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Magnon-induced nuclear relaxation in the quantum critical region of a Heisenberg linear chain

M. J. R. Hoch*

National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
(Received 28 April 2017; revised manuscript received 5 June 2017; published 27 July 2017)

The low-temperature properties of spin-1/2 one-dimensional (1D) Heisenberg antiferromagnetic (HAF) chains
which have relatively small exchange couplings between the spins can be tuned using laboratory-scale magnetic
fields. Magnetization measurements, made as a function of temperature, provide phase diagrams for these systems
and establish the quantum critical point (QCP). The evolution of the spin dynamics behavior with temperature
and applied field in the quantum critical (QC) region, near the QCP, is of particular interest and has been
experimentally investigated in a number of 1D HAFs using neutron scattering and nuclear magnetic resonance as
the preferred techniques. In the QC phase both quantum and thermal spin fluctuations are present. As a result of
extended spin correlations in the chains, magnon excitations are important at finite temperatures. An expression
for the NMR spin-lattice relaxation rate 1/T1 of probe nuclei in the QC phase of 1D HAFs is obtained by
considering Raman scattering processes which induce nuclear spin flips. The relaxation rate expression, which
involves the temperature and the chemical potential, predicts scaling behavior of 1/T1 consistent with recent
experimental findings for quasi-1D HAF systems. A simple relationship between 1/T1 and the deviation of the
magnetization from saturation (MS-M) is predicted for the QC region.
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I. INTRODUCTION

The intriguing physical properties of one-dimensional (1D)
Heisenberg antiferromagnet (HAF) systems which display
quantum critical (QC) behavior and a quantum critical point
(QCP) have been extensively discussed in the literature [1–5].
The ground state of a1D HAF spin S = 1/2 chain, in a field
somewhat lower than the QCP value μ0HC , is identified
as a Tomonaga-Luttinger-liquid (TLL). The TLL phase is
characterized by spinon quasiparticles and spin-correlation
functions which exhibit quasi-long-range power-law decay
[6–9]. In addition, a TLL state is found in the gap-closed
phase of the spin S = 1 Haldane chain. The QC phase, which
is present at finite temperatures in the vicinity of the QCP,
is of particular interest. In the QC region magnon excitations
are important in accounting for changes in the magnetic and
thermal properties with temperature and applied field. QC scal-
ing behavior of the magnetization and other thermodynamic
quantities is expected as a consequence of the key role played
by the temperature in determining the energy scale [7–9].

Experimental investigations of the magnetization near the
QCP have been carried out on a number of 1D HAF prototype
systems such as Cu(C4H4N2)(NO2)3 (CuPzN) [8,9] and the
results are found to be consistent with scaling predictions.
In addition, the dynamical properties of systems of this type
have been studied using, primarily, neutron scattering [10–13]
and NMR [7,14–23]. These techniques provide information
on changes in the spin dynamics close to the QCP. Low-
temperature NMR relaxation rates 1/T1, in particular, have
been shown to exhibit scaling based on a relationship involving
empirical exponents which are determined in the data fit
process [7]. In this article an expression is obtained for the
temperature and magnetic field dependence of 1/T1 for a probe
nucleus in a 1D HAF near the QCP by considering Raman
magnon scattering processes in the QC phase. For a fixed
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applied field, a scaling relationship for 1/T1 follows from the
analysis.

The Hamiltonian for a 1D spin-1/2 HAF is given by

HS = J
∑

i

Si · Si+1 − gμ0μBH
∑

i

Sz
i , (1)

