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Spin wave modes in out-of-plane magnetized nanorings
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We investigated the spin wave modes in flat circular permalloy rings with a canted external bias field using
ferromagnetic resonance spectroscopy. The external magnetic field H was large enough to saturate the samples.
For θ = 0◦ (perpendicular geometry), three distinct resonance peaks were observed experimentally. In the case of
the cylindrical symmetry violation due to H inclination from normal to the ring plane (the angle θ of H inclination
was varied in the 0◦−6◦ range), the splitting of all initial peaks appeared. The distance between neighbor split
peaks increased with the θ increment. Unexpectedly, the biggest splitting was observed for the mode with the
smallest radial wave vector. This special feature of splitting behavior is determined by the topology of the ring
shape. Developed analytical theory revealed that in perpendicular geometry, each observed peak is a combination
of signals from the set of radially quantized spin wave excitation with almost the same radial wave vectors,
radial profiles, and frequencies, but with different azimuthal dependencies. This degeneracy is a consequence of
circular symmetry of the system and can be removed by H inclination from the normal. Our findings were further
supported by micromagnetic simulations.
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I. INTRODUCTION

Ferromagnetic rings have attracted considerable attention
in the last few decades due to their unique magnetic ground
states and their potential use in a range of applications such as
magnetic random access memory (MRAM) [1–3], biomedical
sensing [4,5], and magnetic logics [6]. By varying the inner
and outer radii of the ring [7,8], its composition (number,
thickness, and material of layers) [9,10], and by introducing
structural defects [11,12], both static and dynamic magnetic
properties in rings have been shown to be modified signifi-
cantly. This high tunability leads to intensive investigations
of microrings and nanorings [13], particularly the stability of
magnetic configuration [14], magnetization reversal [15], and
the nucleation and velocity of domain walls [16–18].

Investigations of dynamic behaviors of ring elements
usually focus on spin wave (SW) spectra at remanence (vortex
or onion states) [19–22] or in the tangential geometry, where
the external field is applied in the ring plane [22]. The first
experimental data of rings’ magnetization dynamics in the
close-to-perpendicular geometry that we presented recently
[23] showed unusual SW spectra with multiple splitting. The
configuration of the modes’ splitting in rings is conceptually
different from the splitting in nanostructures of the similar
symmetry, i.e., in cylindrical nanowires [24] and circular
nanodots [25].

Splitting of SW excitation spectra is a common effect in
nanostructures both at remanence (for instance, vortex) and in
the saturated state, though the background of this phenomenon
can be different. For instance, in spectra of traveling modes of
thin film, the splitting can appear due to patterning of films into
antidot array [26] or due to the formation of periodic defects
of different shapes [27]; the splitting of gyrotropic mode in
ferromagnetic nanodisks with vortex ground state appears due
to the difference between clockwise and counter-clockwise
precession of vortex core [28–33]; for circular wires and dots

in the saturated states, the splitting of SW modes occurs as
a result of the external magnetic field canting from the axis
of cylindrical symmetry [24,25]. There is a common rule for
any case of localized SWs: Every degenerated mode of the
symmetrical structure splits into a few modes if the symmetry
is broken, and the number of split modes corresponds to
the rank of degeneration of the initial mode. Therefore, to
understand the origin of splitting spin excitations in nanorings
due to the canted field, we should consider first the perfectly
symmetrical case, i.e., SW spectra in perpendicular geometry.

In this paper, we give a comprehensive explanation of the
SW spectra of the nanoring with the magnetic field applied
out of plane. Values of SW frequencies received analytically,
experimentally, and by computer simulations are in good
agreement. Analytically calculated standing SW profiles are in
quantitative agreement with corresponding simulation results.
Specific feature of multiple splitting of SW spectra in rings
with a canted magnetic field is explained on the basis of the
analytical perturbation theory in the general context of the
phenomenon of splitting in nanoparticles.

II. THEORETICAL BACKGROUND

The geometry of the ring structure and the corresponding
coordinate system are presented in Fig. 1. We first consider
the case of perpendicular geometry, in which the external
field is parallel to the z axis (Fig. 1) and its value is high
enough to keep the magnetization vector M perpendicular
to the ring in the vast majority of the magnetic volume. In
such a case, we can express magnetization as a sum of the
saturation magnetization and a weakly excited component,
M = M0z + m. In the SW approximation, the excitation term
m has two spatial components, mx and my .

