in units h̄ = 1, KB = 1), where all distances (here and below)
are measured in terms of a typical interatomic distance.
This action describes the displacement y = y(x,τ ) of the
dislocation, depicted in Fig. 2, from its equilibrium position
y = 0. As mentioned above, y(x,τ ) determines the total
amount of atoms �N entered (exited) through the dislocation
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Extra plane of atoms 
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L 

FIG. 2. Superclimbing dislocation (solid ragged line) as indicated
by the edge of an incomplete atomic basal plane (dashed lines). The
double arrow shows the directions of the superflow along the core.
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ends. This implies

�N (τ ) =
∫ L

0
dx y(x,τ ). (2)

The quantity φ = φ(x,τ ) represents the superfluid phase
defined along the superfluid core. Here, β = 1/T , ρ0 and κ0

are bare superfluid stiffness and superfluid compressibility,
respectively; G stands for the effective tension of the dis-
location (∼ shear modulus); and the last term accounts for
the bias by chemical potential μ. The quantity n0 describes
average (linear) density of bosons. We consider the limits
ω → 0, q → 0. Thus, ∼(∂τ y)2 representing kinetic energy of
the dislocation is omitted from Eq. (1). To exclude the zero
mode where the uniform shift of the dislocation as a whole
costs no energy, the boundary condition y(x = 0,τ ) = y(x =
L,τ ) = 0 is used. This condition is, in particular, relevant to the
type of a network shown in Fig. 1, where the meeting region of
the screw and edge segments plays the role of the pinning point
for superclimb because the screw segment cannot perform
superclimb for arbitrary small bias μ.

If there were no climb (that is, y = 0), the model (1)
would represent the standard LL characterized by the linear
excitation spectrum ω = √

ρ0/κ0q with respect to the wave
vector q along the dislocation [4]. The situation changes
dramatically in the presence of the climb: The imaginary term
in Eq. (1) (the Berry term) counts how many particles passed
through the dislocation core and ended up in an extra row
of atoms advancing dislocation by y. This effect changes
the spectrum from linear to parabolic. Indeed, variational
equations δS/δφ = 0, δS/δy = 0 following from the action
(1) give ∂2

τ y − Gρ0∂
4
x y = 0 in the long-wave limit. In real

time t = iτ , this corresponds to the parabolic spectrum ω =√
Gρ0q

2 as q → 0. Thus, the action (1) describes a non-LL.

A. Giant isochoric compressibility

If the superfluid stiffness ρ0 in Eq. (1) is finite and
the dislocation ends are connected to a superfluid reservoir,
biasing by finite μ will result in the dislocation bowing by
y ∼ L2μ/G. More accurately, the solution minimizing the
action (1) is y(x) = x(L − x)μ/2G which corresponds to
DN = ∫

dx y = μL3/12G. Accordingly, the compressibility

κ = d�N

Ldμ
→ κg = L2

12G
∝ L2 (3)

becomes giant as opposed to κ = κ0 ∝ L0 in the absence of
the variable y in Eq. (1).

It is important to realize that a sample of bulk solid 4He
permeated by a uniform network of such dislocations must
show a finite three-dimensional (3D) compressibility κ3D, very
similar to that of a 3D liquid. In other words, κ3D is independent
of the dislocation density (as long as this density is small in
units of interatomic distance). Let us demonstrate this using
a simplistic example of a network consisting of rectangular
parallelepipeds with edges of typical lengths Lx,Ly,Lz. One
element of such a network is sketched in Fig. 3. Let us
presume that the edges of length Lx along X direction represent
edge (superclimbing) segments of dislocations with superfluid
core. The distance Ly characterizes a typical separation
between such segments. The distance Lz characterizes a typical

Lx 
y(x,t) 

Ly 

Lz 

Y 

X 

Z 

FIG. 3. One block of the dislocation network built by dislocations
with superfluid core. Superclimbing dislocations, the edges along X

direction, bend in response to the bias by chemical potential μ, as
shown by the bulging line. The added matter is depicted by dashed
lines (only one edge is shown to bulge).

length of the screw (nonsuperclimbing) segments (as sketched
in Fig. 1).

Biasing the network by μ results in bowing the edge seg-
ments by y ∼ μL2

x/G. This implies an additional amount of
atoms �N ∼ yLx ∼ μL3

x/G per each element. Consequently,
the bulk density δn changes as

δn ≈ �N

LxLyLz

∼ L2
x

LyLz

μ

G
. (4)

Thus, κ3D = δn/δμ depends only on the ratio of the free
segment lengths. In other words, uniformly increasing all
lengths Lx,Ly,Lz by the same factor, say, 2, does not change
the above result (4), while decreasing the dislocation density
by the factor of 4.

It is important to note that it is enough to apply μ just
at a point contact with the network to introduce the density
change (4). This is the same outcome as if μ were applied to
a fluid. In contrast, applying μ (at any point) to an ideal solid
(without dislocations) does not cause any detectable change
of its overall density. In this sense, the response (4) of the real
solid should be viewed as giant. Clearly, if the superclimbing
segments are to evolve into LLs and, thus, to lose their giant
compressibility (3), the response (4) of the solid (the syringe
effect) will vanish, that is κ3D = 0.

