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We compare theoretical results for electron spin resonance (ESR) properties of the Heisenberg-Ising
Hamiltonian with ESR experiments on the quasi-one-dimensional magnet Cu(py)2Br2 (CPB). Our measurements
were performed over a wide frequency and temperature range giving insight into the spin dynamics, spin structure,
and magnetic anisotropy of this compound. By analyzing the angular dependence of ESR parameters (resonance
shift and linewidth) at room temperature, we show that the two weakly coupled inequivalent spin-chain types inside
the compound are well described by Heisenberg-Ising chains with their magnetic anisotropy axes perpendicular
to the chain direction and almost perpendicular to each other. We further determine the full g tensor from these
data. In addition, the angular dependence of the linewidth at high temperatures gives us access to the exponent of
the algebraic decay of a dynamical correlation function of the isotropic Heisenberg chain. From the temperature
dependence of static susceptibilities, we extract the strength of the exchange coupling (J/kB = 52.0 K) and the
anisotropy parameter (δ ≈ −0.02) of the model Hamiltonian. An independent compatible value of δ is obtained
by comparing the exact prediction for the resonance shift at low temperatures with high-frequency ESR data
recorded at 4 K. The spin structure in the ordered state implied by the two (almost) perpendicular anisotropy
axes is in accordance with the propagation vector determined from neutron scattering experiments. In addition
to undoped samples, we study the impact of partial substitution of Br by Cl ions on spin dynamics. From
the dependence of the ESR linewidth on the doping level, we infer an effective decoupling of the anisotropic
component Jδ from the isotropic exchange J in these systems.

DOI: 10.1103/PhysRevB.96.024429

I. INTRODUCTION

Although known for decades, one-dimensional (1d) elec-
tronic systems remain an active field of research in modern
solid-state physics. These systems possess their own specific
phenomenology. At half band-filling, even an infinitesimal
residual on-site repulsion drives them into a Mott-insulating
phase [1] in which antiferromagnetic exchange is the pre-
dominant interaction. For this reason, a variety of quasi-
1d antiferromagnetic chain and ladder compounds exists in
nature. They are generally well described by the Heisenberg
spin chain with nearest-neighbor exchange or by one of its
many variations that can be obtained by coupling several
chains, by extending the range of the exchange interaction,
or by making it anisotropic. Depending on the specific
choice of the exchange and anisotropy parameters and on
the strength of an applied magnetic field, these models can
have gapped or gapless excitations. In any case, there are
a number of numerical and analytical methods specific for
one spatial dimension which allow for the computation of
more of the experimentally accessible quantities than for the
same models in higher dimensions. These methods include
the many variants of the numerical DMRG method [2–5] and
exact diagonalization [6,7] as well as methods from conformal
[8–10] and relativistic integrable massive quantum field theory
[11,12] in 1+1 dimensions.

The variety of theoretical methods applicable to 1d systems
boosted the search for experimental realizations of such
systems with reduced (magnetic) dimensionality starting in
the seventies of the last century (see, e.g., Ref. [13] and
references therein). The aim of this search was, on the one
hand, to find experimental evidence for the above-mentioned
physics specific for 1d systems. On the other hand, inves-
tigations of these materials could serve for a validation (or
falsification) of theoretical methods with potential application
to higher-dimensional systems. The organometallic compound
Cu(py)2Cl2 (py denotes the molecule pyridine NC5H5) was
one of the first realizations of a spin-1/2 Heisenberg chain and
was intensively studied some decades ago [14–16]. Although
discovered at the same time, the closely related compound
Cu(py)2Br2 (CPB) received considerably less attention. Nev-
ertheless, as can be concluded from measurements of specific
heat and static magnetic susceptibility, CPB turned out to be
closer to an 1d material than its Cl containing counterpart
[17]. Based on these measurements, it was found that CPB
has an exchange interaction along the chain not too big
compared with magnetic fields that can be realized in a
laboratory, but big enough compared to the interchain coupling
[17]. Thus CPB is a promising candidate for a 1d system
suited for comparison of experimental data with theoretical
predictions.
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In this work, we present such a comprehensive comparison
combining ESR as well as magnetization measurements with
calculations based on recently developed techniques. The
temperature dependence of the magnetization enables us to
determine the strength of the isotropic intrachain exchange
(J/kB = 52.0 K) and to estimate the value of the magnetic
anisotropy (δ ≈ −0.02). Results of angular-dependent mea-
surements of the ESR linewidth and resonance position at room
temperature and at a frequency of 9.56 GHz can be explained
considering the existence of two magnetically inequivalent
chains in this material as well as a small anisotropy δ.
Furthermore, based on these measurements, we determine the
g tensor of this compound and find evidence for the presence
of two anisotropy axes, related to the different types of chains.
A possible spin configuration of the ordered state, which
follows from this structure, is compatible with the propagation
vector (0,0.5,0.5) obtained from neutron scattering investi-
gations. From frequency-dependent high-field/high-frequency
ESR (HF-ESR) measurements, we derive the temperature
independent value of the g factor along the chain axis
gc = 2.153. The experimentally determined gc allows us to
calculate the resonance shift of the ESR line from HF-ESR data
measured at 4 K. By comparing the obtained resonance shifts
with shifts calculated by means of field theoretical and exact
methods, we show that exact finite temperature calculations
(or at least logarithmic corrections to field theory) are required
in order to describe the low-temperature data. Finally, we
discuss ESR studies on samples with two different amounts of
partial substitution of Br by Cl ions. From the change of the
linewidth with doping concentration we conclude an effective
decoupling of anisotropic exchange from isotropic exchange
as function of doping.