To solve the problem of SW dynamics in the thin ring, we
use the system of linearized Landau-Lifshitz (LL) equations
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FIG. 1. Sketch of a thin circular nanoring and denominations of
the angles in the canted geometry. Left inset: demagnetizing factor as
a function of radial coordinate, where calculations were performed for
the ring with inner radius r = 1100 nm, external radius R = 1500 nm,
and thickness a = 30 nm.

with corresponding boundary conditions,

iω

γ
mx =

(
Heff − 2A

M0
∇2

)
my + M0∂�M/∂y

− iω

γ
my =

(
Heff − 2A

M0
∇2

)
mx + M0∂�M/∂x. (1)

Here, the effective static field has a nonzero z component
Heff = H + Hz, which is the sum of the external field H

and the spatially dependent z component of the static dipolar
field Hz = −M0

∂
∂z

∫
V

dr′ ∂
∂z′

1
|r−r′| , where the integration is

performed over the volume (V ) of the ring, M0 is the
saturation magnetization, A is the constant of inhomogeneous
exchange interaction, presented in units erg cm−1. The last
terms in Eq. (1), which are proportional to −∇�M , describe
the dynamic dipolar field generated by the magnetization
precession with SW frequency ω. �M is the dynamic part of the
magnetic potential, which takes a form of the integral operator
depending from the SW solution, �M = ∫

V
dr′(m · ∇′) 1

|r−r′| .
The exact analytical solution of LL integro-differential

equation (1) for exchange-dipolar SW in nanostructures with
strong inhomogeneities of dipolar fields is impossible in the
majority of cases [34]. The unique event is the analytical
solution for infinite cylindrical nanowires with magnetic field
parallel to the wire’s axis [35]. For confined three dimensional
nonellipsoidal nanoparticles, such solutions are unknown.
Even for systems with cylindrical symmetry, but violated
translation symmetry, i.e., thin cylindrical nanodisks, the exact
solution is impossible [36]. The approximate method, similar
to the well-developed Ritz ansatz in quantum mechanics,
is typically used in such a case. The main idea of this
method is to find the trial solution, which should satisfy the
boundary conditions and be in accordance with topology of the

nanoparticle’s shape. Then, the averaging of operator equation
(1) with the corresponding basic functions should be done.
In circular nanodisks, such approximate solutions are Bessel
functions of the first kind, and corresponding standing SWs, by
analogy with fundamental solutions of two-dimensional elastic
membrane, were named “drum modes” [36]. A similar method
was used in rectangular dots [37] and stripes [38], where plane
waves are the basic functions for approximate solutions. Both
complete orthonormal sets of functions (Bessel functions and
plane waves) are the eigenfunctions of exchange operator and
Zeeman term in Eq. (1) for corresponding cases in homoge-
neous external field. Summarizing, in very thin nanoparticles,
where static dipolar field Hz is almost spatially constant, such
basic functions are good approximate solutions of the LL
equation (1) while taking into account the static demagnetizing
field. However, eigenfunctions of the dipolar-dipolar integral
operator are unknown in spatially confined nanoelements such
as thin nanodisks, as well as in thin nanorings. Moreover, as
our preliminary investigations have shown, the diagonalization
of the dipolar-dipolar operator with Bessel functions as a basis
is a rather slow convergent calculation procedure in the case
of rings with the dimensions used in the present paper. This
means that diagonal approximation, which can be considered
as a natural consequence of the Ritz method [39–41], also
cannot give the quantitatively reasonable results in such a
case.

The way to avoid the mentioned difficulty was proposed in
Ref. [36] for thin discs in perpendicular geometry. The main
idea is based on the physically clear argument that the effect
of dipolar-dipolar interaction in very thin planar nanoparticles
should be numerically close to the same interaction in infinite
thin film. In such a case, instead of the dynamic dipolar
operator in LL Eq. (1), −∇�M , the matrix element of the
dipole-dipole interaction for a perpendicularly magnetized
film, f (k) = 1 − (1−e−ka )

ka
, can be inserted. Here a is the

thickness, and k is a radial component of the wave vector
of the SW excitations of circular nanoparticles. Despite the
inaccuracy of this approach, calculation of SW frequency gives
a good fitting of experimental results. We will return to the
calculations of SW frequency in Sec. V. Now we focus on
the description of trial functions, corresponding SW profiles,
and the discussion about the boundary conditions for SW
excitations in thin nanorings.

Circular plane rings, which we consider in this paper, have
the same cylindrical symmetry as circular dots and wires, so
the Bessel functions are the first candidate to the role of trial
functions in this case as well. However, it is worth noting that
disks and rings are not of the topologically equivalent shapes.
While the singularity at the disks’ center excludes employing
the Bessel functions of the second kind, the solution for SWs in
magnetic rings can be written as a general solution of the Bessel
equation, i.e., as a linear combination of Bessel functions of
the first and the second kind. Such a solution is well-known in
the theory of elastic membranes of ring shape.