where J is the nearest-neighbor (NN) intrachain exchange
interaction for spins labeled i and j , μB is the Bohr magneton,
and g the electron g factor. Figure 1 shows a generic phase
diagram for a HAF system of the type described by Eq. (1).
The diagram is plotted using dimensionless reduced field
H/HC and reduced temperature kBT /J , variables where
μ0HC is the critical field. The straight lines separating the
various regions represent crossovers between the TLL and QC
phases for H < HC and between gapped and QC phases for
H > HC . For kBT /J > 0.5 the quantum fluctuations become
less important, and the system transitions to paramagnetic
behavior with increasing temperature. A detailed treatment of
crossover behavior in antiferromagnetic (AF) systems is given
in Ref. [24]. The phase diagram in Fig. 1 does not include
possible 3D AF order that may occur at low temperature, in
low applied fields, as a result of weak interchain interactions
with Jinter � Jintra. The Néel temperature is suppressed in large
applied fields which approach the saturation field in the vicinity
of the QCP. Interchain interactions are therefore not considered
in the present work, which focuses on the QC phase.

II. NUCLEAR RELAXATION MODEL

In the QC region of a 1D HAF it is straightforward to
derive an expression for the number of magnons Nm in a chain
of length L in terms of the temperature and the chemical
potential, μ = gμ0μB(HC − H ). Introducing the wave vector
k, the magnon number is given by Nm = ∫ ∞

0 dkρ(k)f (εk − μ).
The Fermi distribution function f (εk − μ) is used because of
the equivalence of a dilute1D Bose gas of magnons to a Fermi
gas [5,8]. The quadratic dispersion relation ε(k) = h̄2k2/2m

applies, with m = h̄2/J the effective mass [8]. The 1D density
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FIG. 1. Representative phase diagram for a 1D HAF in a
dimensionless representation kBT /J vs μ/kBT , where J is the
exchange coupling between NN spins and μ = gμ0μB (HC − H ) is
the chemical potential. The QCP occurs at μ = 0, and the straight
lines which meet at this point represent crossover boundaries between
TLL, QC, and gapped phases as indicated. For kBT /J > 0.5 the
system transitions to its paramagnetic phase with rise in temperature.

of states is given by ρ(k) = L/π . In terms of the variable
x =

√
h̄2k2/2mkBT the following expression for the magnon

density Nm/L is obtained:

Nm

L
=

√
2

π

√
kBT

J

∫ ∞

0

dx

ex2−−μ/kBT + 1
. (2)

The magnon contribution to the magnetization M is linked
to Nm, and this connection leads to the following expression
for the difference between M and the saturation magnetization
MS [5,8,9]:

(MS − M) =
√

2

π

√
kBT

J

∫ ∞

0

dx

ex2−−μ/kBT + 1
. (3)

Equation (3) provides the basis for scaled plots of
(MS − M)/

√
T vs μ/kBT in the QC region for a particular

system, as shown recently for Cu(C4H4)(NO3)2 [9].
The bounds of the QC phase, which are indicated by the

crossover lines in Fig. 1, are established in terms of the
chemical potential μ as follows. For H < HC the magnon
density given in Eq. (2) passes through an extremum at tem-
perature Tm = 0.762 38 μ/kB which determines the QC–TLL
crossover [6,8]. For H > HC an excitation gap is established
and the crossover temperature to the QC region, as shown in
Fig. 1, is taken as Tg = μ/kB, corresponding to a significant
occupation of states above the gap for T > Tg .

A scaling relationship for the NMR spin-lattice relaxation
rate, 1/T1, is readily obtained for the QC phase of a 1D HAF if
it is assumed that magnon scattering processes provide the re-
laxation mechanism in this region. The result obtained applies
close to the QCP, where μ0H produces quasiferromagnetic
spin order. The Hamiltonian for electron spins S is given in
Eq. (1) and that for nuclear spins I in an applied field B = μ0H

is HI = −γI h̄
∑

n Bn · In, with γI the nuclear gyromagnetic

ratio. The field Bn is the vector sum of the applied field B and
the average local hyperfine field at nucleus n. It is convenient
to assume that the general form of the Hamiltonian S · A · I , in
which A is the hyperfine tensor describing the electron-nucleus
spin interaction, can be replaced by the scalar form AI · S with
the effective hyperfine field making an angle θ with respect to
the applied field direction. In this description, it is thermally
induced fluctuations in the hyperfine component A⊥ = A sin θ

that give rise to transitions between the nuclear spin states
[25–27]. For spins S = 1/2, the anisotropy can arise as a result
of dipolar interactions between I and S spins as discussed
below.