As a matter of fact, the response on μ is not completely that
of a liquid, where in equilibrium pressure variation distributes
uniformly over the whole liquid, in accordance with the Pascal
law. Viewing this property from the perspective of chemical
potential, a pressure change �P in a liquid in response on
applying a change μ of chemical potential must be exactly
equal to μ. This constitutes a maximum possible syringe effect.
In a solid permeated by the dislocation network, while the
compressibility κ3D is finite as described above, the resulting
pressure change �P �= μ.

B. Collective effects

As described in Ref. [21], presence of an ensemble of
dislocations modifies the isochoric compressibility. The main
effect comes from the overall compression of the solid as
extra matter �N enters (exits) it. Referring to one element of
the network, Fig. 3, the energy of the bowing with account
for the compression energy ∼KelLxLyLz�N2/2N2, where
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N ∼ LxLyLz stands for the total number of atoms in the
volume of one cell and Kel stands for the compression
modulus, can be written as

E ∼ Gy2

2Lx

+ Kel�N2

2LxLyLz

− μyLx, �N ∼ yLx. (5)

The equilibrium value for y follows from the minimization
of E. This gives the fractional density change �N/N and
the corresponding pressure change in the solid as �P ∼
Kel�N/N :

�P ≈ Kel

GLyLzL
−2
x + Kel

μ. (6)

If the shear modulus were zero, that is, G = 0, the pressure
change would be exactly that of a liquid. This limit can also
be reached in the case of a highly asymmetric network with
Lx � √

LyLz.

C. Compressibility and dislocation excitation spectrum

Concluding this section, we emphasize that the renor-
malized compressibility κ and the superfluid stiffness ρs

both determine the spectrum of excitations of the dislocation
as ω = √

ρs/κ q, with q being a wave vector along the
dislocation. In the case of the screw dislocation, both κ and
ρs are finite (that is independent of q) and, thus, the spec-
trum is soundlike. This implies the LL behavior. In the case
of the superclimbing edge dislocation, κ depends on the
wavelength as κ ∼ 1/q2 (up to the dislocation length κ ∼ L2),
and this leads to the parabolic spectrum ω ∝ q2 as mentioned
previously. This is why superclimbing dislocation represents
non-LL. If superclimb is suppressed by, say, Peierls potential
or impurities, κ becomes finite and the linear spectrum is
recovered, that is, the LL is restored. This effect spontaneously
occurring as T → 0 will be reported in the following section.

III. SUPERCLIMB BEYOND THE
GAUSSIAN APPROXIMATION

The discussion in the previous section was based on
the Gaussian approximation, that is, it ignored the compact
nature of the phase φ in the action (1). In other words,
the possibility of instantons in the D = 1 + 1 space-time
was not taken into account. Furthermore, there is no term
corresponding to the Peierls potential in the action (1).
In its simplest form ∼∫

dτ
∫

dx cos(2πy), this term takes
into account the periodic potential imposed by the lattice
and seen by the dislocation during its climbs. As discussed
in [11], this term suppresses the superclimb at T = 0, if
the equilibrium configuration corresponds to y(x) = 0 (or
any other minimum y = n, n = ±1, ± 2, . . .). Then, the
compressibility becomes finite (with respect to L → ∞),
and the spectrum of excitations becomes soundlike. In other
words, the LL behavior of the dislocation core superflow is
restored as long as the dislocation is aligned with one of the
Peierls valleys.

Generically, however, dislocations form a network con-
taining dislocations not aligned with Peierls valleys. More
specifically, the dislocation end at x = 0 may be pinned at,
say y(x = 0,τ ) = 0, and the other one at y(x = L,τ ) = n

with n �= 0. This dislocation is said to be tilted in the Peierls
potential. Accordingly, it has n jogs even at T = 0. Such
geometrical jogs can be taken into account by shifting y →
y + nx/L in the action and accordingly in the Peierls energy∫

dx cos(2πy/a) → ∫
dx cos(2πy + 2πnx/L), where now

the boundary condition becomes y(0,τ ) = y(L,τ ) = 0.
The standard approach to treating the cos(. . .) potential

(see, e.g., in Ref. [19]) is based on the assumption that the
term 2πnx/L washes out the potential. As suggested in [20],
this implies that the geometrical jogs form quantum fluid of
jogs which protect the superclimb from suppression at T = 0.
In other words, the compressibility κ should remain giant as
given by Eq. (3) at T = 0. Accordingly, the excitation spectrum
remains quadratic in q, that is, the superfluidity along the core
is of the non-LL type. This argument, however, has not been
verified numerically.