Due to the small thickness of the ring, we can assume
that the spin excitation profiles, as well as static and dynamic
dipolar fields, are homogeneous along the z axis. Taking
into account all of the above mentioned arguments, magnetic
excitations’ profiles in thin circular rings can be presented by
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products of ρ-dependent and ϕ-dependent components,

μm,n(ρ,ϕ) = [Jn(km,nρ) + Cm,nYn(km,nρ)] exp(inϕ), (2)

where the ρ-dependent term is a linear combination of n-order
Bessel functions of the first and the second kind; the values
of radial wave vectors of standing modes, km,n, depend on
the boundary conditions at the inner edge of the ring with the
radius r and the external edge, which has the radius R.

The main origin of pinning at the edges of nanoparticles is
strong local inhomogeneity of demagnetizing field [42,43].
Such inhomogeneities arise at the external edges of thin
circular dots [36,42] and lead to the pinning boundary
conditions. In thin rings, this question demands additional
analysis. For this purpose, we define the spatial behavior of
demagnetizing field and its peculiarities at the external edge
of the thin ring (where ρ = R) and at the inner edge (ρ = r).

We consider the z component of the dipolar field in a
perpendicularly magnetized thin ring as a function of the radial
coordinate ρ,

Hz(ρ) = −M0
∂

∂z

∫
V

dr′ ∂

∂z′
1

|r − r′| = −4πM0Nz(ρ), (3)

where the expression for the demagnetizing tensor Nz(ρ) takes
the form

Nz(ρ)= s

∫ ∞

0
dtJ0

(
t
ρ

a

)(
J1(st)− r

R
J1

( r

R
st

)) (1 − e−t )

t
,

(4)

where s = R
a

is the aspect ratio and a is the thickness of
the ring. The calculations for Nz(ρ) by formula (4) with
dimensions R = 1500 nm, r = 1100 nm, and a = 30 nm as
a function of the radial coordinate are presented in the inset
of Fig. 1. As it follows, the dependence Nz(ρ) at the inner
edge (ρ = 1100 nm) and the external edge (ρ = 1500 nm),
are strongly inhomogeneous, quite similar to each other, and,
additionally, almost equal to Nz(ρ) at the edges of the thin disk
with the same thickness and radius R = 1500 nm. It gives the
evidence of the same strong dipolar pinning at the inner and
the external edges of the ring. So, the same pinning boundary
conditions can be applied at both edges. It is important to
mention also that Nz(ρ) is flat and an almost constant function
of ρ everywhere except the vicinity of the edges. In such a case,
Bessel functions are good approximate solutions of the LL
equation (1), excluding the dipolar-dipolar term. This proves
the possibility to use the combinations of Bessel functions (2)
as approximate solutions for spin excitations in perpendicular
geometry for thin rings with large aspect ratio s.

Applying pinning boundary conditions at both external and
inner edges of the ring leads to the set of equations

ψn(β) = Jn(β)Yn

(
β

r

R

)
− Yn(β)Jn

(
β

r

R

)
= 0. (5)

Here, index n specifies the equation and the corresponding
order of Bessel functions employed in it. Finding the roots
βm,n [the pair of the indices (m, n) means the mth root of
the nth equation] of Eq. (5), we determine the radial wave
vectors km,n = βm,n

R
and the corresponding coefficients in the

expressions for elementary excitations (2), Cm,n = − Jn(βm,n)
Yn(βm,n) .

To show the relative positions of βm,n, we present the
functions ψn(β), calculated with a concrete parameter r

R
= 11

15 ,
in Fig. 2(a). Every zero defines the radial wave vector of the
corresponding standing SW. Very close zeros βm,n of ψn(β)
with different indices n but with the same number m [the
numbered m = 1, 2, 3 . . . ovals in Fig. 2(a)] determine almost
equal values of the radial wave vectors km,n = βm,n

R
. Moreover,

the calculations by formula (2) show that profiles of modes
with the same m but different n have very similar ρ dependence
[Figs. 2(b)–2(f)]; therefore, these profiles differ only due to the
standard (exponential) dependence from ϕ. Also, analyzing
the symmetry of the profiles’ shapes, which are presented
in Fig. 2, we can conclude that only the modes with odd m

(m = 1, 3, 5 . . .) can be, in principle, detected.
The observed peculiarities of the solutions can be explained

as a direct consequence of basic properties of Bessel functions
[44]. We should note that large values β > 10, where the first
roots of Eq. (5) appear [Fig. 2(a)], are important in this case.
At large values of argument, the next relations between Bessel
functions take place:

−J0(β) ≈ J2(β) ≈ −J4(β) ≈ J6(β)... ≈ Y1(β)

≈ −Y3(β) ≈ Y5(β) ≈ −Y7(β)...

and

−J1(β) ≈ J3(β) ≈ −J5(β) ≈ J7(β)...

