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Disorder and superfluid density in overdoped cuprate superconductors
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We calculate superfluid density for a dirty d-wave superconductor. The effects of impurity scattering are
treated within the self-consistent t-matrix approximation, in weak-coupling BCS theory. Working from a realistic
tight-binding parametrization of the Fermi surface, we find a superfluid density that is both correlated with Tc

and linear in temperature, in good correspondence with recent experiments on overdoped La2−xSrxCuO4.
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I. INTRODUCTION

The superfluid density ρs plays a special role in the physics
of cuprate superconductors, as it determines the stiffness of the
superconducting order parameter to fluctuations in its phase
[1,2]. In most superconductors ρs is large: phase fluctuations
are heavily suppressed and the transition temperature Tc is set
primarily by the gap energy 2� required to break a Cooper
pair. Cuprates, on the other hand, have a relatively low carrier
density, which limits ρs and leaves them susceptible to phase
fluctuations. As a result, both � and ρs may influence Tc in
the cuprates, with phase fluctuations playing an increasingly
dominant role as ρs approaches zero. Experiments support
this view: in hole-doped cuprates in the underdoped regime, Tc

correlates closely with ρs [3–7], whereas there is a large energy
gap that extends well into the normal state [8–10]. In addition,
a variety of superconducting fluctuation effects have been
observed above Tc in underdoped cuprates [11–22]. On the
overdoped side the situation is different: Tc appears to closely
track the energy gap [9,10,23], as it would in a conventional
superconductor; and, while the correlation between Tc and
ρs remains [24–30], the causal relationship between these
quantities is far less clear. Complicating the chain of causality
is another parameter—disorder—that directly influences ρs ,
Tc, and � in a d-wave superconductor [31–36]. One of our
main purposes in this paper is to explore the extent to which
disorder is an important driver of the relationships between the
other three quantities, with particular attention to the case of
the overdoped cuprates.

Strong motivation comes from a recent experiment [30],
which provides exhaustive evidence that the superfluid stiff-
ness and the superconducting transition temperature of over-
doped La2−xSrxCuO4 approach zero in tandem as a function of
doping. The new study reinforces the argument that the close
correlation between Tc and ρs is a significant and intrinsic
feature of the overdoped cuprates. It also shows that the
superfluid density retains an approximately linear temperature
dependence over a wide temperature range, as expected for a
d-wave superconductor in the clean limit [30,37]. Together,
these observations present a puzzle: on the one hand the
superfluid stiffness is expected to correlate with Tc in the
dirty limit, because the normal-state spectral weight is cut
off by the gap [29,31,38,39], but on the other hand the
observed temperature dependence of ρs appears to exclude
this possibility.

To try to resolve this contradiction we have revisited the
theoretical relationship between disorder, superfluid density,

and Tc within dirty d-wave BCS theory [31–33]. In a dirty
d-wave superconductor it is well known that strong-scattering
(unitarity-limit) impurities rapidly induce a crossover from
T -linear superfluid density to quadratic behavior [32,33,36]
below a crossover temperature T ∗ that is proportional to the
geometric mean of the normal-state impurity scattering rate
and the superconducting energy gap [33]. The corresponding
loss of superfluid density is of order T ∗/Tc. Therefore, in
this limit, any significant loss of superfluid density must
be accompanied by a very visible crossover to quadratic
behavior in ρs(T ). This result is so well known that the
argument is frequently run in reverse, with the measured
value of T ∗ used to place an upper bound on the degree of
superfluid suppression and Tc suppression due to impurities.
In fact, we will show that the reverse argument breaks down
for weak-scattering (Born-limit) disorder, and approximately
linear-in-temperature superfluid density can coexist with sub-
stantial suppression of superfluid density and Tc. We have
carried out calculations of superfluid density for realistic,
doping-dependent Fermi surfaces based on tight-binding
parametrizations of angle-resolved photoemission (ARPES)
dispersions for La2−xSrxCuO4 [40,41]. This turns out to be
crucial to carrying out a detailed comparison with ρs(T )
data on La2−xSrxCuO4. In the calculations, the effects of
disorder on the quasiparticle energies and lifetimes, and on
the superconducting energy gap and Tc, are calculated using
the self-consistent t-matrix approximation, within the weak-
coupling limit of d-wave BCS theory [32,33]. We conclude
that it is possible to obtain a superfluid density that is both
correlated with Tc and linear in temperature.