The paper is organized as follows. In Sec. II, we recall
part of the theoretical background for the exact calculation
of the thermodynamics of the Heisenberg chain and for
the description of microwave absorption probed in ESR
experiments. Section III is devoted to details of the samples,
the methods and the equipment used in our experiments. In
Sec. IV, we explain how the anisotropy can be extracted
from two magnetization measurements with magnetic fields
applied in two different directions. The analysis of our ESR
experiments is presented in Sec. V. Section VI accounts for
the results of neutron scattering experiments on CPB. In
Sec. VII, we discuss the influence of substituting a small
amount of the Br by Cl ions. Finally, in Secs. VIII and
IX, we discuss our results and conclude by summarizing
the main statements of the paper and by giving an outlook
to possible future studies. In the appendices we present
two new theoretical methods used in this work, one for
analyzing magnetization data of close-to-isotropic models
(Appendix A), another one for analyzing the line shift and
linewidth of the resonance lines (ESR parameters) by means
of (modified) moments of the spectral function (Appendix B).
In Appendix C, we discuss the spin structure of the ordered
ground state of CPB using a renormalization group argument.

II. THEORETICAL BACKGROUND

From the analysis of our thermodynamic and ESR mea-
surements, we shall argue that the magnetic properties of

the compound CPB are well described by the spin-1/2
Heisenberg-Ising chain (or XXZ chain)

H = J
∑
〈ij〉

[
si · sj + δ sz

i s
z
j

]
(1)

with exchange interaction of strength J and anisotropy param-
eter δ. More precisely, our experimental data can be interpreted
consistently, for temperatures down to 4 K, assuming that the
two inequivalent magnetic chains inside the compound are
described by two noninteracting XXZ chains with the same
values of J and δ but two different orientations of the magnetic
symmetry axes (called “the anisotropy axes” in the following).
In doing so, we neglect weak interchain couplings which lead
to a 3d ordering temperature of about TN = 0.72 K [17].

The Hamiltonian (1) defines one of the most studied and
best understood 1d many-particle models. It belongs to the
class of so-called integrable lattice models [18], meaning that,
in addition to the generic 1d methods mentioned in the previous
section, several advanced mathematical techniques can be
applied to calculate its thermodynamic properties [19,20] and
some of its thermal correlation functions [21,22] analytically.
For the comparison with our magnetization measurements, we
shall resort to the so-called quantum transfer matrix approach
to the thermodynamics of integrable lattice models [23,24].
This approach allows us to calculate the magnetization and
the neighbor-correlation functions, that are needed to take into
account a small anisotropy, exactly and to arbitrary precision
for the Heisenberg model on an infinite chain.

