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Electric-field control of magnetization promises to substantially enhance the energy efficiency of device
applications ranging from data storage to solid-state cooling. However, the intrinsic linear magnetoelectric
effect is typically small in bulk materials. In thin films, electric-field tuning of spin-orbit-interaction phenomena
(e.g., magnetocrystalline anisotropy) has been reported to achieve a partial control of the magnetic state. Here
we explore the piezomagnetic effect (PME), driven by frustrated exchange interactions, which can induce a net
magnetization in an antiferromagnet and reverse its direction via elastic strain generated piezoelectrically. Our
ab initio study of PME in Mn-based antiperovskite nitrides identified an extraordinarily large PME in Mn3SnN
available at room temperature. We explain the magnitude of PME based on features of the electronic structure
and show an inverse proportionality between the simulated zero-temperature PME and the magnetovolume effect
at the magnetic (Néel) transition measured by Takenaka et al. in nine antiferromagnetic Mn3AN systems.
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I. INTRODUCTION

Emerging nonvolatile magnetic random access memory
(MRAM) devices represent bits of information as a magne-
tization direction which needs to be stabilized by magnetic
anisotropy. A spin-transfer torque (STT) is typically used to
overcome the energy barrier between two stable directions.
STT is induced by passing spin-polarized current which
leads to Joule heating and sets limits on the storage density.
Much research is focused on alternative switching mechanisms
based on direct or indirect electric-field control of magnetic
anisotropy which can reduce the dissipated energy by a
factor of 100 [1]. At the same time antiferromagnetic (AFM)
spintronics [2] explores alternatives to STT-MRAM devices
based on active AFM components with a bistable alignment
of the local magnetic moments. The switching then utilizes a
spin-orbit torque (SOT) induced by an unpolarized electrical
current in collinear AFMs [3,4] or STT due to a spin-polarized
current in proposed noncollinear AFM junctions [5]. There
is no dipolar coupling between neighboring elements and
they are insensitive to external magnetic fields. Again this
alternative promises a higher storage density and energy
efficiency.

Here we explore the underlying physics required to postu-
late an ambitious approach combining the electric-field control
of magnetic moments with the noncollinear antiferromagnetic
structure of Mn-based antiperovskite nitrides. The required
coupling between the spin and orbital degrees of freedom is
dominated by geometrically frustrated exchange interactions.
The indirect magnetoelectric effect (ME) is hosted by a piezo-
magnetic Mn-based antiperovskite layer elastically coupled
to a piezoelectric substrate. We focus on the piezomagnetic
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effect (PME) which is characterized by a net magnetization
that is directly proportional to the applied lattice strain [6,7].
Fully compensated AFM states are hard to track and utilize
in general but the PME offers a valuable technique to probe
and control the AFM ordering via the strain-induced magnetic
moment.

To substantiate the future use of the PME in magnetoelectric
composites, we perform a systematic ab initio study of PME
in nine cubic antiperovskites Mn3AN (A = Rh, Pd, Ag, Co,
Ni, Zn, Ga, In, Sn). We explain the variation of the magnitude
of PME across this range of compounds based on features
of their electronic structure. The PME in Mn3SnN predicted
here is an order of magnitude larger than the PME modelled
so far in Mn3GaN [7]. Moreover, we compare the simulated
PME to the measured magnetovolume effect (MVE) at a
magnetic (Néel) transition temperature [8] across the full
set of nine systems and shown that the effects are inversely
proportional to each other. This agreement with experimental
data is remarkable because both the PME and MVE originate in
the frustrated AFM structure but we simulate the PME at zero
temperature whereas the MVE was measured at the magnetic
(Néel) transition temperature. The MVE has not been modelled
for this set of systems before.

Note that Mn3AgN and Mn3RhN do not share the triangular
AFM order according to earlier neutron-diffraction studies [9],
whereas the magnetic structure of Mn3CoN and Mn3PdN is
yet to be confirmed experimentally. We include these four
compounds in our study as their composition, AFM order,
and experimentally resolved MVE [8] makes them potential
candidates for piezomagnetic behavior.

In more general terms, we perform a computational experi-
ment when the magnetic system is initialized in the triangular
state (representation �4g or �5g as described below) even if
it was only a local energy minimum for Mn3AN (A = Ag,
Co, Pd, Rh) and the response (induced magnetization) to
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a tetragonal distortion is detected. The consistency of the
piezomagnetic response across the whole set of materials
motivates us to use this procedure as a probe of the level of
frustration of the exchange interaction even if the real systems
do not host piezomagnetism.