II. THEORY

A. Dirty d-wave superconductivity

The gap equation for a weak-coupling d-wave supercon-
ductor can be written in the imaginary-axis formalism as [32]

�k = 2πT

ω0∑
ωn>0

〈
Vk,k′

�k′√
ω̃2

n + �2
k′

〉
FS

, (1)

where �k is the gap parameter at wave-vector k, ωn =
2πT (n + 1

2 ) are the fermionic Matsubara frequencies, Vk,k′

is the pairing interaction, ω0 is a high frequency cutoff, and
〈· · · 〉FS denotes an average over the Fermi surface.
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In the self-consistent t-matrix approximation [32,33],
pointlike, nonmagnetic impurities renormalize the fermionic
Matsubara frequencies according to

ω̃n ≡ ω̃(ωn) = ωn + π�
〈Nk(ω̃n)〉FS

c2 + 〈Nk(ω̃n)〉2
FS

. (2)

Here c is the cotangent of the scattering phase shift, � is
a scattering parameter proportional to the concentration of
impurities, and

Nk(ω̃n) = ω̃n√
ω̃2

n + �2
k

. (3)

For a d-wave order parameter, which averages to zero over the
Fermi surface, there is no explicit impurity renormalization
of �k, just an indirect reduction through the effect of the
impurities on ω̃n.

For simplicity, we assume a separable pairing interaction
based on a d-wave form factor �k defined in the first Brillouin
zone of the two-dimensional CuO2 planes,

�k ∝ [cos(kxa) − cos(kya)], (4)

where a is the lattice spacing and �k is normalized such that
〈�2

k〉FS = 1. The pairing interaction therefore takes the form

Vk,k′ = V0�k �k′ . (5)

We will see below that for weak-coupling BCS, where the
cut-off frequency of the interaction ω0 is much larger than
the superconducting transition temperature Tc, the combined
effect of V0 and ω0 is captured by the clean-limit transition
temperature Tc0, so that V0 and ω0 do not appear explicitly as
parameters in the theory. Introducing a temperature-dependent
gap amplitude ψ(T ), the gap equation becomes

�k ≡ ψ�k = 2πT

ω0∑
ωn>0

〈
V0�k�k′

ψ�k′(
ω̃2

n + ψ2�2
k′
)1/2

〉
FS

. (6)

Canceling common factors, rearranging and reassigning
k′ → k, we have

1

V0
= 2πT

ω0∑
ωn>0

〈
�2

k(
ω̃2

n + ψ2�2
k

)1/2

〉
FS

. (7)

In the absence of disorder the quasiparticle energies are
unrenormalized (ω̃n = ωn) and the gap vanishes (ψ → 0) at
the clean-limit transition temperature Tc0. Using 〈�2

k〉FS = 1,
we have at this temperature

1

V0
= 2πTc0

ω0∑
ωn>0

1

ωn(Tc0)
≈ ln

(
2ω0

1.76 Tc0

)
, (8)

where the approximation is valid when ω0 
 Tc0. This
rearranges to give the familiar weak-coupling BCS result

Tc0 = 1.14 ω0 exp(−1/V0). (9)

The logarithmic temperature dependence in Eq. (8) can be
used to obtain an expression for the coupling constant V0 that
applies at any arbitrary temperature T [42,43]:

1

V0
= 2πT

ω0∑
ωn>0

1

ωn(T )
+ ln

(
T

Tc0

)
. (10)

This allows V0 to be eliminated from the gap equation, which
then takes the form

ln

(
Tc0

T

)
= 2πT

∞∑
ωn>0

(
1

ωn

−
〈

�2
k(

ω̃2
n + ψ2�2

k

)1/2

〉
FS

)
. (11)

Rapid convergence lets the Matsubara sum to be taken to
infinity, eliminating explicit dependence on ω0. For a given
choice of Fermi surface and impurity parameters, Eqs. (2) and
(11) are solved self-consistently to obtain ω̃n(T ) and ψ(T ).

In the presence of disorder the energy gap closes at a
reduced transition temperature Tc. For T � Tc, Nk(ω̃) → 1
and the t-matrix equation describing the impurity scattering,
Eq. (2) simplifies to

ω̃(ωn) = ωn + π�

1 + c2
≡ ωn + �N. (12)

The imaginary part of the self-energy in this limit is denoted
�N , the normal-state scattering rate due to impurities. Equation
(11) can be solved with ψ → 0 and ω̃n → ωn + �N to
determine Tc:

ln

(
Tc0

Tc

)
= 2πTc

∞∑
ωn>0

(
1

ωn

− 1

ωn + �N

)
(13)

=
∞∑

ωn>0

(
1

n + 1
2

− 1

n + 1
2 + �N

2πTc

)
(14)

= ψ0

(
1

2
+ �N

2πTc

)
− ψ0

(
1

2

)
, (15)

where ψ0(x) is the digamma function.