Here, we analyze a tilted superclimbing dislocation beyond
the Gaussian approximation by Monte Carlo simulations of the
model [11] with no Peierls potential. The main purpose of this
is to understand the role of compactness of the phase φ in the
action (1). As will be shown below, this property turns out to be
crucial as T → 0 leading to the restoration of the LL character
of the core superfluidity by suppressing the superclimb. At
this point, we also mention that the external bias μ in the
action (1) can destroy the LL and restore the superclimb
as long as μ exceeds a threshold which is macroscopically
small with respect to L. This effect will be discussed later in
Sec. IV.

A. Dual representation

Here, we will go beyond the Gaussian approximation in
(1) and take into account the compact nature of the phase φ

by allowing vortices (instantons) to exist in the space-time
(x,τ ). This, in particular, can be achieved by discretizing the
space-time so that

∫
dτ

∫
dx . . . transforms into a sum over the

space-time lattice. The discretization of space is justified by
the presence of the crystalline 3D lattice introducing the
natural increment �x ≈ a determined by a typical interatomic
distance a along the dislocation core. Then, the continu-
ous derivative becomes discrete: ∂xφ(x,τ ) → ∇xφ = φ(x +
1,τ ) − φ(x,τ ) where we use a as the unit of x.

The continuous time derivative transforms as ∂τφ(x,τ ) →
∇τ φ = [φ(x,τ + �τ ) − φ(x,τ )]/�τ , where �τ is the unit of
the time discretization �τ = β/Nτ → 0, with Nτ being the
number of time slices in the time interval (0,β). Then, the
compactness of φ is taken into account by using the Villain
transformation 
∇φ → 
∇φ + 2π 
m [22], where the vector sign
refers to the space-time directions and 
m = (mτ ,mx) stands
for integer variables defined on (and oriented along) bonds
between neighboring sites of the space-time lattice. This
approach allows treating φ as a noncompact Gaussian variable,
on the expense of introducing the bond variables 
m.

The thermodynamics of the model (1) (with the substitute

∇φ → 
∇φ + 2π 
m) can be accounted for within the partition
function

Z =
∑
{ 
m}

∫
Dφ

∫
Dy exp(−S), (7)
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where the action (1) takes the form

S =
∑
(τ,x)

[
− i(y + n0)∇τ (φ + 2πmτ ) + ρ0

2
(∇xφ + 2πmx)2

+κ0

2
(∇τ φ + 2πmx)2 + G

2
(∂xy)2 − μy

]
. (8)

It is convenient to use Poisson identity
∑

m f (m) ≡∑
n

∫
dmf (m) exp(2πimn) at each bond along the line of the

derivation of the J -current model [23]. Then, the integrations
over 
m,φ, y can be carried over exactly. This transforms
Eq. (7) into

Z =
∑

{ 
J=(Jx,Jτ )}
exp(−SJ ), (9)

where the action SJ (in the long-wave limit) is

SJ =
∑
bij

[
J 2

x

2ρ̃0
+ G̃

2
(∇xJτ )2 − μ̃Jτ

]
, (10)

with G̃ = G�τ , μ̃ = μ�τ , and ρ̃0 = 1/[2 ln(2/ρ0�τ )] (in
the limit �τ → 0 [22]). The integer bond oriented currents 
J
(that is, | 
J | = 0,1,2,...) between neighboring sites satisfy the
Kirchhoff’s conservation rule, and the summation is performed
over all bonds bij between all pairs of neighboring sites i and
j . It should be kept in mind that 
J = (Jx,Jτ ) is oriented either
along a spatial or a temporal bond. In other words, if bij is
a bond along the X direction, the current along this bond has
zero temporal component, Jτ = 0. Similarly, Jx = 0 on a bond
oriented along the imaginary-time axis.

The action (10) is a dual representation of the models (7)
and (8). The boundary condition for y is transformed into
Jτ (x = 0,τ ) = Jτ (x = L,τ ) = 0 in addition to the periodic
boundary condition along time: 
J (x,τ + β) = 
J (x,τ ), 
J (x +
L,τ ) = 
J (x,τ ).

The striking difference between the action (10) and the
standard one of the J -current model [23] describing LL is the
absence of the term ∼J 2

τ . As we will show below, such a term
will be emerging as T → 0 and μ → 0.

B. Linear response

The linear response of the system is described in terms of
the renormalized stiffness along space [24]

ρs = L

Nτ

〈
W 2

x

〉
, Wx = 1

L

∑

bij

Jx, (11)

and along time, which is the renormalized compressibility:

κ = −Nτ

L

∂2 ln Z

∂μ2
= Nτ

L

[〈
W 2

τ

〉 − 〈
Wτ

〉2]
. (12)

The quantities Wx , Wτ = N−1
τ

∑

bij

Jτ are integers and have
the geometrical meaning of windings of the lines formed
by the J currents. We have also calculated

κ1 = 〈N〉
Lμ

= 〈Wτ 〉
Lμ

(13)

characterized by the total number of atoms 〈N〉 = 〈Wτ 〉/Nτ

injected into the solid due to the superclimb. Both quantities

κ and κ1 coincide with each other as μ → 0. In general, these
are related by the exact formula κ = d(μκ1)/dμ. Simulations
have been performed by the Worm algorithm [25].