A. Mn-based antiperovskites

Mn-based antiperovskite nitrides were first examined in
the 1970s [10,11]. More recent experimental work on these
metallic compounds includes a demonstration of large negative
thermal expansion (NTE) in Mn3AN (A = Ga, Zn, Cu, Ni)
[12–15] at the first-order phase transition to a PM state. A
large barocaloric effect was measured in Mn3GaN at TN = 288
K [16] and the Mn-based antiperovskites were consequently
proposed as a new class of mechanocaloric materials. More im-
portantly for spintronic applications, the baromagnetic effect
(BME), which is closely related to the PME, was reported in
Mn3G0.95N0.94 very recently [17], the exchange bias effect was
observed in Mn3GaN/Co3FeN bilayers [18], perpendicular
magnetic anisotropy was demonstrated in Mn67Ga24N on MgO
substrate, and the magnetocapacitance effect was measured in
Mn3GaN/SrTiO3 bilayers [19].

Theoretical work on Mn-based antiperovskites includes an
early tight-binding study [20] suggesting that the proximity of
the Fermi energy to a sharp singularity (narrow Np-Mnd band)
in the electronic density of states has a large influence on the
stability of the structural and magnetic phases. However, this
model considers only nearest-neighbor Mn-N hopping and
neglects any hybridization with atom A. Phenomenological
studies analyzed phase transitions [21], magnetoelastic, and
piezomagnetic [6] properties with respect to the symme-
try of the crystal and magnetic structure. More recently
ab initio modeling of the noncollinear magnetic structure has
been carried out. The NTE and MVE are attributed to the
frustrated exchange coupling between the three Mn atoms
[14,22,23]. The local spin density has been simulated for
Mn3GaN and Mn3ZnN revealing its distinctly nonuniform
distribution and localized character of the 3d Mn moment [24].
The piezomagnetic [7] and flexomagnetic effect [25] were
simulated in Mn3GaN by the same group. The strain-induced
net magnetic moment predicted for Mn3GaN is an order of
magnitude lower than that of Mn3SnN predicted in this work.

B. The piezomagnetic effect

The PME is defined by a linear dependence of the net
magnetization on elastic stress tensor components, in contrast
to the magnetoelastic effect where the dependence on stress is
quadratic. Both effects can be described phenomenologically
by adding appropriate stress-dependent terms to the free
energy:

F (T ,H,σ ) = F0(T ,H) − λi,jkHiσjk − μi,jkHiσ
2
jk, (1)

where λi,jk is an axial time-antisymmetric tensor representing
the PME, Hi are components of the magnetic field, σjk

is the elastic stress tensor, and μi,jk is the magnetoelastic
tensor. Nonvanishing elements of λi,jk correspond to terms of
Eq. (1) which are invariant under operations from the magnetic
symmetry group [26]. These elements then contribute to the

FIG. 1. Mn-based antiperovskite magnetic unit cell, cubic and
strained lattice assuming Poisson’s ratio of 0.5; the canting and
changes of size are not to scale. (a) Unstrained structure of Mn3GaN
with local moments on Mn sites according to �5g representation. (b)
Tensile strained magnetic order in (111) plane; Mnet indicates the
direction of the induced net moment. (c) Compressively strained unit
cell; (d) Tensile strained unit cell.

magnetization:

Mi = − ∂F

∂Hi

= − ∂F0

∂Hi

+ λi,jkσjk + μi,jkσ
2
jk. (2)

The PME was first proposed by Voigt [27] in 1928. The
linear character limits its existence to systems without time-
inversion symmetry or with a magnetic group that contains
time inversion only in combination with other elements
of symmetry [28]. Hence, the PME is forbidden in all
paramagnetic and diamagnetic materials. The most striking
manifestation of the PME is in antiferromagnets where the
zero spontaneous magnetization acquires a finite value upon
application of strain. The first AFM systems where PME was
proposed [29,30] and later observed [31] were transition-metal
difluorides. In Mn-based antiperovskite nitrides PME was
predicted quantitatively in 2008 [7] and it has not been
observed experimentally so far.