Time-dependent perturbation theory gives the following
expression for the transition rate W between electron-nuclear
spin states i and f produced by an interaction Hint:

W = 2π

h̄

∑
f

|〈f |Hint|i 〉|2δ(εi − εf ′). (4)

The δ function ensures energy conservation with neglect
of the small energy (∼1 μeV) associated with a nuclear spin
flip induced by the magnon scattering process. An expression
for the spin-lattice relaxation rate is obtained by adapting the
approach used in discussing nuclear spin-lattice relaxation due
to Raman magnon scattering processes in three dimensions
[25–27]. This involves use of the Holstein-Primakoff transfor-
mation with retention of just the term in the interaction which
corresponds to the creation of a spin wave with wave vector
k′ and the destruction of a spin wave with wave vector k. This
approach gives the interaction Hamiltonian as [27]

Hint = A⊥
2N

I+ ∑
k

′
,k

exp[i(k − k′) · r i ]a
†
k′ak, (5)

where N is the number of spins in a chain, I+ the nuclear spin
raising operator, r i the position of spin i, and a

†
k′ and ak , the

spin wave creation and annihilation operators, respectively.
For a 3D FM material the number of magnons nk in a given

energy state is given by the Bose-Einstein (BE) distribution
function. In marked contrast, 1D HAF chains in the QC phase
have the magnon number given by the Fermi-Dirac (FD)
distribution as pointed out above. A given energy state for
a QC 1D HAF can be either empty or singly occupied. In a
nuclear relaxation magnon scattering process the change in k

is extremely small and, to a very good approximation, k = k′.
It follows that the exponential factor in Eq. (4) reduces to unity,
with the final state taken as equivalent to the initial state. The
FD distribution is used together with the density of states in
the sum over states in Eq. (4).

Using Eqs. (4) and (5), with summations over k replaced by
integrals, the following expression for W in a1D HAF close to
the QCP is obtained:

W = 2π

h̄

(
A⊥
2L

)2 ∫ kmax

0

∫ kmax

0
dkdk′ρ(k)ρ(k′)

× f (εk − μ)δ(εk − εk′). (6)

Much of the notation is the same as that used in obtaining
Eq. (2), with kmax the band-edge value of k. Making use of the
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relation 1/T1 = 2W gives the relaxation rate as

1

T1
= 4A2

⊥
πh̄J

√
kBT

J

∫ ∞

0

dx

ex2−μ/kBT + 1
, (7)

with x =
√

h̄2k2/2mkBT as before. The upper limit in the
integral has been extended to infinity by assuming kBT < J .
It is convenient to introduce the frequencies ωE = J/h̄ and
ωI = A⊥/h̄ in order to write Eq. (7) in the form

1

T1
= 4ω2

I

πωE

√
kBT

J
F

(
μ

kBT

)
. (8)

Equation (8) allows estimates to be made of 1/T1 in 1D
HAFs as described below. Values of the function F (μ/kBT ) =∫ ∞

0 dx/(ex2−μ/kBT + 1) are obtained by numerical integration.
In order to make estimates of the parameter ωI in a

particular HAF system it is necessary to consider the electron-
nucleus interaction component A⊥. In AF insulators it is often
found that NMR experiments involve nuclei in nonmagnetic
spectator ions and not the nuclei of the magnetic ions
themslves. This is because the magnetic ion nuclei experience
fluctuations in the large contact hyperfine field and therefore
have very short transverse and longitudinal relaxation times
which make them unobservable in spin echo experiments. For
NMR measurements involving spectator nuclei the electron
spins S and the nuclear spins I may be coupled by transferred
hyperfine interactions, with the form as given above in terms
of A⊥. In cases where the probe nuclei are not in the exchange
path it is likely that the dipolar interaction is of dominant
importance. It is possible that a combination of both transferred
hyperfine and dipolar mechanisms apply in a particular
material. In the dipolar case nuclear spin flips are induced
by the terms in the dipolar Hamiltonian Hdip which involve
the raising or lowering I spin operators I+ and I−. These
terms have the form − 3