≈ −Y0(β) ≈ Y2(β) ≈ −Y4(β) ≈ Y6(β)...

These approximate expressions, inserted in Eqs. (2) and
(5), explain closeness of zeros βm,n with different indices n

but with the same m, as well as the similarity of corresponding
SW profiles. However, this consideration is valid only if the
parameter r

R
(the relation between inner and outer radii) is

not small. Our calculations show that such effect takes place
only if 0.6 < r

R
< 1, i.e., when the radius of the hole is not

small in comparing with the outer radius of the ring. The
dimensions of the rings employed in this paper evidently
satisfy this condition.

Equivalence of radial wave vectors and profiles leads,
in turn, to the almost equal resonance fields of excitations
with equal frequencies, the same m and different n. In
the perpendicular geometry, only the modes with n = 0
can be actually detected, but every such spin excitation is
connected with a dense set of associated modes with very
close radial wave vectors, frequencies, and resonance fields.
It is worth noting that this is not degeneration in a strict
sense, as the resonance fields of such modes are not exactly
equal. However, our estimations for rings with mentioned
geometrical parameters and standard magnetic parameters
of permalloy give the maximal distance between resonance
fields of the first five neighboring modes [Fig. 2(a)] less
than 10 Oe. So, in the perpendicular geometry, when circular
symmetry is not violated, every experimentally detected mode
is degenerated by quantum number n many times. Apart from
this, modes with n �= 0 are degenerated twice as usual in
a cylindrically symmetrical case due to the sinusoidal and
cosinusoidal dependencies of the mode profile (2) from the
azimuthal angle ϕ.

In the case of thin rings, where z dependence of
spin excitations’ profile is negligible, μm,n(ρ,ϕ) (2) is an
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FIG. 2. Analytically calculated radial wave vectors and modes’ profiles for perpendicularly magnetized nanorings. (a) Relative positions
of zeros of the first five functions with different indices n [formula (5)], calculated for the value of the ratio r

R
= 11

15 . Zeros of the same number
m of different functions have very close values, as shown by black ovals. (b)–(f) Radial profiles of modes with m = 1, 2, 3, 4, and 5, calculated
by formula (1) for a ring with the inner radius r = 1100 nm and the external radius R = 1500 nm.

eigenfunction of the two-dimensional Laplace operator,
∇2μm,n(ρ,ϕ) = −km,n

2μm,n(ρ,ϕ). It should be noted that the
value km,n, being a radial wave vector associating with the
azimuthal number n, defines both the effects of the radial and
the azimuthal dependencies of the profile on the exchange
energy. Weak dependence of the km,n from the number n is a
natural consequence of the fact that in the chosen geometry
of the nanoparticle, the SW energy is much more sensitive
to the changes in the radial dependence of the SW profile
than to the variations of its azimuthal part. However, for
large values of n, the dependence of the SW energy from
the azimuthal part of the profile becomes more considerable,

and the distance between roots βm,n (with the same m but
different n) enhances. In such a case, the split modes with the
number (m, n) become hybridized with the modes with the
number m + 1, and the term “degeneration” in perpendicular
geometry loses the sense. But such effect takes place with
the especially large values of n (in the case of the present
parameters of the rings, our estimations show that n > 16) that
corresponding modes have very small intensity. The situation
is more complicated in the case when the external bias field is
canted from the perpendicular direction. The modes with large
n are undetectable due to their small intensity. However, as we
show in the next sections of this article, the frequencies of SWs
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FIG. 3. The SEM image of the periodic array of permalloy
rings. Top left inset: SEM image of the isolated ring with indicated
dimensions. Bottom right inset: the geometry of the experiment.

depend on the angle of canting θ (Fig. 1). This leads to the
considerable decreasing of the difference between frequencies
of the modes with the numbers m and m + 1 and the strong
hybridization of corresponding split modes if the angle of
canting θ > 4◦.

If the symmetry is violated, for instance, by the canted
external magnetic field, every single peak with one of the
numbers m = 1, 3, 5 . . . undergoes multiple splitting, like
the mode with very high rank of degeneration. The radial
dependencies of split modes’ profiles with the same m are
very close, while the dependencies from ϕ are different.
Numerically, the mode with m = 1 should have the most
considerable splitting, as the associated modes have larger
difference of radial wave vectors [Fig. 2(a)] and of radial
dependencies of profiles [Fig. 2(b)] than in the cases m > 1.
However, the general behavior, i.e., the multiple splitting, is the
same for all modes. Note, that the splitting under symmetry
violation in circular submicron disks is quite different, i.e.,
there is a typical hierarchy: the first mode does not split, while
the next modes split sequentially into odd numbers (3, 5, 7, etc.)
of associated modes [25]. This difference of SW dynamics of
rings and discs is originated from the difference of topology of
discs’ and rings’ shapes, which gives the different expressions
for boundary conditions for disks and rings even in the case of
identical full pinning. In Sec. V, we will compare the results
of analytical calculations employing the given approach with
experimental data and computer simulations.