The correlation function, which determines the absorption
of microwaves in ESR experiments within linear response
theory [25] and which is therefore relevant for our work is
the imaginary part of the dynamical susceptibility,

χ ′′
+−(ω,h) = 1

2L

∫ ∞

−∞
dt eiωt 〈[S+(t),S−]〉T ,h,δ. (2)

Here, L is the number of lattice sites in the spin chain, S+
and S− are ladder operators for the total spin, and the brackets
under the integral denote the thermal average in the canonical
ensemble at temperature T and for an external magnetic field of
strength H with corresponding Zeeman energy h = gμBμ0H .
The direction of the magnetic field is, in our convention, the
z direction. For later convenience, we include the parameter δ

of Hamiltonian (1) into the list of subscripts of the thermal
average. In Appendix B, we discuss more general setups
where, for instance, the incident wave is linearly polarized
rather than circularly, as well as a slightly more general
Hamiltonian whose anisotropy axis is arbitrarily oriented.

The ESR line is determined by the absorbed intensity
I (ω,h) = ωχ ′′(ω,h)/2. In spite of the integrability of the
XXZ chain, an analytic calculation of this function at
all temperatures and magnetic fields is still out of reach.
Numerical calculations based on the exact diagonalization
of finite chains [26–28] are plagued by finite size effects,
rendering them unreliable for small temperatures and small
anisotropies. Small anisotropies cause narrow absorption lines,
meaning that a high numerical frequency resolution is required
or, alternatively, that we need to know the corresponding
time-dependent correlation functions in the long-time limit.
As far as we understand, this also restricts the applicability of
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current finite-temperature dynamical DMRG methods. Field
theoretical methods [29,30], on the other hand, are suitable for
small anisotropies, but are restricted to small temperatures and
a limited range of magnetic fields.

Instead of calculating the full dynamical susceptibility, one
may try to find appropriate measures for certain characteristic
features of the spectral line, like the deviation of its center
from the position of the paramagnetic resonance, the so-called
resonance shift, or its linewidth (for details see Appendix B).
Such an approach was originally proposed by van Vleck [31],
who devised a ‘method of moments’ even before the linear
response theory was invented. Van Vleck found formulas
for the moments in the high-temperature limit. Later, Maeda
et al. [32] related the resonance shift of the XXZ chain
with small anisotropy to a certain nearest-neighbor static
correlation function which can be extracted from the free
energy per lattice site and can be computed exactly for arbitrary
temperatures and magnetic fields. In previous work [27,28],
part of the authors developed a general method of moments
for the XXZ model in an external magnetic field directed
along the magnetic anisotropy axis. It relates all moments
of the normalized intensity I (ω,h)/I0 to static finite-range
correlation functions. In 1d, the first few of them can be
exactly calculated for arbitrary temperature, magnetic field,
and anisotropy [22,33]. They provide an idea about the
temperature and field dependence of the ESR parameters. The
question if this dependence can be observed experimentally
stood at the beginning of our work.

In the comparison of moment-based ESR parameters
with experimental data from standard ESR experiments, two
possible difficulties may arise. The first one relates to the
fact that the moments are calculated as integrals over the
frequency for fixed magnetic field, while ESR experiments
are usually performed for fixed frequency and the field is
varied. As we have pointed out in previous work [28], this may
even cause a seemingly wrong prediction for the qualitative
behavior of the linewidth as a function of temperature. Still,
the discrepancy can be resolved, at least in principle, by
changing the experimental set-up such that the frequency is
varied at fixed external field. In practice, however, such a
frequency sweep measurement with fixed magnetic field is
rather challenging (see, e.g., Ref. [34] and references therein),
in particular, when dealing with broad resonance lines.

A second difficulty, which may be encountered is that the
linewidth defined by the second moment of the absorbed
intensity may take rather different values than its width
at half height, which is one of the standard experimental
measures of the linewidth. The reason is that “long tails”
of the resonance line may considerably contribute to the
moment-based linewidth while they are entirely ignored by a
measure like the width at half height. In the experimental ESR
data such tails may be overlaid by background noise, which
makes an extraction of the moment-based width from the data
problematic if not impossible. In this work we try to overcome
this problem by introducing moments in which the absorbed
intensity is multiplied by a “weight function” providing a
cutoff for the high-frequency tails (see Appendix B 1). For
small anisotropy and high temperatures, a scaling analysis then
makes it possible to relate the moment-based width with the
width at half height. This way we can understand and interpret

FIG. 1. Structure of the compound Cu(py)2Br2. Cu ions (yellow),
located in the centers of stretched octahedra (Br green, N dark blue),
form chains along the c axis which are separated from each other by
pyridine rings NC5H5 (C light blue, H gray). Crystallographic data
are taken from Ref. [36]. The arrows indicate the proposed magnetic
structure of CPB below TN � 0.72 K as discussed in Sec. VI and
Appendix C.

the angular dependence of our high-temperature data for the
linewidth of CPB. Our interpretation supports the picture of
“inhibited exchange narrowing” developed in Ref. [35].