C. Emergence of the LL behavior

Here, we will present the evidence that, as the dislocation
length L and the inverse temperature β both increase as β ∝
L → ∞, the compressibility κ crosses over from being “giant”
[Eq. (3)] to κ = κeff saturating to a finite value in this limit.
This implies the reconstruction of the excitation spectrum from
parabolic to linear. In other words, the superclimb is being
suppressed and the LL behavior emerges. We will also show
that the phase diagram of the systems (9) and (10) in the plane
(ρ0,G), μ = 0, features two phases: LL and insulator (where
both ρs and κ vanish).

Strictly speaking, all results of simulations of the models
(9) and (10) should be considered in the limit Nτ → ∞ in
order to achieve the continuous time result. Practically, Nτ

should be taken as large as needed to stop simulated quantities
being dependent on Nτ for a given value of β. The result of
this procedure is shown in Fig. 4.

The compressibility deviates from its giant value [Eq. (3)]
as temperature decreases and asymptotically approaches some
value which is more than one order of magnitude smaller
than κg [Eq. (3)] for a given size L. The question is how the
asymptotic value of κ depends on L. The result of simulations
for several sizes of L are presented in Fig. 5. As can be seen, the
asymptotic values of κ (in the limit T → 0) are independent
of L for large enough L. The asymptotic independence of κ

on L is seen much more clearly in Fig. 6 where T −1 = β is
scaled as ∼L → ∞.

A comment is in order about the procedure used to collect
the data in Figs. 5 and 6 and from now on. We have checked
that, while changing specific values, the qualitative behavior
of κ remains the same for a fixed value of Nτ for given L

without formally achieving the quantum limit of continuous

10 20 30 40 50 60 70 80 90 100
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100

300 600 900 1200

1

10

100

1/T

κ

1/T=16

κ
1/T=100

Nτ

FIG. 4. κ [Eq. (12)] vs β = T −1 for L = 60, G = 2.3, ρ0 =
4, μ = 0. Inset: κ vs the number of time slices Nτ for two
temperatures (shown close to each curve). The horizontal dashed
line corresponds to the value of the “giant” compressibility [Eq. (3)].
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FIG. 5. κ vs β = T −1 for the lengths L = 40,80,140 (shown
close to each curve). The horizontal dashed lines are the correspond-
ing values of the giant compressibility [Eq. (3)]. Inset: superfluid
stiffness vs T −1 for the same sizes. The model parameters are
ρ0 = 4, G = 2.3, μ = 0 in Eq. (10).

time. Thus, the data in Fig. 5 and below are presented for
T = 1/Nτ , that is, for the choice �τ = 1 (and G̃ = G, ρ̃0 =
ρ0, μ̃ = μ).

The dependence κ vs T is characterized by some typical
temperature T = TL and the range �L below which κ becomes
significantly suppressed. In order to evaluate TL and the width
�L, we have found the best fit of κ vs 1/T using TL and
�L as the fit parameter in the fit function taken as ln(κ) =
A − B tanh[�L(T −1 − T −1

L )], with A and B chosen from the
limiting values of κ at the highest and lowest T for each L.
This function has produced fits which are acceptable within
the statistical errors of the data for all curves. We have found
that the crossover temperature TL ∼ 1/ ln L and its width
�L ∼ 1/ ln L. More specifically, for G = 2.3, ρ0 = 4, μ =
0, the dependencies on L are T −1

L = a ln L + b, with a =
5.02, b = −6.27 and �−1

L = a′ ln L + b′ with a′ = 1.53, b′ =
0.09. These dependencies are shown in Fig. 7.

The question is how the emerged compressibility in the limit
L = ∞ depends on the parameters of the model (10). Figure 6
presents results of simulations for various values of G. The
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FIG. 6. Compressibility κ vs L = 1/T for various values of G

(shown in the legend) and ρ0 = 4, μ = 0.
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FIG. 7. The inverse crossover temperature T −1
L and the width �−1

L

vs L for G = 2.3, ρ0 = 4.

limiting value of κeff = κ taken from the saturated behavior at
large L from Fig. 6 turns out to be κeff ∼ 1/Gb, b = 7.8 ± 0.1
for G < 2.6. This dependence is shown in Fig. 8. We have
tested several values of ρ0 and did not find any dependence of
the power b on it.

The effect of emergence of finite κ occurs above some
length L∗(as long as T ∼ L−1). For L < L∗ the compress-
ibility behaves as ∼ L2/G [Eq. (3)]. For L > L∗ it levels off
at ∼1/Gb. Thus, the relation L∗2/G ∼ G−b determines the
crossover scale L∗ ∼ G(1−b)/2 diverging in the limit G → 0.
Below we will discuss the deviations from the power law seen
in Fig. 8 for G � 2.6.