III. EXPERIMENTAL AND SIMULATION DETAILS

Large area (4 × 4 mm2) arrays of isolated permalloy cir-
cular rings were fabricated on a silicon substrate using deep
ultraviolet (DUV) lithography at 248 nm exposure wavelength,
followed by electron beam evaporation and ultrasonic assisted
lift off process in OK73 resist thinner. Permalloy film with
the thickness of 30 nm was deposited at a constant rate of
0.2 Å/s with a base pressure of 2 × 10−8 Torr. Details of the
fabrication process are described elsewhere [45]. Shown as the
top left inset in Fig. 3 is the representative scanning electron

microscope (SEM) image of the 400-nm-wide circular ring
with an outer diameter of 3 μm. The SEM images reveal good
morphology and uniformity.

Perpendicular ferromagnetic resonance (pFMR) spec-
troscopy was used to characterize the dynamic response
at room temperature. A 20 dBm microwave signal was
generated by a continuous wave microwave generator at a
specific frequency. The samples were placed on top of a 50 �

microstrip line with the ring arrays facing the stripeline. The
magnetic bias field (H ) was swept from 18 kOe to 0 with an ac
modulating field of ±20 Oe (Hac) applied in the vicinity of the
normal (defined as z direction). The inclination (defined as θ )
of the external field with respect to z direction is varied from
0◦ to 6◦ with an angle step of 1◦. A sketch of the field geometry
is shown as the bottom right inset of Fig. 3. The output
dc signal of the interferometric device is fed into a digital
lock-in amplifier, which is locked to the field modulation
signal. The FMR signal detected in this way represents the first
derivative of the field sweeping absorption curve at a selected
frequency.

To validate the experimental results, we also performed
the dynamic micromagnetic simulation with the LLG micro-
magnetic simulator [46]. Standard parameters for permalloy
(exchange constant A = 1.30 × 10−6 erg cm−1, damping con-
stant α = 0.01, anisotropy constant KU = 0, gyromagnetic
ratio γ = 2.9 GHz kOe−1, and saturation magnetization Ms =
745 emu cm−3, which is experimentally extracted by fitting
the FMR results) were used for the simulation. The mask
in the simulation was edge corrected and discretized by a
unit cell size of 10 nm × 10 nm × 10 nm. For the quasistatic
simulation, a damping coefficient of α = 1 was chosen to
obtain a rapid convergence. The FMR spectra were obtained
by calculating the real part of the dynamic susceptibility. In
our LLG simulation, the ac excitation field was set at 5 Oe. A
larger ac field will introduce asymmetry of the profile of the
simulated FMR spectra. To obtain the mode profiles, another
dynamic simulation, where a flat top pulse with an amplitude of
20 Oe and pulse width of 50 ns was applied to the rings, was
performed. The mode profiles were quantified by analyzing
the results using spatially and frequency-resolved fast Fourier
transform (FFT) imaging.

IV. EXPERIMENTAL RESULTS

Shown in Fig. 4 is the representative FMR absorption curve
taken for 30-nm-thick rings at f = 9 GHz with the external
magnetic field applied perpendicularly (θ = 0◦) to the film
plane. Similar to what has been reported before for dots
and wires [36,47], a total number of up to three resonance
modes are observed, with the first mode H0−1 = 11.51 kOe)
exhibiting the highest intensity and the higher order modes
(H0−2 = 10.54 kOe, H0−3 = 9.82 kOe) showing much smaller
amplitudes. It is easy to understand that all the three modes
are radially quantized standing SW modes with an increasing
number of nodal lines.

However, when the external field is slightly canted, the
profile of the absorption curve is significantly modified.
Not only radially but azimuthally quantized SW modes are
observed. Shown in Fig. 5 are the FMR absorption curves
taken for f = 9 GHz with θ varied from 1◦ to 5◦ with an
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FIG. 4. The FMR absorption curve taken for the 30-nm-thick
permalloy rings at θ = 0◦ for f = 9 GHz.

increment of 2◦. Different from the FMR curve observed at
θ = 0◦, the first two modes appearing at lower resonance
fields (H1−1 = 11.41 kOe, H1−2 = 10.49 kOe) start to split
for θ = 1◦, and the splits become more obvious with the
increase in the inclination. As the external field deviates
further (θ = 3◦), the resonance fields decrease drastically
(H3−1 = 11.11 kOe, H3−2 = 10.22 kOe), while the number of
splits increases. Shown as the insets are the zoom-in of the
FMR absorption curves. For θ = 3◦, we observed four splits
for the first mode and more than five splits for the second
mode. As the field is tilted by 5◦, the resonance mode is
shifted downwards by 520 Oe (H5−1 = 10.59 kOe) compared
with θ = 3◦. We also noticed that for θ = 5◦, the number of
splits for the first mode increased to five and the field gaps
in between the splitting modes get larger. Taking the field
difference in between the first two splits for the first mode for
an example, the field gap increases from 124 Oe (θ = 3◦) to
239 Oe (θ = 5◦).