The noncollinear magnetic structure of Mn3AN which
hosts the PME and NTE considered in this work is shown
in Fig. 1. (The direction of canting of the Mn local moments is
specific for Mn3GaN.) The ground state presented in Fig. 1(a)
is the fully compensated AFM structure with symmetry
corresponding to the �5g representation [32]. (The magnetic
unit cell belongs to the trigonal space group P 31m and has
the same size as the cubic paramagnetic unit cell belonging
to space group Pm3m.) The exchange coupling between
the neighboring Mn atoms is antiferromagnetic, which leads
to the frustration in the kagome-type lattice in the (111)
plane (highlighted as orange online). The three Mn local
magnetic moments (LMMs) are of the same size and have an
angle of 2π/3 between their directions. Spin-orbit interaction
(SOI) aligns the plane defined by the directions of the three
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TABLE I. Physical properties of Mn3AN: Néel temperature,
lattice parameter at 10 K, calculated lattice parameter, spontaneous
volume change, Poisson’s ratio, bulk modulus, size of Mn local
moment in unstrained system. All measured data are taken from
Ref. [8] except a0 and TN for Mn3SnN, which are from Ref. [9].
Calculated data are markedt .

A TN [K] a0 [Å] at
0 [Å] ωs [10−3] νt Kt [GPa] Mt

0 [μB ]

Rh 226 3.918 3.88 2.07 0.19 148.4 2.84
Pd 316 3.982 3.94 3.60 0.20 140.7 3.15
Ag 276 4.013 3.98 5.79 0.20 118.9 3.08
Co 252 3.867 3.80 5.64 0.13 149.5 2.48
Ni 256 3.886 3.84 8.18 0.15 136.5 2.83
Zn 170 3.890 3.87 20.44 0.13 126.0 2.64
Ga 288 3.898 3.86 19.10 0.13 129.4 2.43
In 366 4.000 3.99 9.24 0.18 115.0 2.70
Sn 475 4.060 3.97 0.0 0.18 102.0 2.52

LMMs with the (111) lattice plane resulting in the �5g

representation of Fig. 1. A simultaneous rotation of all three
LMMs by π/2 within the (111) plane results in another
fully compensated AFM structure corresponding to the �4g

representation where the LMMs all point inside (outside) the
triangle in a given (adjacent) plane [10]. The energy difference
between �4g and �5g ordering is also purely due to SOI
whereas the noncollinearity and the strong magneto-structural
coupling is due to the exchange interaction. Note that the
exchange interaction origin of the PME distinguishes it from
magnetostriction, which is due to SOI [7]. The PME can be
described as linear exchange-striction as the strength of the
exchange interactions driving the PME is of the order of
10 meV per unit cell whereas the spin-orbit coupling falls
between 0.1 and 1 meV per unit cell according to our ab initio
simulations.

II. RESULTS

We calculate the total energy, magnetic moments, and
projected density of states (DOS) for the noncollinear magnetic
structure of biaxially strained Mn3AN (A = Rh, Pd, Ag, Co,
Ni, Zn, Ga, In, Sn) from first principles. Our computational
procedure is the following:

(1) We find the equilibrium lattice parameter a0, bulk
modulus K , and Poisson’s ratio ν for each material with fixed
AFM order by fitting the total energies obtained for a range of
lattice parameters (a,c/a) to the Birch–Murnaghan equation
of state [33]. We also allowed for relaxation of individual
atomic positions but we found no bond buckling in agreement
with an earlier ab initio study [7]. The results are summarized
in Table I.

(2) We relax the magnetic moments with a fixed lattice for
a range of biaxial strains to evaluate the PME. We perform
two independent sets of calculations with the vertical lattice
parameter c set (a) to conserve the unstrained unit cell volume -
data labeled “V”, and (b) according to the calculated Poisson’s
ratio - data labeled “P”. The initial AFM local moment
directions and sizes are either relaxed by using a noncollinear
implementation of spin-density functional theory (VASP code
[34]) in a self-consistent loop or explicitly by searching for

FIG. 2. Total energy as a function of biaxial strain and canted
angle for Mn3GaN. No interpolation is used in the surface plot. The
equilibrium angle depends linearly on the strain. The reference energy
corresponds to E(θ1 = 0) for each strain.

minima in a total energy profile Etot(ε,θ1) as shown in Fig. 2.
The quantitative agreement of these two methods gives us
confidence that we have found the physically relevant energy
minimum. All calculations include spin-orbit coupling and
confirm that its impact on the PME is negligible in the case of
period four and five elements.