III. SAMPLES AND EXPERIMENTAL METHODS

Single crystals used in this study were grown from solution
and were investigated by means of measurements of static
susceptibility, specific heat and muon spin rotation in Ref. [17].
A crucial input for the discussion of our ESR data below is the
crystallographic structure of our samples. CPB is monoclinic
(P 21/m) with a = 8.424 Å, b = 17.599 Å, c = 4.0504 Å, and
β = 97.12◦ [36]. The magnetic ions are Cu2+ ions (S = 1/2),
which form chains along the c axis (see Fig. 1). Each of these
Cu ions is surrounded by four Br ligands and two N ligands,
the latter belonging to the pyridine molecules which separate
neighboring chains from each other. The surrounding ligands
form a stretched octahedron whose stretching axis, i.e., the
longer Br-Cu-Br axis, is tilted away from the c axis by an
angle θc = 37.24◦, as shown in Fig. 2. The angle between the
projection of the stretching axis onto the plane perpendicular
to the c axis (called a′-b plane in the following) and the a′ axis
is ±φa′ with φa′ = 43.44◦ for the two inequivalent chains. The
line connecting the two opposite nitrogen ligands almost lies
in the a′-b plane, tilted away only by 0.3◦. It encloses an angle
of ±(90◦ − φa′) = ±46.56◦ with the a′ axis. Single crystals
cleave along the c axis, which enables us to easily identify this
crystallographic direction.

There are two magnetically inequivalent types of chains
which differ in the orientation of the stretching axis of
the octahedra. They can be transformed into each other by
combining a reflection with respect to a plane normal to the b

axis lying in between the two chains and a translation of c/2 in
c direction (see Fig. 1). Therefore the orientation of the ionic
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FIG. 2. (Left) Local coordinate system of a stretched octahedron
formed by four bromine ions (green) and two nitrogen ions (dark
blue), surrounding the central copper ion (yellow). Principal axes g1,
g2, and g3 of the g tensor ĝ coincide with the symmetry axes of the
stretched octahedron. The angle between local magnetic field ĝH and
anisotropy axis d is denoted by ϑ . (Right) Angles of ĝH (θ , φ), d
(90◦,90◦ − φa′ ), and g3 (θc, − φa′ ) with respect to the crystallographic
frame (a′,b,c). Additionally, the angle ϑ between ĝH and d is shown.

g tensors is different for these two chain types, while the g

tensors for sites within one chain are identical.
Neighboring magnetic ions in the individual chains are

antiferromagnetically coupled by superexchange via the halo-
gen ligands between them. The strength of this intrachain
exchange was obtained in Ref. [17] by comparing the static
susceptibility measured in a field along the chain direction
with the exact result for the isotropic Heisenberg chain [37],
given by Hamiltonian (1) with δ = 0. The authors of Ref. [17]
report an isotropic exchange of J = 4.58 meV. Although
neighboring chains are well separated from each other, there
exists a residual interchain exchange J ′ which leads to 3d
ordering at finite temperatures. This transition was observed
[17] in specific heat measurements at TN = 0.72 K and can
be used to estimate the strength of the interchain exchange to
be J ′ ≈ 0.03 meV (see, e.g., Ref. [38]). From these values it
follows that the magnetic interactions in CPB have a strong
one-dimensional character thus qualifying this compound for
comparison with theories based on 1d models like Eq. (1).

We measured the static magnetization of a CPB sample
using a VSM-SQUID magnetometer from Quantum Design
Inc. in DC mode in the temperature range from 1.8 to 325 K,
in order to reinvestigate the exchange coupling J by taking the
effect of a small anisotropy δ into account.

Beside the pure compound CPB, two doped samples with
2% and 5% Cl content were studied. Their crystal structure is
similar to CPB with some of the Br sites occupied by Cl ions,
which leads to local changes of the g tensor and of the effective
isotropic exchange [17]. This way disorder is introduced into
the system.