V. DISCUSSION AND CONCLUSION

Using the approximate solution (2) and applying the Ritz
method to the LL equations (1) in perpendicular geometry, we

FIG. 5. The FMR absorption curves taken for the 30-nm-thick
permalloy rings for f = 9 GHz with θ varied from 1◦ to 5◦.

receive the Herring-Kittel SW dispersion relation [48],

ω2
mn = γ 2

[
Hnm + 2A

M0
kmn

2

]

×
[
Hnm + 2A

M0
kmn

2 + 4πM0 · f (kmn)

]
, (6)

with appropriately modified terms taking into account specific
geometry of the magnetic ring. Here, Hnm = H − 4πM0N

z
mn

is the effective internal field, where the effective matrix
element of the inhomogeneous demagnetizing field is

Nz
mn =

∫ R

r
dρρ|μm,n(ρ,ϕ)|2Nz(ρ)

4π · ∫ R

r
dρρ|μm,n(ρ,ϕ)|2

, (7)

where Nz(ρ) is the demagnetizing tensor of thin ring given
by formula (4). The matrix element of dipole-dipole inter-
action for SWs has the standard form f (k) = 1 − (1−e−ka )

ka
,

as discussed in Sec. II. Due to the simple angular depen-
dence μm,n(ρ,ϕ) ∝ exp(inϕ) [see formula (2)], the integrand
|μm,n(ρ,ϕ)|2 does not depend on ϕ for any n.

As already mentioned, index n can be replaced by 0 in
the case of perpendicular geometry when only azimuthally
symmetrical modes with n = 0 can be detected. However, as
we have shown before [Fig. 2(a)], the radial wave vectors kmn

band together into groups that differ due to the index m. Inside
every such group, kmn, having the same m and different n,
are almost equal. On the other hand, the ρ dependencies of
the corresponding profiles μm,n(ρ,ϕ) are almost equal also
[Figs. 2(b)–(f)]; this leads to equivalence of matrix elements
Nmn with the same m and different n. As a result, the
frequencies ωmn described by expression (6) do not depend on
the index n, corresponding to the strong degeneration of modes
in perpendicular geometry, which we discussed in Sec. II.

Theoretically calculated resonance fields as a function
of the excitation frequency by formulae (6)–(7) for three
first azimuthally symmetrical modes n = 0, m = 1, 3, 5 are
presented in Fig. 6 together with experimental data described

FIG. 6. Resonance fields extracted from spin wave excitations
in thin ferromagnetic rings as a function of frequency for the three
first modes (m = 1, 3, 5) in perpendicular geometry. Squares, round
dots, and triangles: experimental data; solid lines: calculations by
formulae (6)–(7) with radial wave vectors, numerically calculated
roots of Eq. (5) [see Fig. 2(a)].
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(a)

(b)

FIG. 7. (a) Simulation results of FMR absorption curve (f =
9.5 GHz, θ = 0◦) and (b) excitations’ profiles of three standing modes
in perpendicularly magnetized nanoring.

in Sec. IV. As discussed above, these modes have the ρ-
dependent profiles μm,0(ρ,ϕ) = J0(km,0ρ) + Cm,0Y0(km,0ρ),
which are exhibited in Figs. 2(b), 2(d), and 2(f). Corresponding
radial wave vectors are km,0 = βm,0

R
, where βm,0 are numerically

calculated roots of Eq. (5) [they are within the ovals with
numbers 1, 3, and 5 in Fig. 2(a)].

Good agreement between theoretical results and experi-
mental data confirm the validity of the presented approach.
Figure 7 shows the simulation results for 30-nm-thick permal-
loy rings at f = 9.5 GHz. Similar to the experimental results
shown in Fig. 4, three resonance modes with nodal lines of
m = 1, 3, and 5 are observed, and the intensity of these
modes decreases with an increase in the number of nodal
lines. Note that the ρ dependence of simulated profiles of
three observed modes presented in Fig. 7(b) also agrees
with analytically calculated profiles of observable modes,
presented in Figs. 2(b), 2(d), and 2(f). Additionally, we make
a detailed comparison of the experimental data, theoretical
calculations, and results of computer simulations for f =
9.5 GHz. As shown in Table I, both the simulation and
analytical results match quantitatively with the experimental
values.