(3) Finally, we increase the density of k-points and
calculate the projected DOS for the converged strained and
unstrained noncollinear structures to identify features in the
electronic structure that would explain the variation of the
PME across the material range. Our results do not confirm a
proximity of the Fermi energy to a sharp peak in the DOS as
suggested by an earlier tight-binding study [20].

Figures 1(c) and 1(d) represent a qualitative overview
of the simulated response of the magnetic structure to the
compressive and tensile strain, respectively. A comparison
with the ground state in Fig. 1(a) shows that Mn magnetic
moments cant and change size, which are two independent
contributions to the PME. This behavior is due to the strain-
induced reduction of symmetry from P 31m to the Pm′m′m
orthorhombic magnetic space group [7] and from Pm3m to
the P 4/mmm tetragonal space group in the paramagnetic case
[13] [the system is no longer invariant under the third-order
rotation about the (111) axis].

For more clarity, Fig. 1(b) shows the tensile strained
(ε = �a/a0 > 0) magnetic order in the (111) plane. The
canted angles θi within the (111) plane and LMM magnitudes
Mi on the three Mn sites are introduced. The moments in the
(100) and (010) planes cant in opposite directions, θ1 = −θ2,
to become more parallel (antiparallel) in case of positive
(negative) θ1. The moment in the (001) plane does not change
direction.

The change of moment size �Mi = Mi − M0 is strongly
dependent on the c/a ratio of the tetragonal lattice. (M0 is
the LMM size common to all Mn sites in the unstrained
system.) The changes plotted in Fig. 1(b) correspond to unit-
cell volume conservation when �M1 = �M2 ≈ −�M3/2
for all systems studied. M3 universally increases (decreases)
with compressive (tensile) strain. With realistic Poisson’s
ratios all three Mn moments increase (decrease) for tensile
(compressive) strain following the volume change of the unit

024451-3



J. ZEMEN, Z. GERCSI, AND K. G. SANDEMAN PHYSICAL REVIEW B 96, 024451 (2017)

FIG. 3. Comparison of the net moment Mnet induced by 1% of
tensile strain: (a) Mnet assuming unit-cell volume conservation (V)
and Poisson ratios of Table I (P) and MJ

net fit according to Eq. (5).
(b) Comparison of the PME, measured by Mnet(V), to the inverse of
the energy separation between p or d states of atom A and d states
of Mn, marked by the dashed line.

cell. (Mn3RhN is the only exception where M3 is almost
independent of strain.) Atom A develops a moment two orders
of magnitude lower than the Mn local moment for small
applied strain, |ε| < 1%, so its role in PME is negligible.

The unstrained ground state (plotted �5g) has no spon-
taneous magnetization but a net moment Mnet aligned with
M3 develops upon straining. Our calculations confirm that the
canted angle θi , the change of moment size �Mi , and conse-
quently Mnet = 2M1 cos(2π/3 + θ1) + M3 depend linearly on
applied strain as required by Eq. (2). The dependence departs
slightly from linearity for larger strain |ε| > 1%, and our study
is limited to the interval ε ∈ 〈−2.5,2.5〉%. A striking feature
of the PME is the change of orientation of Mnet when switching
between tensile and compressive biaxial strain. We note that
such control of net moment orientation cannot be achieved
by magnetostriction. [The same description holds also for �4g

order but Mnet ‖ M3 is then rotated by π/2 in the (111) plane.]
Table I lists all relevant measured properties and results

calculated in this work. Our Mn magnetic moment for
Mn3GaN is in good agreement with a previous theoretical
study [7]. Our Poisson’s ratios do not vary much across
the range of compounds and are slightly smaller than
ν = 0.25–0.3 predicted by an ab initio study of elastic proper-
ties in Mn3(Cu,Ge)N [35]. All calculated lattice parameters are
1%–2% smaller than the values measured at low temperatures.

Figure 3 presents our results on the PME and the related
features of electronic band structure. The net moment Mnet

plotted for the nine Mn-based antiperovskite systems subject
to tensile strain ε = 1% is a natural measure of the PME. A
positive (negative) value of Mnet corresponds to a net moment
induced parallel (antiparallel) to M3 irrespective of belonging
to the �4g or �5g representation.