B. Superfluid density

The zero-temperature, zero-disorder penetration depth λ00

is closely related to the bare plasma frequency ωp. The
corresponding superfluid density is [44]

ρs00 ≡ 1

λ2
00

= μ0ε0ω
2
p (16)

= 2μ0e
2
∫ + π

d

− π
d

dkz

2π

∫
d2k

(2π )2
δ(εF − εk)v2

k,x . (17)

Here we specialize to a quasi-2D material with layer spacing
d and in-plane energy dispersion εk. εF is the Fermi energy,
k = (kx,ky) is the in-plane momentum, and vk = 1

h̄
( ∂
∂kx

, ∂
∂ky

)εk

is the in-plane velocity. We change Eq. (17) to a Fermi surface
integral by transforming coordinates from (kx,ky) to (ε,φ),
where φ is the angle in the plane, measured about (π

a
, π

a
) at

low hole dopings and (0,0) at higher dopings. The Jacobian of
the transformation is

J (φ) = ∂(kx,ky)

∂(ε,φ)
= |k|2

h̄ k·vk
. (18)

When the energy and kz integrations are carried out we obtain

1

λ2
00

= μ0e
2

2π2h̄d

∫ 2π

0

|kF |2
kF ·vF

v2
F,xdφ, (19)

where the Fermi wave-vector kF and Fermi velocity vF are
functions of φ. The Fermi surface average used in the previous
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section 〈· · · 〉FS must include the same Jacobian factor:

〈A(φ)〉FS ≡
∫ 2π

0
J (φ)A(φ)dφ

/∫ 2π

0
J (φ)dφ. (20)

For calculation of plasma frequency and superfluid density we
define a second Fermi surface average 〈〈· · · 〉〉FS that contains
the additional factor of v2

F,x :

〈〈A(φ)〉〉FS ≡
∫ 2π

0
J (φ)A(φ)v2

F,xdφ

/∫ 2π

0
J (φ)v2

F,xdφ. (21)

For Fermi surfaces that are close to circular these distinc-
tions are usually not important. However, for the overdoped
cuprates, the details of the Fermi-surface averages turn out
to be crucial to understanding the temperature dependence of
superfluid density measured in experiments, and so are given
here in full.

The finite temperature superfluid density, in the presence of
disorder, is most efficiently calculated using a Matsubara sum
[45]. Normalized to ρs00 it is given by

ρs(T )

ρs00
= 2πT

∞∑
ωn>0

〈〈
�2

k(
ω̃2

n + �2
k

)3/2

〉〉
FS

, (22)

where the effects of disorder are built in via the renormalized
Matsubara frequencies and gap.

C. Impurity contribution to normal-state resistivity

We use the normal-state impurity scattering rate �N to
parametrize the amount of scattering in the theory. Mo-
tivated by the known types of elastic-scattering disorder
in La2−xSrxCuO4 and other cuprates, we allow for two
types of defects acting in combination: weak-limit scatterers,
parametrized by �N,Born, to capture the effect of out-of-plane
defects such as Sr dopants, and strong-scattering disorder,
parametrized by �N,unitarity, to represent native defects in the
CuO2 planes, such as Cu vacancies. The combined effect of
Born and unitarity-limit scattering is additive in the self-energy
[Eq. (2)] [46].

An estimate of the scattering parameters to be used in the
model can be made by comparing �N with experiment, taking
care to note that the experimentally accessible scattering rate
(e.g., that observed in an ARPES measurement of inverse
lifetime [47]) is 2�N . Keeping this in mind and assuming
for now that the momentum relaxation rate is the same as the
single-particle scattering rate, the dc resistivity due to impurity
scattering will be

ρ0 = 2�N

ε0ω2
p

= μ0λ
2
00 × 2�N. (23)

Here λ00 is the zero-temperature penetration depth of a notional
system with the same Fermi surface (doping level) that does
not contain disorder. It cannot be accessed experimentally but
an estimate of λ00 can be made starting from the measured
zero-temperature penetration depth λ0, and then correcting for
the degree of superfluid suppression using the T → 0 limit of
Eq. (22):

λ2
00 = λ2

0

/
ρs(T → 0)

ρs00
. (24)

FIG. 1. Normalized superfluid density ρs/ρs00 for a d-wave
superconductor with a circular Fermi surface. The degree of scattering
is characterized by the normal-state scattering rate �N in units of
the clean limit transition temperature Tc0 for scatterers acting in the
Born limit (c 
 1) and the unitarity limit (c = 0). The temperature
dependence of the gap �(T ) has been calculated self-consistently for
each set of impurity parameters, assuming a separable d-wave pairing
interaction.