TABLE I. Resonance fields (all results are in Oe) at f = 9.5 GHz
for three first modes: experimental data, computer simulation, and
theoretical results are given together for comparison.

m = 1 m = 2 m = 3

Experiment 11681 10700 9972
Simulation 11719 10757 10016
Theory 11615 10645 9890

We consider now the splitting of described modes due to
the symmetry violation when the external field is canted from
the perpendicular direction. The angle between H and the z

direction, θ (Fig. 1), and the angle between M and the normal
to the dot plane, θ0, can be calculated from the balance between
the Zeeman and magnetostatic energies, i.e., via minimizing
the static magnetic energy

W (θ,θ0) = −M0H cos(θ − θ0) + 2πM0
2Nz cos (θ0)2, (8)

where the demagnetizing factor of the ring [49] is calculated
by formula (9)

Nz = 2

1 − (r/R)2

R

a

∫ ∞

0
dq

(
J1(q) − r

R
J1

(
r
R
q
))2

q2

× (1 − exp(−qa/R)). (9)

We present the analysis of SW excitations in such canted
geometry only in the case of slight canting of the field and
magnetization from the perpendicular direction, when the
value of θ0 can be considered as a small parameter. In the
opposite case, i.e., when magnetization has a large tangential
(parallel to the sample’s plane) component, inhomogeneity
of the demagnetizing field, Hz(ρ), acts as an effective
trap of the SW modes near particle’s edges. This leads to
the emergence of the edge modes in tangential geometry
[50,51]. Such effect is beyond the scope of the present
paper.

The SW excitation profiles of the same number m can
be expressed as a superposition of interacting modes with
different azimuthal ϕ dependence,

μm(ρ,ϕ) =
∑

n

(Jn(km,nρ) + Cm,nYn(km,nρ))

× [An cos(nϕ) + Bn sin(nϕ)]. (10)

The equivalence of radial wave vectors and profiles of such
modes with equal m and different n (Sec. II, Fig. 2) leads to
the simplification of the expression (10),

μm(ρ,ϕ) ∼= μ̄m(ρ)
∑

n

[An cos(nϕ) + Bn sin(nϕ)]. (11)

We calculate resonance fields of modes with m = 1 and
with the corresponding profile shown in Fig. 2(b) using the
perturbation theory, which we developed in Ref. [25] for thin
ferromagnetic dots, adapting it here for the particle of ring
shape.

In the canted geometry (Fig. 1), the external field H and
the magnetization M are confined in the zy plane. For further
calculations, this is convenient to write LL in the “canted”
system of coordinates, where the axis z̃ is directed along
the canted vector M, mỹ is a component of the variable
magnetization along the ỹ axis of the canted coordinate system
(xỹz̃) (see Refs. [24] and [25])

iωkmx − γ 4πM0 cos(θ0)fxy(mx)

= γH eff(θ,θ0,ρ)mỹ + γ 4πM0[sin2(θ0)fzz(mỹ)

+ cos2(θ0)fyy(mỹ)]

− iωkmỹ − γ 4πM0 cos(θ0)fxy(mỹ)

= γH eff(θ,θ0,ρ)mx + γ 4πM0fxx(mx), (12)
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FIG. 8. Resonance fields of the modes (f = 9 GHz, m = 1) as a
function of the angle θ . Lines: theoretical calculations for five modes
with the lowest n (n = 0, 2, 4). Black triangles: experimental results.

In formula (12), the z̃ component of the effective field is

H eff(θ,θ0,ρ) = H cos(θ − θ0) + (Hz(ρ)cos2(θ0)

−Hx(ρ)sin2(θ0)) + 2A

M0
k2, (13)

where k is the radial wave vector of SW excitations and Hi(ρ)
is the component of the dipolar field. Specifics of calculations
of k = kmn and Hi(ρ) for rings’ geometry were presented in
Sec. II.