Figure 3(a) compares the PME obtained assuming unit-cell
volume conservation (Poisson’s ratio ν = 0.5) and using our
calculated Poisson ratios ν listed in Table I, which correspond
to smaller vertical distortion for a given strain. The latter is
our lower estimate of the experimentally accessible PME as
our calculated values of ν are lower than expected for metallic
materials. The former version of the PME neglects the elastic
properties of the lattice and represents the response of the
frustrated magnetic system to a lattice symmetry breaking
(normalized tetragonal distortion). As a result, the predicted
Mnet (V) should be regarded as an upper estimate of the
experimentally accessible PME. In both cases Mn3SnN is
predicted to have Mnet an order of magnitude larger than
Mn3GaN, the only PME value available in the literature [7].

A. Fitting the piezomagnetic effect
with a Heisenberg model

To interpret the calculated PME in terms of the AFM
pairwise exchange interactions Jij (ε) between the three Mn
atoms in the (111) plane we resort to the classical Heisenberg
model with variable moment sizes:

E(θ1,ε) = −J12M1M2 cos(2π/3 − 2θ1)

− 2J13M1M3 cos(2π/3 + θ1), (3)

where the values of the exchange parameters J13 = J23 �=
J12 and the local moments M1 = M2 �= M3 introduced in
Fig. 1(b) are restricted by the tetragonal symmetry of the
lattice. We find the canted angle by minimizing the exchange
energy (∂E/∂θ1 = 0) and insert it into the expression for
the net moment Mnet = 2M1 cos(2π/3 + θ1) + M3. We obtain
a relationship between PME and changes of the exchange
interaction due to strain:

MJ ′
net

M3
≡ 1 − J13

J12
(4)

≈ J0 − �J − (J0 + �J )

J0 − �J
≈ −2�J

J0
,

MJ
net ≡ −2M3

J0
�J = 2M3

J0

∂J12

∂ε
�ε, (5)

where MJ ′
net is an approximation of Mnet based on our minimal

model of Eq. (3), J0 < 0 is the exchange parameter in the
unstrained lattice, and �J is the induced change of J12 and
J13. We have fit our ab initio total energy as a function of the
canted angle to the Heisenberg model of Eq. (3) to extract J12

and J13 for each value of strain. In all compounds we have
observed J12 ≈ J0 − �J and J13 ≈ J0 + �J , which allows
us to define MJ

net in Eq. (5) that is directly proportional to the
derivative of the exchange parameters Jij with respect to the
biaxial strain ε.

Figure 3(a) shows that MJ
net is in good agreement with Mnet

(V) extracted directly from our calculated LMMs (without
any fitting). The small differences are due to deviations of
the magnetic system from Heisenberg behavior (e.g., LMMs
change size as they cant even in an unstrained lattice)
and deviations from linearity assumed in Eq. (4). The key
conclusion based on Fig. 3(a) in combination with Eq. (4) is
that a large PME corresponds to a large difference between J12
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(the bond in the plane of the biaxial strain) and J13 (the bond
with a component perpendicular to this plane.)

We note that including exchange interactions to second-
nearest neighbors in Eq. (3) would make sense only if the
magnetic unit cell used in the ab initio calculation was
increased beyond the chemical unit cell. However, so far
there has not been sufficient experimental support for such
an extension of our model.

B. Linking the piezomagnetic effect
to band structure

Figure 3(b) relates the total induced moment Mnet (V)
to the mean band energy of the valence p or d states of
atom A. This quantity is often called the band center and
we extract it from our projected DOS, ρAp,d

(E), as follows:
μAp,d

= 1/
∫

EρAp,d
(E)dE, where  = ∫

ρAp,d
(E)dE is a

normalization. We consider only the d band [ρAd
(E)] when

atom A is a transition metal and only the p band [ρAp
(E)] for

the rest. The wide s band does not seem to play an important
role in the PME. The right vertical axis of Fig. 3(b) measures
the inverse of μAp,d

with respect to the Mn d-band center,
μMnd

, which is very close to the Fermi energy.
Based on the remarkable match between |Mnet| and (μAp,d

−
μMnd

)−1 we conclude that piezomagnetism in Mn-based
antiperovskite nitrides is governed by the mutual configuration
of Mn d states and p or d states of atom A. More specifically,
a greater proximity (a potential for hybridization) of the
valence band of atom A to the spin-polarized d band of Mn
increases the difference between J12 and J13 per unit strain,
which manifests itself as a larger induced net moment. On
the other hand, when the triangular magnetic order of Mn
moments is undisturbed by hybridization with p or d states
of atom A then J12 ≈ J13 and only a small net moment is
induced. The best example is Mn3ZnN where the narrow, fully
filled d band is about 7 eV below the Fermi energy and the
induced net moment is negligible. This trend is analogous to
a scaling of the Néel temperature with the number of valence
electrons of atom A, which was detected in 1977 in the same
class of materials [11]. We further investigate the dependence
of the sign of Mnet on the presence of valence d states of
atom A in a separate paper [36]. In the following paragraphs,
we compare our simulated PME to the spontaneous MVE,
which is another measure of the magnetic frustration and for
which experimental data are available for all nine Mn3AN
compounds [8].