2gμBγI h̄ sin θ cos θ exp(−iφ)SzI
±/r3,

where θ and φ specify the orientation of the vector of length
r connecting the spins [28,29]. A summation over S spins
is generally required in order to obtain an estimate of the
fluctuating hyperfine field in a particular system. Procedures
of this kind have been used, for example, for CuPzN [15].
In the present general discussion of magnon-induced nuclear
relaxation ωI is treated as a parameter.

III. DISCUSSION

From Eq. (8), the predicted behavior of 1/T1 as a function
of T and B in the QC phase of a 1D HAF can be examined.
Figure 2 is a dimensionless plot of C/T1 vs H/HC , where C =
πωE/4ω2

I and H/HC = 1 − μ/gμ0μBHC , with μ0(H − HC)
in the range 0.3 to −0.3 T. The plot takes J/kB = 10 K and
ωE = J/h̄ = 1.3 × 1012 s−1. The critical field BC = 2J/gμB

is ∼15 T for a spin-1/2 HAF. An estimate of the order of
magnitude of ωI is obtained by assuming that the dipolar
interaction between I and S spins is of dominant importance in
the nuclear relaxation process. Taking γI /2π ≈ 10 MHz T−1

leads to ωI ≈ 106 − 107s−1. For convenience a value C = 1
is used in the plot. Thus, knowledge of J , together with an
estimate of ωI , provides the basis for quantitatively predicting
NMR relaxation rate behavior with temperature in the QC
phase near the QCP of a 1D HAF chain.

FIG. 2. Predicted behavior, based on Eq. (7), of the scaled NMR
spin-lattice relaxation rate C/T1 as a function of temperature in the
QC phase for a 1D HAF. A Raman scattering mechanism is used in de-
riving Eq. (8). The parameter C = 1/(4ω2

I /πωE), where ωI = A⊥/h̄,
with A⊥ the amplitude of transverse component of the fluctuating
hyperfine interaction and ωE = J/h̄. In the plot it is assumed, for
convenience, that C = 1 and J/kB = 10 K. If NMR probe nuclei
do not lie in superexchange paths the hyperfine coupling is likely
to be dominated by the dipolar interaction between S and I spins.

It is interesting to note that the predicted forms for the
relaxation rate variation with temperature given in Fig. 2 are
very similar to the experimental behavior obtained in the vicin-
ity of the QCP for the quasi-1D systems NiCl2-4SC(NH2)2

(DTN) and (C5H12N)2CuBr4 (BPCB) presented in Ref. [7].
DTN has spin-1 chains while BPCB is a spin-1/2 ladder. It is
argued that both systems are effectively spin-1/2 XXZ chains
with anisotropic coupling JZ/JXY = 0.5 [7]. The scaling
procedure which is applied to the DTN proton relaxation rate
data in Ref. [7] involves a plot of 1/T1T

α vs (B − BC)/T β

using empirical exponents α and β. Best-fit procedures give
α = 0.46 ± 0.12 and β = 1.00 ± 0.24. It follows from the
form of Eq. (8) that the 1/T1 values in the QC phase of a 1D
HAF should exhibit scaling behavior with T using F (μ/kBT )
as the scaling function. The experimental results are therefore
consistent with the magnon scattering model in which the
exponents are determined as α = 1/2 and β = 1.