D. Quantum phase transition (QPT)

If the parameter G exceeds a certain threshold Gc for a
given ρ0, there is no more saturation of κ [Eq. (12)] to a finite
value in the limit β ∝ L → ∞. Instead, it flows to zero. This
behavior is clearly exhibited by three lower curves in Fig. 6,
corresponding to G > 2.7. The same tendency is seen in Fig. 8

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0.01

0.1

1

10

100

κeff

G

FIG. 8. The asymptotic values κeff of κ taken from Fig. 6 in the
limit L → ∞ for various G values.
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FIG. 9. The phase diagram of the models (9) and (10). Dashed
straight line connects three data points with smallest ρ0 and the origin.

where the linear log-log dependence is violated for the same
values of G (read off from Fig. 6 at the maximum L simulated).
In fact, both κ and ρs [Eq. (11)] flow to zero for these values
of G. This behavior implies insulating state of the dislocation,
when both superclimb and superflow along the core cease to
exist.

Phase diagram mapping the two ground-state phases of the
dislocation is shown in Fig. 9. In the LL region κ [Eq. (12)]
and the superfluid stiffness [Eq. (11)], both saturate to finite
values in the limit T −1 ∼ L → ∞. In the region “insulator”
both quantities approach zero values as T −1 ∼ L → ∞.

A presence of the transition in the models (9) and (10) is
unexpected because the Kosterlitz-Thouless (KT) argument
(see Ref. [19]) indicates that there should be no proliferation
of the vortex pairs. Let us demonstrate this by performing
duality transformation on the model (10). The Kirchhoff’s
constraint on the currents 
∇ 
J = 0, where 
∇ stands for discrete
gradient, can be satisfied by the substitute Jx = ∇τ�, Jτ =
−∇x�, where � are integers defined at sites of the dual
lattice [26]. Using this in Eq. (10) and utilizing the Poisson
summation identity [along the same line how the action (10)
was derived from the original one (1)], we obtain the lattice
gas model Z = ∑

{ni } e−Sg , Sg = 1
2

∑

r,
r ′ U (
r − 
r ′)n(
r)n(
r ′)),

where n(
r) are integers defined on the sites of the dual lattice
and U is the interaction potential with Fourier components
Ũ = (2π )2/[ρ−1

0 ω2 + Gq4] in the limits ω → 0 and q → 0.
The integers n describe vortices. In contrast with the standard
superfluid, where vortices interact by logarithmic potential
(see Ref. [19]), here the potential is much stronger than
logarithm. It is also strongly asymmetric: along space it is
increasing with separation between two points (x,τ ) and
(x ′,τ ′) as ∼ |x − x ′| and along time as ∼√|τ − τ ′|. Thus,
according to the KT argument a vortex-antivortex pair cannot
proliferate to destroy the algebraic order along the dislocation.
However, in spite of this criterion, our simulations of the
model (10) show that there is a transition into insulating
state.

As more detailed analysis presented in the Appendix
shows, the transition corresponds to the Berezinskii-Kosterlitz-
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FIG. 10. κ1 vs μ for sizes L shown close to the corresponding plot,

G = 2.3, ρ0 = 4, T = 0.0556, TH ≈ 0.0435. Dashed lines show the
giant values [Eq. (3)] for the corresponding size L.

Thouless (BKT) transition (see Ref. [19]) with the universal
jump 2/π in the effective Luttinger parameter K = √

ρsκ . It
is also important to notice that the transition is insensitive to
the filling factor n0 in the model (1), simply because it cancels
out from the dual representation (10).

IV. ROUGHENING INDUCED BY CHEMICAL POTENTIAL

The above results indicate that, in the absence of the bias
by chemical potential μ, the models (9) and (10) have only
two ground states, either insulator or Luttinger liquid marked
by “insulator” and “LL” in Fig. 9, respectively. As temperature
increases, the compressibility crosses over to the “giant”
value (3).

The LL state corresponds to smooth dislocation (with κ =
κeff) because fluctuations of the dislocation shape y(x,τ ) are
strongly suppressed. This situation changes quite dramatically
in the presence of finite μ in the action (10). Namely, the
smooth state of the dislocation can be destroyed by the bias
μ �= 0. As a result, the giant compressibility is restored.
This implies the roughening transition of the dislocation:
fluctuations of the dislocation shape become diverging as
∼ln L in the rough phase, where κ = κg [Eq. 3].

Simulations of the models (9) and (10) at finite μ have
revealed two regimes: (i) a crossover from smooth to rough
dislocation at T > TH ; (ii) a jumplike behavior characterized
by strong hysteresis at T < TH featuring a coexistence of the
smooth and rough phases of the dislocation.

A. Smooth-rough crossover

The crossover behavior at T > TH is shown in Fig. 10. As
can be seen, the width of the crossover becomes smaller for
larger L. To characterize this dependence, we have measured
the value μ0.5 of μ where κ1 reaches 1

2 of its giant value (3)
for a given size L. This dependence turns out to be μ0.5 ∼
L−c, c = 1.21 ± 0.05, and it is shown in Fig. 11.
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FIG. 11. The log-log plot of the crossover value of μ0.5 vs L taken
from the data in Fig. 10.