The final form for the residual resistivity is then

ρ0 = 2μ0λ
2
0�N

/
ρs(T → 0)

ρs00
. (25)

We note that this neglects the effects of small-angle scattering,
making it an upper bound on resistivity. If known, the small-
angle scattering correction can be applied to Eq. (25) as a
refinement.

III. COMPARISON WITH EXPERIMENT

A. Isotropic systems

Sufficiently far from half-filling the Fermi surface of a
quasi-2D metal is well approximated by a circle, and the
d-wave form factor is �(φ) ≈ √

2 cos(2φ). In this limit
the angle integrals can be evaluated analytically [48,49] and the
Matsubara sums computed rapidly. Results for the superfluid
density are shown in Fig. 1. The clean-limit curve displays one
of the clear hallmarks of d-wave gap nodes: linear behavior
in ρs(T ) [50]. Note that this behavior emerges only in the
asymptotic low-temperature limit—the substantial downwards
curvature in ρs(T ) at higher temperatures is a band-structure
effect due, in this case, to the particular choice of a circular
Fermi surface.

As discussed above, it is convenient to parametrize the
disorder level in terms of normal-state scattering rate �N . We
see in Fig. 1 that while Tc depends only on �N/Tc0, the form
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FIG. 2. Constant energy contours in momentum space for optimally to overdoped La2−xSrxCuO4, at selected nominal hole-dopings p,
based on a tight-binding parametrization of ARPES spectra [40]. Momentum is measured in units of inverse lattice spacing 1/a. Fermi surfaces
are depicted by solid black lines. Doping-dependent tight-binding parameters t ′ and ε0 are indicated on the plots, in units of nearest-neighbor
hopping integral t .

of ρs(T ) at lower temperatures is strongly affected by the
impurity phase shift. In both the Born (c 
 1) and unitarity
(c = 0) limits there is substantial suppression of the zero-
temperature superfluid density but it is only in the unitarity
limit that disorder rapidly causes a crossover to quadratic
behavior in ρs(T ) at low temperatures [36]. In contrast, it
takes a large amount of Born scattering (and subsequent loss of
superfluid density) before the low temperature linear behavior
in ρs(T ) is removed. Figure 1 therefore serves to illustrate that
while the observation of T 2 behavior in ρs(T ) is a concrete
indication that disorder is important, the observation of a
linear temperature dependence of ρs does not guarantee that a
material is a clean d-wave superconductor.

B. Overdoped cuprates

The mid-range curvature of ρs(T ) seen in Fig. 1 is
typically not observed in overdoped cuprate superconductors
[37,51–53]. To carry out a more detailed comparison with
the experiments on La2−xSrxCuO4 requires realistic Fermi
surfaces. The calculations presented below are based on
next-next-nearest-neighbor tight-binding parametrizations of
εk in La2−xSrxCuO4,

εk = ε0 − 2t(cos kxa + cos kya) − 4t ′ cos kxa cos kya

− 2t ′′(cos 2kxa + cos 2kya), (26)

obtained from fits to ARPES spectra as a function of hole
doping [40]. In the ARPES study t = 0.25 eV and t ′′/t ′ =
−0.5. t ′ and ε0 are parameters that vary with doping, leading
to the energy dispersions and Fermi surfaces shown in Fig. 2.
In this model the Fermi surface is defined by εk = 0.

To bridge between superfluid density and ARPES measure-
ments we assume the standard parabolic relationship between
Tc and hole doping p. The specific form used in Ref. [30] is

p = 0.16 + (0.01 − 2.4 × 10−4 Tc)1/2. (27)

This maps fairly closely onto the stated Sr concentrations
in the ARPES experiment of Ref. [40], with a slight offset:
i.e., x = 0.15 → p = 0.16 and x = 0.22 → p = 0.23. In the
future, it would be highly informative if ARPES measurements
could be carried out on samples similar to those used in
the penetration depth measurements, so that details in the

electronic structure could be lined up precisely with the
doping-dependent superfluid density. In any case, we note that
the parameter p is a nominal hole doping, and is only used in
the calculations as an internal variable. The doping dependence
of the calculated superfluid density shown in Fig. 3 is not
sensitive to the detailed mapping onto the ARPES experiment.
In particular, the change in Fermi surface topology as the Fermi
energy passes through the van Hove point does not appear as
a sharp feature in ρs(p); this is due to the factor of v2

F,x in the
relevant Fermi surface integral, which underweights the parts
of the Fermi surface where the dispersion is flat. The only sign
of the van Hove crossing is a small cusp in the zero-temperature
gap ratio 2�0/kBTc, as can be seen in the inset of Fig. 4. In
the current context, the most important consequence of basing
the calculations on realistic energy dispersions is the removal
of spurious mid-range curvature in ρs(T ) [54,55].