As verified for thin nanodots in perpendicular and slightly
canted geometry (i.e., when the angle θ0 is small), the
dipolar operators can be substituted with c numbers in the
framework of perturbation theory (Refs. [3] and [25]). We use
the same approximation for thin rings, which leads to for-
mulae fzz = 1 − f (k), fyy = f (k)sin2ϕ, fxx = f (k)cos2ϕ,

fxy = f (k) sin ϕ cos ϕ, where f (k) = 1 − (1−e−ka )
ka

, ϕ is the
azimuthal angle in the xy plane. This simplification allows
us to receive such an equation for mx ,

ωk
2mx = γ 2[H eff(θ,θ0,ρ) + 4πM0{sin2(θ0)(1 − f (k))

+ f (k)}]H eff(θ,θ0,ρ)mx + 4πγ 2M0sin2(θ0)

× ({1 − f (k)}4πM0f (k)cos2(ϕ) − sin2(ϕ)

× f (k)H eff(θ,θ0,ρ))mx (14)

In (14), the first term in the right part is axially symmetrical,
while the second one is ϕ dependent. So, the second term
describes differences of frequencies due to the dependence
of modes’ profiles from the azimuthal angle, as well as the
interaction between modes with the same ρ dependence, but
different ϕ dependence [see formula (11)]. As this stems from
(11), any mode of concrete index m consists of an infinite
number of associated modes with the same ρ dependence
and different ϕ dependencies of profiles, which correspond
to an infinite number of different indices n. At the same
time, intensity of mode decreases when the index n increases.
This simplifies the task, allowing us to restrict the infinite
summation in (11) by few terms with the smallest n. Due
to the dipolar interaction between these SW modes, which
reveals itself when θ0 �= 0 [see formula (15)], the degenerated
level splits into the set of levels, and the value of this splitting
increases with an enhancing of the angle θ .

Inserting basic states (11) into Eq. (14), we obtain an infinite
system of linear equations for coefficients An and Bn. We then
look for the approximate solution of the eigenvalue problem,
using a finite subset of the basis states. Using the perturbation
theory by θ0, we calculate the frequencies of first five split
modes by analytical diagonalization of corresponding five-
rank matrix. The result is given by formulae (15),

ωk
2 = ωS

2 + γ 22πM0sin2(θ0) · f (kmn)
({1 − f (kmn)}4πM0 − H eff

mn(θ,θ0)
)

ωk
2 = ωS

2 + γ 22πM0sin2(θ0) · f (kmn)
(

1
2 {1 − f (kmn)}4πM0 − 3

2H eff
mn(θ,θ0)

)
ωk

2 = ωS
2 + γ 22πM0sin2(θ0) · f (kmn)

(
3
2 {1 − f (kmn)}4πM0 − 1

2H eff
mn(θ,θ0)

)
ωk

2 = ωS
2 + γ 22πM0sin2(θ0) · f (kmn)

((
1 +

√
3

2

){1 − f (kmn)}4πM0 − (
1 −

√
3

2

)
H eff

mn(θ,θ0)
)

ωk
2 = ωS

2 + γ 22πM0sin2(θ0) · f (kmn)
((

1 −
√

3
2

){1 − f (kmn)}4πM0 − (
1 +

√
3

2

)
H eff

mn(θ,θ0)
)

(15)

Here, H eff
mn(θ,θ0) = (Hmn(θ,θ0) + 2A

M0
kmn

2),

ωS
2 = γ 2[H eff

mn(θ,θ0) + 4πM0
{
sin2(θ0)(1 − f (kmn)) + f (kmn)

}] · H eff
mn(θ,θ0).

The matrix element of the effective internal
field in the canted geometry takes the form (see
Refs. [24], [25], and [52]): Hmn → Hmn(θ,θ0) =
H cos(θ − θ0) − 4πM0(Nz

mncos2(θ0) − Nx
mnsin2(θ0)).

Results for excitations with f = 9 GHz are shown in Fig. 8.
The difference between theoretical results and experimental
data can be explained by the change of boundary conditions in
the canted geometry [53], which we did not take into account.

Figure 9 shows the simulated FMR curve and the corre-
sponding mode profiles for rings with the external field tilted
by 5◦. In agreement with the experimental observation, in

the canted geometry, the first mode splits into five resonance
modes. The extracted mode profiles [Fig. 9(b)] show that the
splitting modes share the same radial profile but different
azimuthal profiles. We also note that the modes with more
azimuthal nodes, appearing at lower resonance fields, exhibit
smaller mode intensities.

In conclusion, the canting of the external bias field leads
to the splitting of the rings’ SW modes. The general picture
of the modes’ splitting in rings is conceptually different from
the splitting in cylindrical nanowires and circular nanodots.
Namely, in rings every mode observed in perpendicular
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(a)

(b)

FIG. 9. (a) Simulation results of FMR absorption curve (f =
9 GHz, θ = 5◦) and (b) excitations’ profiles of azimuthally quantized
standing modes.

geometry (including the first one) is splitting into large number
of modes, which have the same radial profile but different
azimuthal profiles. Since the intensity of split modes decreases
with increase of azimuthal index, only several of the lowest
modes can be observed in experiment and simulations. As
the canting of the field gets larger, the distance between
neighbor split peaks is increasing. Our analytical calculations
and simulation results agree well with the experimental results.
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