C. Comparing the piezomagnetic effect
to the magnetovolume effect

To draw an analogy between the strain and an external
field H that can induce magnetization, we introduce a
piezomagnetic susceptibility:

MJ
net

M3
= 2

J0

∂J12

∂ε
�ε ≡ χP

(
μAp,d

)
�ε, (6)

where the change of applied strain �ε replaces H and
MJ

net(�ε) was introduced in Eq. (5). Based on Fig. 3(b) we can
say that the susceptibility χP (μAp,d

) is inversely proportional

FIG. 4. Calculated PME characterized by |χ−1
P | as a function of

the measured MVE weighted by the bulk modulus. Triangles indicate
systems with confirmed triangular magnetic ground state, red and
green symbols indicate a positive and negative canted angle at tensile
strain, respectively, and the blue lines are least square linear fits.
(a) Two different trends for atom A from period four and five;
(b) |χ−1

P | weighted by a strain-induced shift of mean band energy
of two Mn atoms: one trend for all systems with confirmed triangular
magnetism.

to the mean valence-band energy of atom A (with respect to
the Mn d-band center μMnd

) in the unstrained system.
Figure 4 compares the measured magnetovolume effect

[8] to our calculated piezomagnetic susceptibility χP . The
MVE is a spontaneous change of volume due to a change of
magnetic ordering (typically the size of magnetic moment).
It was first observed in Ni-Fe Invar below its TC [37].
Takenaka et al. measure a spontaneous volume increase upon
the transition from the PM to AFM state and subtract the
phononic contribution so that their MVE data are purely of
magnetic origin [8]. They investigate a wide range of Mn-based
antiperovskite nitrides and conclude that the MVE is a property
of the frustrated triangular AFM state, which is strongly
dependent on the number of valence electrons. The MVE is
the largest when there are two s electrons and one or no p

electrons (A = Zn, Ga). When the number of valence s and
p electrons changes then the system transforms to a different
crystal and magnetic structure with no MVE (A = Cu, Ge, As,
Sn, Sb).

In addition, Takenaka et al. have observed an increase in
MVE as the d band of atom A moves away from EF . This
general trend reminds us of the scaling of susceptibility χP

with the mean band energy of atom A, μAp,d
, described above.

We include Fig. 4(a) to check if the dependence on μAp,d

furnishes a clear link between the PME and MVE. The figure
shows that our piezomagnetic susceptibility χP is inversely
proportional to the measured volume change, as expected. In
other words, a large MVE implies a small PME and vice versa.
Atoms A belonging to periods four and five of the periodic
table have different coefficients of proportionality. This implies
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that not only the position of the A band with respect to EF

but also the size of atom A plays a role in weakening the
triangular AFM structure. Such a difference between periods
four and five was first also seen by Fruchart and Bertaut in the
case of the scaling of TN with the number of valence electrons
of atom A [11].

The agreement of a calculated zero-temperature suscep-
tibility (χ−1

P ) with a spontaneous volume change ωs at the
PM-AFM phase transition (weighted by K) is remarkable and
requires further analysis. Magnetovolume effects in itinerant
electron magnets were first analyzed by the Stoner–Edwards–
Wohlfarth theory [38]. The free energy can be approximated
by F (T ,M,ω) = F0(T ,ω) + 1

2KV ω2 + 1
2a(T ,ω)M2 and min-

imized with respect to the volume strain ω = �V/V to obtain
KV ω = cmvM

2 where cmv = − 1
2∂a(T ,ω)/∂ω is the magne-

tovolume coefficient, M is the spontaneous magnetization,
K is the bulk modulus, and V is the reference volume.
After considering the spin fluctuations at the first-order phase
transition, the above formula becomes KV ω = cmv(M2 − ξ 2),
where ξ is the amplitude of spin fluctuations [39,40].

In the case of Mn-based antiperovskites the local moments
are relatively well localized [24], so we can approximate the
magnetic energy of the triangular AFM system on a cubic
lattice by Eq. (3) with zero canted angle: E(θ1 = 0) = 3

2J0M
2
0 .