B. Hysteretic behavior of the smooth-rough dislocation

At temperatures T < TH , the roughening transformation
behaves like a first-order phase transition because it shows
strong hysteresis (Fig. 12). The width �μ of the hysteresis
(Fig. 13) saturates to a finite value as T → 0 (determined
by purely quantum fluctuations). Hysteresis vanishes at T =
TH ≈ 0.0435 (for the chosen parameters).

We should emphasize that the existence of a phase transition
in a 1D system characterized by a local order parameter is
forbidden at finite T [27]. In particular, first-order transition
should be a crossover characterized by activation with a typical
finite energy given by the width of the domain wall between
two phases. Thus, the interpretation of the strong hysteresis at
finite T requires caution. In this respect we note that, similarly
to the dislocation roughening in the presence of the Peierls
potential [28], there is no local description of the rough state
because it is a global property of the whole dislocation. Thus,
the “no-go theorem” [27] does not actually apply. Further
studies are required in order to see if the observed hysteresis

-0.01 0.00 0.01 0.02 0.03 0.04

1

10

100

κ1

μ

FIG. 12. Hysteretic behavior of the compressibility κ1 [Eq. (13)]
vs μ. The dashed line shows the giant value [Eq. (3)] for L =
100, T = 0.025, ρ0 = 4, G = 2.3. The arrows show the direction
of the hysteretic loop: each point corresponds to simulations for
2 × 1010 MC steps for a given value of μ.
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FIG. 13. Width �μ of the hysteretic loop vs 1/T for L =
100, G = 2.3, ρ0 = 4. Solid line is the fit by �μ = μ0 ln(TH /T ),
μ0 = 0.0346, TH = 0.0436.

features a true finite-T transition characterized by extensive
energy barrier (rather than an intensive one in the case of the
crossover).

V. DISCUSSION AND EXPERIMENT PROPOSALS

The effect of emergence of LL behavior in a model which
should be a non-LL according to the standard analysis can
be viewed from another perspective. The original model (1)
features a strong asymmetry between space and time because
its excitation spectrum is parabolic: changing unit of space by
a factor of 2 requires changing the unit of time by the factor
of 4 in order to keep the spectrum unchanged. In the LL
phase (smooth phase), the spectrum becomes linear which
implies restoration of the space-time symmetry. Furthermore,
the nature of the QPT is also consistent with the space-time
symmetry. Thus, the edge dislocation with superfluid core
features the emergence of the symmetry between space and
time (in D = 1 + 1) in its ground state in thermodynamic limit.

The question to answer is why the emergence of the LL is
not “seen” by the elementary dimensional analysis, and also
why there is the BKT transition despite that the KT argument
predicts none. The qualitative explanation [29] comes naturally
in terms of the loops in Eq. (10). As the weight of each element

J becomes larger, its discreteness becomes more and more

important so that more configurations will have currents Jτ

with no neighbors. In such a situation, the discrete gradient
(∇xJτ )2 becomes essentially J 2

τ . This transforms the action
(10) effectively into the form typical for the standard J -current
model [23] describing LL as well as the BKT transition at
integer filling.

It would be useful to find an argument for the effect in terms
of the fields. One insight can be gained from the following
consideration: one jog passing along the length Lx of the
dislocation carries a string of atoms �N = Lx (which ad-
vances an incomplete basal plane by one interatomic distance).
This means that each jog is essentially a macroscopically
heavy particle as long as Lx � 1. Thus, such a particle can
be localized easily at low T which automatically implies
suppression of the superclimb.
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Below we will outline proposals for the experiments aimed
at testing the most important features of the model. If observed,
these would be a proof for the dislocation scenario for the
superflow-through-solid and the syringe effects.

A. Stress anisotropy induced by superclimb

The superclimb effect results in injecting (removing) basal
atomic planes. For a single hcp crystal confined in a rigid
box, this implies additional average deformation along the
C axis. If DN atoms were injected to form DM basal
layers in a 4He crystal made of M basal layers, the created
average strain can be estimated as uzz ≈ DM/M . This will
produce an average stress σzz ≈ CzzzzDM/M and σxx =
σyy ≈ CxxzzDM/M , where the z axis is along the hcp axis
and x,y are orthogonal coordinates along the basal plane. Here,
σij is the stress tensor [17] and Cijkl are elastic constants of
hcp solid 4He. Thus, the asymmetry of the stress becomes
ασ = σzz/σxx ≈ Czzzz/Cxxzz. Measuring the asymmetry and
comparing with the known elastic moduli will provide crucial
information on the mechanism of the syringe effect. In
polycrystals there could also be some asymmetry if the C

axis of the crystallites is not fully randomly oriented.