C. Disorder level

In deciding on the appropriate level of disorder to assume
in the calculations, useful guidance comes from dc resistivity.
As discussed in Sec. II, the scattering rate relevant to pair
breaking and superfluid density is the elastic scattering rate,
which is related to the residual resistivity ρ0 ≡ ρ(T → 0),
not the resistivity at Tc. To avoid uncertainties associated
with extrapolating resistivity below Tc, we assume a single,
doping-independent scattering rate in our calculation, as our
primary aim is to illustrate the physics contained within
dirty d-wave superconductivity. In addition, as mentioned
previously, the theoretical resistivity given in Eqs. (23) and
(25) does not account for the effects of small-angle scattering,
which in the cuprates can cause the momentum relaxation
rate �tr to be substantially smaller than the single-particle
relaxation rate �sp. Overdoped Tl2Ba2CuO6+δ provides a
useful point of reference here, as it is sufficiently clean
that quantum oscillation experiments have been performed
[56–58]. This enables the single-particle relaxation rate [57]
and momentum relaxation rate [59] to be determined sepa-
rately, with the result that �sp/�tr = 1.7 [53]. In the absence
of quantum oscillation data, we proceed by assuming the
same ratio for La2−xSrxCuO4. This is not unreasonable, as the
dominant source of disorder in both systems is out-of-plane
cation disorder: in the case of Tl2Ba2CuO6+δ , an excess of
Cu atoms, occupying Tl sites [60]; and in La2−xSrxCuO4,
the partial substitution of Sr for La that is an inherent part
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FIG. 3. Superfluid density in overdoped La2−xSrxCuO4. (a) Main panel: Superfluid density for overdoped La2−xSrxCuO4 from Ref. [30],
replotted in two dimensions, over the full temperature range that the data were measured: T > 300 mK for the lowest Tc sample and T > 3.4 K
for higher Tc samples. Shading indicates 2% error bands in superfluid density (1% error bands in penetration depth) as stated in Ref. [30].
The dashed line shows an example of the construction used to estimate the transition temperature T MF

c to be assumed in the corresponding
mean-field theory. Inset: Correlation between measured superconducting transition temperature Tc and zero-temperature superfluid density
ρs0 replotted from Ref. [30]. (b) Superfluid density calculated within dirty d-wave BCS theory, on ARPES-derived Fermi surfaces [40], for
predominantly weak scattering (�N,Born = 17 K) with a small amount of strong-scattering disorder (�N,unitarity = 1 K). Main panel: Superfluid
density ρs normalized to the zero-temperature, clean-limit superfluid density for optimally doped material ρ

opt
s00. Solid lines correspond to the

temperature range accessed in the experiments, and dashed lines extend this to lower temperatures. Inset: Correlation between mean-field
transition temperature T MF

c and ρs0/ρ
opt
s00.

of its hole-doping mechanism. With these assumptions, and
taking a residual resistivity ρ0 ≈ 16 μ� cm, we obtain a
normal-state scattering rate �N ≈ 18 K. In the calculations
presented here we partition this between predominantly weak,
Born-limit scattering (�N,Born = 17 K) with a small amount
of strong, unitarity-limit scattering (�N,unitarity = 1 K). The
inclusion of a small amount of strong-scattering disorder
causes a low-temperature crossover to T 2 dependence in
ρs(T ), which is hinted at by the data from Ref. [30], plotted in
Fig. 3(a). Note that this choice of scattering rate satisfies the
conditions for clean-limit superconductivity �tr  2�0 over
most of the doping range. In fact, based on the scattering
rate estimates above and the gap values plotted in Fig. 4, we
estimate �tr ∼ 2�0 only for Tc < 5 K. Nevertheless, there
is substantial loss of superfluid density to disorder across
the entire doping range, even where the conventional criteria
firmly place superconductivity in the clean limit. This points
to pair breaking in d-wave superconductors being a process
that spreads uncondensed spectral weight over a wide range of
subgap frequencies.