The balance of elastic and magnetic energy then leads to an
expression for the spontaneous volume strain (�V/V ):

ωsK = −3M2
0

2V

∂J0

∂ω
∼ ∂J0

∂ω
≡ tv, (7)

where we neglect the change of local moments M0 with
changing volume, (�M0)2, as a higher-order contribution. The
magnetic stress per Mn-Mn bond tv is introduced following
the work of Filippetti and Hill [41]. The magnetic stress at the
phase transition can then be expressed as T v = ∂E�5g

/∂ω =
3
2 tvM

2
0 , where E�5g

is again the magnetic energy E(θ1 = 0).
After establishing the link between MVE and the magnetic

volume stress T v , we attempt the same for the PME and the
magnetic biaxial stress: T b = ∂E(θ1)/∂ε ∼ tb, where E(θ1)
is a magnetic energy of the canted AFM structures and the
magnetic stress per Mn-Mn bond tb is proportional to the
susceptibility χP of Eq. (6):

χP = 2

J0

∂J12

∂ε
∼ ∂J12

∂ε
≡ tb. (8)

Finally, based on the comparison of Eqs. (7) and (8) we can
conclude that both ωsK and χP are proportional to derivatives
of the exchange parameters with respect to strain and thereby
to the magnetic stress of the triangular AFM system. Hence the
linear relationship of Fig. 4(a) indicates a trade-off between
two complementary stress relief mechanisms.

III. DISCUSSION

In principle, the stress arising at the onset of AFM ordering
at TN can be relieved by a volume change or a lattice
distortion. However, our calculations and subsequent fitting
to the Heisenberg model find that the magnetic energy saved
by a tetragonal distortion (linear in ε) becomes smaller than
the elastic energy cost (quadratic in ε around unstrained
lattice) for negligibly small distortions. This is confirmed by

x-ray diffraction [8], which has not indicated a tetragonal
distortion in any compound studied in this work. Nevertheless,
χP reflects how much magnetic stress could be relieved by a
tetragonal distortion and this quantity is inversely proportional
to ωsK , as shown by Fig. 4. We plot χP vs ωsK rather than
ωs to compare only quantities related to magnetism and factor
out the system-dependent elastic properties.

It should be noted that the sign of χP indicates which type
of tetragonal distortion is energetically more favorable. A brief
demonstration of this neglects the dependence of Mi and θi on
strain in Eq. (3). Then we can find a spontaneous biaxial strain
εs (analogous to volume strain ωs) from the balance of elastic
and magnetic energy: εs = 1

2C
∂J12/∂εM2

0 = − 1
4C

χP |J0|M2
0 ,

where C > 0 is an effective elastic modulus. Immediately, we
can see that all systems in this study with χP > 0 tend to a
distortion with εs < 0 (c/a > 1) and vice versa.

We conclude that a system with robust triangular magnetic
order undisturbed by the proximity of electronic states of atom
A (large μAp,d

) tends to relieve its magnetic stress via a volume
change, whereas a system more influenced by atom A but with
persisting triangular order (small μAp,d

) prefers to relieve its
magnetic stress via a tetragonal distortion should the elastic-
energy cost allow it. (If the tetragonal distortion is enforced
externally, then the system develops a large net magnetization.)

The slight deviations of |χ−1
P | from ωsK seen in Fig. 4

may originate in (a) spin fluctuations which we neglected in
Eq. (7), the small size of the deviations suggests that the spin-
fluctuation contribution to the MVE [KV ω = cmv(M2 − ξ 2)]
is significantly suppressed by the strong frustration; (b) limited
numerical accuracy, e.g., Mn3ZnN is most affected because it
has very small χP and its large relative error is amplified
by the inversion; (c) nitrogen deficiency (8%–16%) varying
across the range of samples where MVE was measured [8],
e.g., magnetic order in Mn3SnN is known to be sensitive
to N concentration [9]; and (d) a material-specific elastic
property that was not factored out of the plotted quantities,
e.g., the use of bulk modulus K = 130 GPa for all compounds
when subtracting the phononic contribution to the MVE [8]
(consequently, in the plot we use K = 130 GPa instead of our
calculated K of Table I).