For our ESR studies of these compounds, two spectrometers
were employed. Measurements with a microwave frequency of
9.56 GHz at temperatures between 3.6 and 300 K, and fields up
to 0.9 T were performed using a standard Bruker EMX X-Band
spectrometer. HF-ESR was measured using a homemade
spectrometer which is described in detail elsewhere [39].
All HF-ESR measurements were performed in transmission
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FIG. 3. Static susceptibilities of CPB for two orientations of the
small magnetic field of 0.1 T (‖ and ⊥ to the c axis) as functions of
temperature. Open symbols indicate measured data [minus offsets
and divided by geometry factors, see Eqs. (6)]. For the sake of
clarity, only every sixth of these data points is plotted in the main
plot and every second point in the inset. Solid lines show the best fit
χ

(‖,⊥)
fit (T ) = χ (0)(T ) + χ (‖,⊥)

corr (T ), corresponding to J/kB = 52.0 K
and δ = −0.019 (see text). The excellent match between calculated
and measured data is emphasized in the inset. Vertical lines indicate
the positions of the Bonner-Fisher maxima. The difference in height
can be mainly attributed to the g factors of the two field directions.

geometry and Faraday configuration, i.e., with the wave vector
of the microwaves being parallel to the external field.

The neutron diffraction measurements were performed
on the D23 instrument in Institut Laue-Langevin (Grenoble,
France). The fully deuterated sample of CPB was mounted
on the dilution refrigerator stick, installed on a standard ILL
Orange cryostat. An incident neutron beam with wavelength
λ = 2.375 Å was provided by the PG monochromator. The
measurements were performed in a standard geometry with a
single 3He detector.

IV. MAGNETIZATION

The temperature dependence of the magnetization of a CPB
sample was measured with a small applied field of about
0.1 T upon heating after zero field cooling. In one of the
measurements, the external field was oriented approximately
along the chain axis, while in another one it was applied
nearly perpendicular to this axis. In the following, we neglect
small misalignments of the crystal and consider susceptibilities
defined as the magnetization divided by the small field of
0.1 T (see Appendix A). We label the two susceptibilities and
the corresponding data sets by (‖) for H ‖ [001] and by (⊥)
for H ⊥ [001], respectively. Static susceptibilities extracted
from the two measurements are shown in Fig. 3.

For both orientations, the behavior of the susceptibility
is qualitatively similar, showing a Bonner-Fisher maximum
[40], which is typical for spin-1/2 chains and whose position
and height are mainly related to the strength of the exchange
interaction. The fact that the two susceptibility curves differ
from each other by a constant factor over a wide temperature
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range can be mainly attributed to the g-factor anisotropy,
which can be extracted from the angular dependence of the
resonance field of our ESR data at high temperatures (see
Sec. V A), and to geometry factors taking the sample shape
into account. The small difference of the positions of the two
maxima can be explained by a small anisotropy of the exchange
interaction. Assuming the former to be of Ising type, we may
use first-order perturbation theory (see Appendix A), valid for
all temperatures T � Jδ/kB with Boltzmann’s constant kB ,
in order to estimate the parameter δ of Eq. (1).

From the angular dependence of the ESR data in Sec. V A
we conclude that the anisotropy axes of the spin chains in
our material are perpendicular to the c axis. This means
that for χ (‖) the magnetic field is perpendicular to the
anisotropy axes. Denoting the magnetic field direction by
z, the perturbation term becomes Jδ

∑
〈ij〉 s

x
i sx

j , and the
first-order correction to the isotropic susceptibility, χ (0)(T ) =
g2μ2

B〈sz
1〉T ,h,0/h with Zeeman energy h = gμBμ0H , takes the

form (see Appendix A 2)

χ (‖)
corr(T ) = g2μ2

BJ δ

h

d

dh

〈
sx

1 sx
2

〉
T ,h,0. (3)

Here, the subscripts at 〈·〉T ,h,0 mean that the thermal expecta-
tion value has to be evaluated with the isotropic Hamiltonian,
i.e., Eq. (1) with δ = 0, supplemented by the Zeeman term
−hSz = −gμBμ0H

∑
j sz

j .
For χ (⊥), the magnetic field lies in the a′-b plane. Denoting

its direction again by z, the anisotropic part of the Hamiltonian
of one of the two inequivalent chains in CPB reads