IV. DISCUSSION

The calculated superfluid density is presented in Fig. 3(b).
In our calculations the underlying Fermi surface follows
the doping dependence of the electronic structure measured
in the ARPES experiments [40] and is not an adjustable
parameter. At each value of the nominal hole doping p,
the underlying clean-limit transition temperature Tc0 is set
according to Eq. (15) so that Tc, the transition temperature

in the presence of disorder, matches the mean-field transition
temperature T MF

c , inferred by extrapolating the linear regime
of the experimental ρs(T ) curve to zero, as shown in Fig. 3(a).
The doping dependencies of Tc, T MF

c , and Tc0 are plotted
in Fig. 5(a) and the tight-binding parameters used in the
calculation are shown in Figs. 5(b) and 5(c). As described
in the previous section, the amount of impurity scattering is
the only independent parameter in the theory and has been
fixed as a function of doping, for the sake of simplicity, as
discussed in Sec. III C.

The superfluid density calculated from dirty d-wave BCS
theory reproduces many of the features observed in the
experiments in Ref. [30]. In particular, ρs(T ) shows a strong,
nearly linear temperature dependence over almost the full
doping range, despite the strong suppression of superfluid
density caused by the disorder. The correlation between Tc and
ρs0 [see inset of Fig. 3(b)] also reproduces the main features
of the experiments, namely the almost linear dependence at
higher Tc, with finite intercept, crossing over to square-root
behavior at low Tc. Indeed, very similar behavior of Tc(ρs0)
was found in earlier calculations of superfluid density for
Born-limit scattering on a circular Fermi surface (Fig. 4 of
Ref. [31]).

One concern might be that the crossover in Tc(ρs0) from
linear to square-root behavior does not occur as smoothly
in the experimental data as in the theoretical curve. In the
idealized form considered in this paper, the dirty d-wave
BCS theory assumes spatial homogeneity, whereas there is
a body of evidence that real samples of La2−xSrxCuO4

consist of an inhomogeneous mixture of superconducting
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FIG. 4. Superconducting gap parameter underlying the superfluid
density calculation. Main panel: Temperature and doping dependence
of the gap maximum on the Fermi surface. Inset: Doping dependence
of the zero-temperature gap ratio 2�0/kBTc. Dashed line denotes the
clean-limit d-wave BCS value 2�0 = 4.28kBTc.

and metallic regions, with the fraction of metallic regions
increasing on overdoping [28,61]. While the samples in
Ref. [30] are grown with exquisitely controlled average
composition, the doping mechanism in La2−xSrxCuO4 is based
on random substitution of cations and inhomogeneity must
always become relevant when approaching the overdoped
phase boundary. In addition, the technique used to characterize
inhomogeneity in Ref. [30] (measurement of the temperature
width of the out-of-phase susceptibility near Tc) is not a
good probe of in-plane microscopic inhomogeneity, as the
superconducting coherence length diverges at Tc, averaging
over short-length-scale inhomogeneity. For an inhomogeneous
superconductor the electrodynamic response can be modeled
using effective medium theory of the conductivity [62,63].
This is described in the Appendix, where the macroscopic
superfluid density is shown to simply be a scaled version of the
microscopic superfluid density in the superconducting regions.
The effect of this type of inhomogeneity would be to distort
the theoretical Tc(ρs0) curve to the left as the inhomogeneous
regime is entered, which may explain the kink at low ρs0 that
appears in the experimental curve [see inset of Fig. 3(a)].

Another possible concern is the degree of superfluid
suppression predicted by the calculations, which at first sight
appears surprising large. We emphasize again that the disorder
level assumed in the calculation corresponds closely to the
observed resistivity, and is really the only adjustable parameter
in the model. Here a useful crosscheck comes again from
comparison with overdoped Tl2Ba2CuO6+δ , where for Tc ≈
25 K material the degree of superfluid suppression ρs0/ρs00 is
estimated to lie in the range 0.25 to 0.4 [53], despite overdoped

FIG. 5. Doping dependence of model parameters. (a) Clean-limit
transition temperature Tc0 and mean-field transition temperature T MF

c

plotted along with the experimentally observed transition temperature
Tc from Ref. [30]. (b) Next-nearest-neighbor hopping integral t ′ in
units of the nearest-neighbor hopping t . (c) Energy offset ε0 in units
of t . Doping-dependent tight-binding parameters are interpolations
through discrete values (solid points) from Ref. [40].

Tl2Ba2CuO6+δ having a residual resistivity [59] less than half
that of La2−xSrxCuO4.