Figure 3 shows the magnon-induced behavior of 1/T1

as a function of μ/kBT given by Eq. (8), again for C =
πωE/4ω2

I = 1 and J/kB = 10 K. A particular value of μ is
used, corresponding to a field slightly below μ0HC . The values
obtained for 1/T1 are ∼0.15−0.3 s−1 for the constant C that
is used. A smaller value for C (larger ω2

I ) will increase the
relaxation rate. The inset in Fig. 3 is a plot of values of the
scaling function F (μ/kBT ) vs μ/kBT .

It is interesting to compare the relaxation rates for the two
quasi-1D systems discussed in Ref. [7]. At 1 K for B ∼ BC ,
the protons in DTN have 1/T1 ≈ 100 s−1, while for 14N in
BPCB 1/T1 ≈ 1 s−1. Assuming that dipolar interactions are of
primary importance for spin-lattice relaxation in both systems,
it follows that the square of the ratio of the proton and nitrogen-
14 γ values (1γ /14γ )2 ≈ 200 is sufficiently large to more
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FIG. 3. The predicted NMR spin-lattice relaxation rate 1/T1 as
a function of μ/kBT for magnon scattering processes in the QC
phase of a 1D HAF obtained using Eq. (8). A particular value of μ

just below the QCP is used, corresponding to (HC − H )/HC = 0.01,
with C = 1 and J/kB = 10 K. The inset shows a plot of the scaling
function F (μ/kBT ) vs μ/kBT for the same μ value.

than account for the ratio of the measured 1/T1 values. It is
necessary to bear in mind in testing data collapse predictions
involving temperature-scaled data plots for a particular system
that it is implicitly assumed that the frequency ωI , which is
proportional to the amplitude of the fluctuating hyperfine field
at the nuclear sites, remains constant for the limited range
of fields and temperatures considered in the QC region. This
assumption may not hold sufficiently well in some cases.

A comparison of Eqs. (3) and (8) shows that a relationship
exists between the magnetization deviation from saturation
(MS − M) and the spin-lattice relaxation rate in the QC
phase of a 1D HAF. The relationship has the simple form
1/T1 = K(MS − M), with K a T -independent material spe-
cific constant. This interesting prediction, which follows from
the NMR relaxation rate being proportional to the magnon
density, should be tested by making 1/T1 and M measurements
on a selected 1D HAF material.

The present analysis has focused on the NMR relaxation
rate behavior in the QC region near the QCP of a 1D HAF
as shown in Fig. 2. As the temperature is raised beyond
0.5J/kB, thermally induced paramagnetic spin fluctuations
become increasingly important, giving 1/T1 ∝T χ0 with χ0

the static susceptibility [14]. In the TLL phase in which spinon
excitations determine the relaxation rate it has been shown that
1/T1 ∝T −0.5 [17,20,21]. The scaling behavior of 1/T1 with T

has been examined in detail for the TLL phase, as described, for
example, in Ref. [30]. In favorable cases it should be possible
to follow the changes in the NMR relaxation rate dependence
on temperature as crossovers occur from paramagnetic to QC
or TLL regions of the phase diagram. It is clear that in 1D
systems, including spin ladders and S = 1 Haldane chains with
closed gaps, NMR provides a powerful means for exploring
the crossover behavior. The magnon scattering model should
be useful in analyzing muon spin-relaxation results obtained
in μSR experiments on QC systems [31].

IV. CONCLUSION

In conclusion, it is shown that magnon scattering processes,
accompanied by nuclear spin flips, provide an NMR spin-
lattice relaxation mechanism which is of dominant importance
in the QC phase of a 1D HAF. The expression obtained for
the relaxation rate involves the temperature, which sets the
energy scale, and the chemical potential which determines
the proximity to the QCP. In order to make quantitative
predictions of relaxation rates it is necessary, first, to determine
the QCP field μ0HC and hence the exchange interaction J ,
and second, to make an estimate of the fluctuating hyperfine
field experienced by the nuclei used to probe the electron spin
dynamics. Predictions based on the relaxation rate expression
are found to be in broad agreement with experimental findings
for two quasi-1D systems.
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