Hϑ = Jδ
∑
〈ij〉

(
cos ϑ sz

i − sin ϑ sx
i

)(
cos ϑ sz

j − sin ϑ sx
j

)
,

(4)

where ϑ is the angle between magnetic field and the cor-
responding anisotropy axis. If we take into account that the
anisotropy axes of the two chains are almost perpendicular to
each other, and if we further neglect the small anisotropy of
the g factor inside the a′-b plane (see Sec. V A), the first-order
contribution of both chain types to the total susceptibility sim-
plifies to the arithmetic mean of the individual contributions
and is therefore given by

χ (⊥)
corr(T ) = g2μ2

BJ δ

2h

d

dh

〈
sz

1s
z
2 + sx

1 sx
2

〉
T ,h,0. (5)

Everything is now reduced to quantities that can be calculated
exactly in the thermodynamic limit. The isotropic part χ (0)(T )
of the static susceptibility and its corrections (3) and (5) can
be most efficiently computed by solving a simple and finite
set of nonlinear integral equations arising within the so-called
quantum transfer matrix approach to the thermodynamics of
integrable lattice models [23,24].

We fitted the theoretical predictions

χ (‖)(T ) = A(‖)
(
χ (0)(T ) + χ (‖)

corr(T )
) + χ

(‖)
0 (6a)

χ (⊥)(T ) = A(⊥)
(
χ (0)(T ) + χ (⊥)

corr(T )
) + χ

(⊥)
0 (6b)

to the measured data χ
(‖)
i and χ

(⊥)
i , respectively. Here, A(‖,⊥)

are dimensionless geometry factors and χ
(‖,⊥)
0 are offsets of

the data sets χ
(‖,⊥)
i measured in units emu/mol. We derive the

general structure of these equations in Appendix A 1.
The fit values of the isotropic coupling J and the anisotropy

parameter δ depend on the chosen temperature range [Ta,Tb]
of the fit. We varied the lower bound Ta from 16 to 32 K
and the upper bound Tb from 200 to 325 K. Values of Ta

smaller than 22 K or values of Tb larger than 285 K suddenly
decrease the quality of the fit. The former makes sense since
a perturbation expansion, as given in Eqs. (6), is only valid
for T � Jδ/kB ≈ 1 K. The latter is due to more noise and
perhaps a systematic error in the susceptibility data above
room temperature. The best fit is obtained for Ta = 23.5 K
and Tb = 285 K and yields

J/kB = 52.0 K ± 0.1 K (7)

δ = −0.019 ± 0.002 ≈ −0.02. (8)

Offsets and prefactors are χ
(‖)
0 = 1.46 × 10−4 emu mol−1,

χ
(⊥)
0 = −2.77 × 10−4 emu mol−1, and A(‖) · (g(‖))2 = 4.48,

A(⊥) · (g(⊥))2 = 4.55, respectively. If we set g(‖) = gc = 2.154
and g(⊥) ≈ 2.069 as obtained by means of ESR spectroscopy
in Sec. V, the latter value being an estimated average over g

values in the a′-b plane, both geometry factors are close to
one, A(‖) = 0.97 and A(⊥) = 1.06.

Figure 3 shows the data sets (χ (‖,⊥)
i − χ

(‖,⊥)
0 )/A(‖,⊥) to-

gether with the two curves χ (0)(T ) + χ
(‖,⊥)
corr (T ) of the best

fit with δ = −0.019 and J/kB = 52.0 K. The fit provides a
reliable estimate of the anisotropy in CPB (for details see
Appendix A). The relative positions of the two maxima (see
inset of Fig. 3) already give a clear hint at the sign of δ. The fact
that the position of the maximum of χ (‖)(T ) is slightly shifted
to higher temperatures as compared to the one of χ (⊥)(T )
implies that the anisotropy is negative and small [see Eq. (A14)
in Appendix A 2] meaning that the Hamiltonian is critical in
zero magnetic field.

In the low-temperature regime T � 3 K, our susceptibility
data show a strong decrease with decreasing temperatures
and the curves obtained from a perturbation expansion in δ

deviate from the experimental data (see inset of Fig. 3). This is
compatible with the fact that the perturbation expansion is only
valid for T � Jδ/kB ≈ 1 K. The low-temperature behavior
might be qualitatively explained by an effective magnetic
excitation gap which opens if the applied field is perpendicular
to the anisotropy axis [41,42] or by the proximity of the 3d
antiferromagnetic phase transition at TN ≈ 0.72 K.