Finally, while the main purpose of our calculation is to
illustrate the qualitative features contained within dirty d-wave
superconductivity, it is interesting that the implied clean-limit
transition temperatures Tc0 are large and have a suggestive
similarity to the temperatures at which the first experimental
signatures of superconductivity are observed in properties such
as magnetoresistance [19]. The mean-field model considered
here does not include fluctuation effects, which are known to be
important in the cuprates [11–22] and are probably responsible
for the downturns in the experimentally observed ρs(T ) on
the approach to Tc [64]. Nevertheless, one way in which the
underlying Tc0 might become visible in experiments would
be as rare regions in which the local disorder level is lower
than average. The overall implication is that disorder not only
plays a role in limiting superfluid density in the overdoped
cuprates, but in suppressing the transition temperature. This
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suggests that it may be possible to enhance Tc, as well as
the doping range over which superconductivity occurs, by
controlled engineering of disorder in these materials.

V. CONCLUSIONS

In conclusion, we find that dirty d-wave BCS theory,
applied to a realistic parametrization of the doping-dependent
Fermi surface, reproduces most of the phenomenology of
the superfluid density in overdoped La2−xSrxCuO4 [30]. A
strong suppression of superfluid density is achieved without
introducing significant curvature in ρs(T ) by considering
predominantly weak, Born-limit scattering, at a disorder level
compatible with the observed resistivity, and in a regime that
firmly satisfies the conventional definition of clean-limit su-
perconductivity �tr  2�0. We conclude that the correlation
between Tc and ρs observed in the overdoped cuprates is a
generic feature of a disordered d-wave superconductor.
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APPENDIX: EFFECTIVE-MEDIUM THEORY
OF AN INHOMOGENEOUS SUPERCONDUCTOR

One way to account for the effects of microscopic inhomo-
geneity is effective medium theory [62]. This has been carried
out in Ref. [63] for a two-dimensional system consisting
of normal regions of conductivity σn and superconducting
regions of conductivity σs . In the case of the low-frequency
superfluid density it is useful to first consider the limit of
nonzero frequency ω, where the conductivity of the supercon-
ductor is finite and predominantly imaginary, σs ≈ 1/iωμ0λ

2.
According to the theory, the effective conductivity σ is a root
of the equation

σ 2 + (1 − 2f )(σs − σn)σ − σnσs = 0, (A1)

where f is the fraction of the sample occupied by the
superconducting regions. In the low frequency limit σs 
 σn.
Then

σ → (2f − 1)σs = (2f − 1)
1

iωμ0λ2
. (A2)

The static superfluid density is defined to be

ρs ≡ lim
ω→0

ωμ0Im{σ } = (2f − 1)
1

λ2
. (A3)

We therefore expect the macroscopic (observed) superfluid
density to be a scaled version of the microscopic superfluid
density, with the scale factor ranging from 1 in the limit of no
inhomogeneity to 0 on approach to the percolation threshold
at f = 1

2 .
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(2011).