B. Threshold for superclimb

An important aspect of our discussion is the existence of
the threshold for superclimb: the syringe effect should vanish
in the limits T → 0 and μ → 0 even in samples free from 3He
impurities. (3He suppresses superflow and the syringe [7–9].)
At this juncture, it is important to emphasize that stopping the
syringe effect does not imply stopping the superflow along
the core. Thus, observing a suppression of the syringe effect
without suppressing superflow would be a “smoking gun” for
the superclimb mechanism [11] and for the emergence of LL.
Accordingly, studying the syringe and the superflow effects in
extremely clean samples of solid 4He at very low temperatures
and biases becomes of crucial importance.

There is, however, a significant obstacle. As mentioned in
Ref. [21], the current experiments [7,8] and also [9] are likely
to be in the regime of large μ, that is, in the dislocation rough
state induced by the bias where κ = κ1 = κg [Eq. (3)], even at
T = 0. The analysis [21] focuses on the geometrical instability
of dislocations with superfluid core: once chemical potential
bias exceeds the threshold μc ∼ GL−1, such dislocations
become unstable with respect the inflation which constitutes
a mechanism of the crystal growth from inside out. In
this case, a single inflating dislocation builds one whole
atomic extra plane. As described in Sec. IV A, there is even
stronger condition for the destruction of the LL behavior,
characterized by the threshold μc ∼ L−1.2 � L−1 in the limit
L → ∞. Practically, for dislocations with a typical length
L ∼ 1 μm and larger the threshold becomes smaller than
∼10 mbar. Translating the temperature scale from Fig. 5, to
the temperatures in the units ∼1 K, relevant to superfluidity of
the dislocations in solid 4He, gives the range T � 1–10 mK
where the suppression of the syringe effect should be looked
for. Furthermore, as described in Sec. IV B, there should
be strongly hysteretic behavior at low T . Searching for the
hysteresis may also provide crucial information. To what

extent such measurements at low T and μ are feasible remains
to be seen.

C. Equilibrium syringe fraction

As mentioned above, syringe effect implies a liquidlike
response of solid on chemical potential. The question is if
anything specific can be said about the nature of the conducting
network of dislocations. In this respect, an important insight
can be gained from Ref. [9]. In this experiment, the upper
part of solid 4He (see Fig. 1 of Ref. [9]), which is about
0.3 mm thick, was deformed by about 1 μm. This resulted in
an immediate elastic response ∼10 mbar at the other end of
the sample (about 10 mm away) followed by much slower and
stronger pressure increase reaching (equilibrium) values about
0.2 bar [see Fig. 2(a) in Ref. [9]]. It is instructive to compare
this number with the pressure imposed in the upper chamber
∼0.3–1 bar which resulted from strain ∼3 × 10−3. Since these
values are only a factor of 2–5 different, some information can
be drawn about the asymmetry between the lengths of the
dislocation network with the help of the relation (6). More
consistent studies of the dependence of �P vs imposed strain
and in situ measurements of the compression modulus may
shed more light on the nature of the syringe effect.

We also suggest focusing on interaction between glide (see
Refs. [17,18]) and superclimb of dislocations as a test for the
dislocation scenario. The question is to what extent the giant
plasticity of solid 4He [30] may affect the superflow and/or
superclimb. The effect [30] consists of softening of the shear
modulus Gel as temperature increases above ∼20–100 mK.
While in polycrystalline samples the softening is about 10%–
20% of the zero temperature value, in a monocrystal it can
reach 80%–90%. The main reason for this effect is glide of
basal plane dislocations. It is important to note that these
dislocations are not superfluid, and, therefore, they cannot
contribute directly to the superclimb. They, however, can affect
the syringe response through modifying the shear modulus.
We see the main channel for this through contributing to
the effective compression modulus Kel of the polycrystalline
medium as Kel = K0 + γGel(T ), with γ > 0 being a geomet-
rical coefficient determining how averaging of the crystallites
orientation contributes to the average Kel . Obviously, as Gel

softens with increasing T , the compression modulus should
soften too. In accordance with Eq. (6), this implies a decreasing
�P with temperature. In this regard we note that, as Fig. 2(a) of
Ref. [9] indicates, the equilibrium pressure change is indeed a
decreasing function of temperature. More comparative studies
of this dependence with the shear softening data [30] will be
very useful. [At this point we note that the core tension G

of a particular superclimbing segment [see Eqs. (1) and (10)]
should not be significantly affected by the plasticity effect in
the case of low density of basal dislocations because core of a
particular superclimbing edge segment “sees” the ideal crystal
in its close vicinity.]

D. Sudden stopping of the pressure evolution

A remarkable feature presented in Fig. 2(a) of Ref. [9]
reveals a sudden stopping of the pressure evolution. Clearly,
this feature is inconsistent with any type of activation behavior
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usually resulting in exponential relaxation. We propose a sce-
nario for this effect: initially long superclimbing dislocations
evolve into a structure characterized by small lengths Lx of
the free segments. Accordingly, once the resulting chemical
potential equilibrates over the whole sample, these segments
may enter the LL regime, where the superclimb is suppressed
because both μ and T are below the threshold determined by
Lx . This should result in the sudden stopping of the pressure
variation. More studies of the time evolution can provide
crucial information about the nature of this feature.