V. ESR ON Cu(py)2Br2CPB

A. Angular dependence of ESR parameters

We study the angular dependence of the ESR spectrum of
CPB at room temperature and for a fixed frequency of ν =
9.56 GHz. We recorded three data sets. For two of them, the c

axis of the sample was initially aligned with the external field,
then rotated away from the field direction by 90◦. A third data
set pertains to a rotation about the c axis, which enclosed an
angle of 90◦ with the external field. This data set corresponds
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FIG. 4. Angular dependence of the measured resonance field for
CPB (dots) at frequency ν = 9.56 GHz and at room temperature
for rotation of the magnetic field in planes containing the c axis
(top and middle) and in the a′-b plane (bottom), compared to the
fitted theoretical curves μ0H (solid lines). Dashed lines indicate the
resonance fields μ0H1,2 of the two individual, unresolved lines [see
Eq. (13) and text].

to a rotation of the field in the a′-b plane in the reference
frame of the sample. In Fig. 2, we show the local octahedral
environment of the Cu2+ ions of one of the two inequivalent
chains and its relative position to the crystallographic frame
(a′,b,c).

All recorded spectra show single spectral lines from which
we extracted the resonance fields H and linewidths w as
functions of the rotation angle α. The corresponding curves of
ESR parameters are shown in Figs. 4 and 5 as black squares.

It turns out that the analysis of these curves is rather
intricate. This is first of all due to the fact that we are dealing
with two inequivalent chains (see Fig. 1) meaning that we
have to interpret the recorded spectral lines as superpositions
of two individual lines which are so close to each other that
they are not resolved at the applied frequency. Note that,
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FIG. 5. Angular dependence of the measured ESR linewidth for
CPB (dots) at frequency ν = 9.56 GHz and at room temperature
for rotation of the magnetic field in planes containing the c axis
(top and middle) and in the a′-b plane (bottom), compared to the
fitted theoretical curves μ0w (solid lines). Dashed lines indicate the
linewidths μ0w1 and μ0w2 of the two individual, unresolved lines
[see Eq. (14) and text].

in principle, besides the exchange narrowing effect due to
intrachain interaction given by J , there might be an additional
exchange narrowing effect caused by interchain interactions
J ′, which would lead to the fusion of the two spectral lines
[35,43]. Such effect might be anticipated from the fact that in
case of CPB, J ′ is larger than the difference in the Zeeman
energies of the inequivalent chains. However, the angular
dependencies of the ESR parameters of the resulting single
line are not compatible with our results obtained by a rotation
of the magnetic field in a-b plane, which can be described only
in terms of contributions from two individual lines, see below.

A second difficulty arising in the analysis of our data comes
from the fact that the octahedra surrounding the magnetically
active Cu2+ ions are distorted in such a way that the cubic
symmetry of the undistorted octahedra is fully broken. This
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implies that we are dealing with the most general possible g

tensor, which, as a symmetric rank two tensor, depends on
six independent parameters, e.g., its eigenvalues g1,g2,g3 and
three angles fixing its orientation in space. We may therefore
write it as

ĝ = D diag(g1,g2,g3)Dt, (9)

where D is the rotation matrix transforming the principle
coordinate system of the g tensor into the crystallographic
frame (a′,b,c). The g-factor anisotropy is caused by spin-orbit
coupling, which mixes, in the case of Cu2+ ions, some of the
t2g states to the ground state, i.e., the dx2−y2 state [44]. Since
the anisotropy is small, we expect a close-to-isotropic g tensor,
i.e., g1 ≈ g2 ≈ g3.