024501-7

https://doi.org/10.1038/374434a0
https://doi.org/10.1038/374434a0
https://doi.org/10.1038/374434a0
https://doi.org/10.1038/374434a0
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1126/science.288.5465.468
https://doi.org/10.1103/PhysRevLett.62.2317
https://doi.org/10.1103/PhysRevLett.62.2317
https://doi.org/10.1103/PhysRevLett.62.2317
https://doi.org/10.1103/PhysRevLett.62.2317
https://doi.org/10.1103/PhysRevLett.94.117001
https://doi.org/10.1103/PhysRevLett.94.117001
https://doi.org/10.1103/PhysRevLett.94.117001
https://doi.org/10.1103/PhysRevLett.94.117001
https://doi.org/10.1038/nphys707
https://doi.org/10.1038/nphys707
https://doi.org/10.1038/nphys707
https://doi.org/10.1038/nphys707
https://doi.org/10.1103/PhysRevLett.99.237003
https://doi.org/10.1103/PhysRevLett.99.237003
https://doi.org/10.1103/PhysRevLett.99.237003
https://doi.org/10.1103/PhysRevLett.99.237003
https://doi.org/10.7566/JPSJ.85.091005
https://doi.org/10.7566/JPSJ.85.091005
https://doi.org/10.7566/JPSJ.85.091005
https://doi.org/10.7566/JPSJ.85.091005
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1103/PhysRevB.67.174520
https://doi.org/10.1103/PhysRevB.67.174520
https://doi.org/10.1103/PhysRevB.67.174520
https://doi.org/10.1103/PhysRevB.67.174520
https://doi.org/10.1088/0034-4885/71/6/062501
https://doi.org/10.1088/0034-4885/71/6/062501
https://doi.org/10.1088/0034-4885/71/6/062501
https://doi.org/10.1088/0034-4885/71/6/062501
https://doi.org/10.1038/18402
https://doi.org/10.1038/18402
https://doi.org/10.1038/18402
https://doi.org/10.1038/18402
https://doi.org/10.1038/35020016
https://doi.org/10.1038/35020016
https://doi.org/10.1038/35020016
https://doi.org/10.1038/35020016
https://doi.org/10.1103/PhysRevLett.88.257003
https://doi.org/10.1103/PhysRevLett.88.257003
https://doi.org/10.1103/PhysRevLett.88.257003
https://doi.org/10.1103/PhysRevLett.88.257003
https://doi.org/10.1103/PhysRevLett.95.247002
https://doi.org/10.1103/PhysRevLett.95.247002
https://doi.org/10.1103/PhysRevLett.95.247002
https://doi.org/10.1103/PhysRevLett.95.247002
https://doi.org/10.1103/PhysRevB.73.024510
https://doi.org/10.1103/PhysRevB.73.024510
https://doi.org/10.1103/PhysRevB.73.024510
https://doi.org/10.1103/PhysRevB.73.024510
https://doi.org/10.1103/PhysRevB.73.092504
https://doi.org/10.1103/PhysRevB.73.092504
https://doi.org/10.1103/PhysRevB.73.092504
https://doi.org/10.1103/PhysRevB.73.092504
https://doi.org/10.1038/nphys563
https://doi.org/10.1038/nphys563
https://doi.org/10.1038/nphys563
https://doi.org/10.1038/nphys563
https://doi.org/10.1103/PhysRevB.80.094511
https://doi.org/10.1103/PhysRevB.80.094511
https://doi.org/10.1103/PhysRevB.80.094511
https://doi.org/10.1103/PhysRevB.80.094511
https://doi.org/10.1038/nphys1945
https://doi.org/10.1038/nphys1945
https://doi.org/10.1038/nphys1945
https://doi.org/10.1038/nphys1945
https://doi.org/10.1038/nphys1912
https://doi.org/10.1038/nphys1912
https://doi.org/10.1038/nphys1912
https://doi.org/10.1038/nphys1912
https://doi.org/10.1103/PhysRevB.83.144508
https://doi.org/10.1103/PhysRevB.83.144508
https://doi.org/10.1103/PhysRevB.83.144508
https://doi.org/10.1103/PhysRevB.83.144508


N. R. LEE-HONE, J. S. DODGE, AND D. M. BROUN PHYSICAL REVIEW B 96, 024501 (2017)

[22] K. Behnia and H. Aubin, Rep. Prog. Phys. 79, 046502 (2016).
[23] D. G. Hawthorn, S. Y. Li, M. Sutherland, E. Boaknin, R. W. Hill,

C. Proust, F. Ronning, M. A. Tanatar, J. Paglione, L. Taillefer, D.
Peets, R. Liang, D. A. Bonn, W. N. Hardy, and N. N. Kolesnikov,
Phys. Rev. B 75, 104518 (2007).

[24] Y. J. Uemura, A. Keren, L. P. Le, G. M. Luke, W. D. Wu, Y.
Kubo, T. Manako, Y. Shimakawa, M. Subramanian, J. L. Cobb,
and J. T. Markert, Nature (London) 364, 605 (1993).

[25] C. Niedermayer, C. Bernhard, U. Binninger, H. Glückler, J. L.
Tallon, E. J. Ansaldo, and J. I. Budnick, Phys. Rev. Lett. 71,
1764 (1993).

[26] J.-P. Locquet, Y. Jaccard, A. Cretton, E. J. Williams, F.
Arrouy, E. Mächler, T. Schneider, Ø. Fischer, and P. Martinoli,
Phys. Rev. B 54, 7481 (1996).

[27] C. Bernhard, J. L. Tallon, T. Blasius, A. Golnik, and C.
Niedermayer, Phys. Rev. Lett. 86, 1614 (2001).

[28] Y. Wang, J. Yan, L. Shan, H.-H. Wen, Y. Tanabe, T. Adachi, and
Y. Koike, Phys. Rev. B 76, 064512 (2007).

[29] T. R. Lemberger, I. Hetel, A. Tsukada, M. Naito, and M.
Randeria, Phys. Rev. B 83, 140507 (2011).
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