To further explore the inverse proportionality between PME
and MVE with respect to features of the electronic structure
we analyze the strain dependence of the mean band energy of
Mn states. We extract the mutual shift of mean band energy
of Mn1

d states [site in (100) plane of the unit cell] and Mn3
d

[site in (001) plane] from the projected DOS ρMn1
d
(E,ε,θ1)

and ρMn3
d
(E,ε,θ1) of the strained system before canting

(ε = 1%, θ1 = 0) in analogy to evaluation of μAp,d
shown in

Fig. 3(b). The obtained quantity |μ1 − μ3| directly measures
the response of the spin-polarized electronic structure to the
tetragonal distortion. Such information is missing in μAp,d

of
the unstrained structure.

Figure 4(b) shows |χ−1
P | weighted by the mutual band

shift |μ1 − μ3| as a function of ωsK . Compounds with atom
A from periods four and five now follow the same linear
trend with the exception of A = Ag, Co, Rh. Our hypothesis
based on Fig. 4 is that the factor |μ1 − μ3| incorporates
the dependence of the PME on the size of atom A for
systems with stable triangular AFM ordering. Mn3AgN and
Mn3RhN do not have a triangular AFM ground state, which
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has an explanation in their band-structure properties and
becomes apparent in Fig. 4(b). Extending the same argument
to those compounds with unknown magnetic order, we expect
Mn3PdN (Mn3CoN) to have a triangular (other) AFM ground
state.

The linear scaling of the spontaneous MVE with |χ−1
P | im-

plies a significant suppression of spin fluctuations by the strong
frustration in these systems. At the same time it can be used
as a tool in theory-led design of nonstoichiometric materials
with a large MVE and, consequently, barocaloric effect where
the entropy change is proportional to the spontaneous volume
change according to the Clausius–Clapeyron relation:

S(Tt ,p) − S(Tt ,0) = V ωs

(
dTt

dp

)−1

. (9)

Modelling the pressure dependence of the transition tempera-
ture dTt/dp goes beyond the capability of density functional
theory at zero temperature and is the subject of our ongoing
work [36].

In terms of practical devices hosting the composite mag-
netoelectric effect we envisage a piezomagnetic Mn-based
antiperovskite layer grown on a piezoelectric substrate. Such
a bilayer can benefit from strong elastic coupling due to the
common perovskite structure with small lattice mismatch at
the interface. In case of a multidomain state in the as-grown
AFM layer one can apply biaxial strain that induces a net
moment along an arbitrary direction in each domain. Then
an external magnetic field (coupling to the induced moment
in each domain) can align all domains and increase the
net magnetization. This magnetization will persist when the
external field is removed. After removing the biaxial strain
the net magnetization will vanish but the antiferromagnetic
domains will remain ordered due to the magnetocrystalline
anisotropy of the order of 0.1–1 meV per unit cell.

We hope that the successful comparison of our predicted
PME to the measured MVE and the coherent interpretation
of the PME based on features of the electronic struc-
ture will provide guidance for further investigations of the
unique physical properties of the frustrated AFM structure of

Mn-based antiperovskites and enable development of applica-
tions including data storage, memory, and solid-state cooling.

IV. METHODS

All our calculations employ the projector augmented-wave
(PAW) method implemented in VASP code [34] within the
Perdew–Burke–Ernzerhof (PBE) generalized gradient approx-
imation [42]. The relaxation of fully unconstrained non-
collinear magnetic structures has been implemented by Hobbs
[43]. The relativistic effects are accounted for by a Hamiltonian
containing the mass-velocity and Darwin corrections and the
spin-orbit operator L · S in a basis of total-angular-momentum
eigenstates as implemented by Kresse and Lebacq [44]. The
off-diagonal elements of the 2 × 2 matrix in spin space
originate in spin-orbit coupling and also in the exchange-
correlation potential in the case of noncollinear magnetization
density.

We use a 12 × 12 × 12 k-point sampling in the self-
consistent cycle and 17 × 17 × 17 k-point sampling to obtain
the site and orbital-resolved DOS. The cutoff energy is 400 eV.
The local magnetic moments are evaluated in atomic spheres
with the default Wigner Seitz radius because they are not very
sensitive to the projection sphere radius [7].

We constrain the Mn local moment directions by using
an additional penalty energy as implemented in the VASP

code in order to obtain the DOS projected on Mn d states,
e.g., ρMn3

d
(E,ε,θ1) of the strained system. We add a further

constraint to suppress the small moment on atom A which
develops due to strain to allow for extraction of J12 and J13

from the total energy as a function of strain and canted angle
by fitting to the Heisenberg model of Eq. (3).
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