VI. CONCLUSIONS

We have introduced the J -current type model (10) describing
tilted superclimbing dislocation. According to the elementary
scaling analysis, such a dislocation should exhibit non-LL
behavior. In contrast, Monte Carlo simulations reveal the
emergence of the LL as temperature is lowered and the system
size exceeds certain scale determined by the line tension G

(bare shear modulus). This scale is characterized by high power
independent of the bare superfluid stiffness. The emerging
LL can also undergo the BKT transition into insulating state.
The LL behavior can be destroyed by macroscopically small
external bias by chemical potential. As a result, the giant
isochoric compressibility can be reinstated even at T = 0.
Our model provides predictions for the corresponding bias and
temperature dependencies which can be tested experimentally.
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APPENDIX: UNIVERSALITY OF THE TRANSITION
TO INSULATING STATE

Here, we support our statement that the quantum transition
to the insulating state of the model (9), (10) is of the BKT type.
The analysis is conducted for two points at the phase diagram
line (Fig. 9), corresponding to ρ0 = 0.8,1.

The model (9), (10) appears to be very different from
the standard J -current model [23] HXY = ∫

d2x K( 
∇φ)2/2,
which describes the compact U(1) phase φ in 2D and features
the BKT transition at the critical value Kc = 2/π of the
Luttinger parameter K [19].

If the models (9) and (10) undergo the same type of the
transition (at μ = 0), for each value of ρ0 there should be such
a critical value G = Gc that the evolution of the renormalized
Luttinger parameter K = √

ρsκ [defined in terms of the
windings in Eqs. (11) and (12)] should follow the solution
of the renormalization group (RG) equations with the critical
value Kc. Such an analysis has been pioneered in Ref. [31].

The RG equations have a form (see Ref. [19])

du

d ln l
= 2(1 − g)u,

dg−1

d ln l
= gu2 , (A1)

where u stands for the vortex fugacity and g = K/Kc. The
parameter l determines the typical scale of the renormalization.
Numerically, l can be associated with the system size as
l = L/L0 up to an arbitrary constant factor L0.

A general solution of the system (A1) can be expressed in
terms of two constants of integration, C, l0 > 0, determined
by the initial values of u and g, which in their turn are set
by the microscopic model (9), (10). The solution has a form
u2 = 2[ξ 2 + C],

F (ξ ) = 4 ln

(
l

l0

)
, ξ = 1

g
− 1 = Kc

K
− 1, (A2)

where for C > 0

F (ξ ) = ln[ξ 2(l) + C] − 2√
C

tan−1

(√
C

ξ

)
(A3)

and

F (ξ ) = ln[ξ 2(l) − C2] + 1√−C
ln

(
ξ (l) − √−C

ξ (l) + √−C

)
(A4)

for C < 0. The case C = 0 describes the separatrix u = √
2|ξ |

given by

F (ξ ) = 2 ln |ξ | − 2

ξ
. (A5)

In order to check if the flow of the renormalized Luttinger
parameter K(l), obtained from simulations of the model (9),
(10) can be described by the RG equations (A1), we tried to
fit our Monte Carlo data for K at large L by either solution
(A2) or (A4), with the properly chosen C constant for each
G. We have analyzed the values ρ0 = 0.8,1.0 for which the
large-L behavior is almost symmetric between space and time.
Our finding is that the data can be fit by C < 0 [Eq. (A4)] and
ξ > 0 with Kc = 2/π for each value of G.

It is important to note that C → 0 determines a diverging
correlation length Lc ∼ exp(1/4

√−C) → ∞ with C depend-
ing on the deviations from the critical parameter (see Ref. [19]).
In our case for fixed ρ0 we expect −C ∼ G − Gc > 0 (if
the data fit the RG prediction). Practically, the data were
substituted into the function F [Eqs. (A2) and (A4)] and
plotted vs 4 ln L. The value of C for a given G has been
adjusted so that the slope of F vs 4 ln L is unity. A good fit
could only be achieved for the solution (A4). The result of this
procedure for 10 values of G is presented in Fig. 14. As can

0.01 0.1

0.2

0.4

0.6

G-Gc

(-C)1/2

FIG. 14. The parameter
√−C versus G for ρ0 = 1. The solid line

is the fit by
√−C = A(G − Gc)0.5, Gc = 1.299, A = 2.886.
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be seen, the data points are consistent with the RG prediction
(−C)0.5 ∼ (G − Gc)0.5 with Gc ≈ 1.30. Thus, the transition
is of the BKT type.

The above analysis has been conducted for values ρ0

and G guaranteeing that the renormalized ρs and κ at large
T −1 = L are approximately equal to each other. This choice

was dictated by simplicity of the analysis and also faster
convergence of the simulations. It is natural to assume that
the universality does not change when ρs and κ become
significantly asymmetric. Thus, we conclude that the whole
line of the transitions G = Gc(ρ0) in the space ρ0,G (Fig. 9)
belongs to the BKT universality.
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