We analyze the angular dependence of the ESR parameters
based on the model of two noninteracting inequivalent XXZ
chains. In the following, we denote Bohr’s magneton by μB ,
the permeability of free space by μ0, and Planck’s constant
by 2πh̄. The letter h is already used as abbreviation for the
Zeeman energy h = gμBμ0H and should not be confused
with Planck’s constant. For a single chain, our theory relies
on perturbation theory in δ, on an analysis of the moments of
the shape function, and on a high-temperature expansion in
J/(kBT ) for the resonance shift s(δ) and the linewidth w (see
Appendix B 1). The resonance shift is related to the resonance
field H by

H = h̄ω − J s(δ)

gμBμ0
. (10)

Here, ν = ω/(2π ) is the frequency of the incident microwaves
and g = ‖ĝe‖, where e is the unit vector in the direction of
the external magnetic field. To leading order in J/(kBT ), we
obtain the following expression for the resonance shift [see
Eq. (B16b) of Appendix B 1],

s(δ) = Jδ

4kBT

[
(1 − 3 cos2 ϑ)

h̄ω

J
+ (1 + cos2 ϑ)

δ

2

]
(11)

with ϑ being the angle between the magnetic field direction
ĝe/g at the Cu sites and the anisotropy axis of the chain.
Note that up to first order in δ the frequency term h̄ω can be
replaced by gμBμ0H . This relation will be also proven useful
for the analysis of high-frequency ESR measurements at high
temperatures in the next section.

In 1d systems, the usual exchange narrowing argument fails.
It can be replaced by a modified argument, leading to “inhibited
exchange narrowing” [35]. Further elaborating on this idea we
derive a novel formula for the linewidth for small δ and in the
high-temperature regime (see Appendix B 1),

w ≈ AJ

gμBμ0

[
δ2

4
(1 + cos2 ϑ)

]β

. (12)

The proportionality factor A is unknown and should be of order
one. As explained in Appendix B 1, the exponent β is con-
nected with the decay of a certain time-dependent correlation
function in the isotropic system at high temperature.

Equations (10)–(12) determine the resonance field and
linewidth of the absorption spectrum of a single XXZ chain
with small anisotropy and in the high-temperature regime.
We still have to take into account that the observed spectra

must be interpreted as the superposition of the spectra of two
types of chains, types 1 and 2, which are distinguished by
the orientation of their g tensors and anisotropy axes. We
shall assume for simplicity that in its center each of the two
spectral lines can be approximated by a Lorentzian and that
the two lines have equal spectral weight. For two equally
normalized Lorentzians with maxima at H1, H2 and widths
w1, w2 their sum is well approximated again by a Lorentzian if
only |H1 − H2| � min{w1,w2}. The location of the maximum
of the resulting line is approximated by

H = H1w
−3
1 + H2w

−3
2

w−3
1 + w−3

2

+ O
(
ε3
Hεw

)
(13)

and its width w can be expressed as

w =
√√

w2
1w

2
2 + (w1 − w2)4

4
− (w1 − w2)2

2

+ (H1 − H2)2

w1 + w2

(
3

4
− 25

8

(
w1 − w2

w1 + w2

)2
)

+ O
(
ε3
H ,ε2

H ε4
w

)
(14)

with small numbers εw = (w1 − w2)/(w1 + w2) and εH =
(H1 − H2)/(w1 + w2). The formula for the location H of the
maximum represents a weighted mean of the two resonance
fields H1 and H2 with weights 1/w3

1,2. Note that it holds for
other line shapes than Lorentzians, e.g., for a superposition of
two Gaussians, too. The first line in expression (14) for the
resulting width w can be understood as a modified geometric
mean of two individual widths w1 and w2, whereas the second
line reflects an additional broadening caused by the finite
distance of the maxima positions.

We fit derivatives of Lorentzians to the measured spectral
lines as, due to the use of lock-in techniques, the derivative
of the absorption line was recorded in our low-frequency ESR
experiments. We identify Lorentz parameters “position” and
“width” with H and w of Eqs. (13) and (14), respectively. For
the individual resonance shifts H1, H2 and linewidths w1, w2

of the two types of lines, we have used Eqs. (10) and (12) with
the respective orientations of the g tensors and anisotropy axes.
Taking these equations as they are, the number of parameters
to be determined would be too large for a stable fit. Ideally, the
following parameters of the model should be extracted from
a fit: the anisotropy δ, the eigenvalues g1, g2, and g3 of the
g tensor, 2 × 3 angles fixing the rotation matrices D1 and D2

that determine the orientation of the g tensors of the two types
of chains, 2 × 2 angles fixing two unit vectors d1, d2 defining
the direction of the anisotropy axes of the two types of chains,
and finally the parameters A and β entering Eq. (12).

In order to reduce the number of unknowns of the fit, we
fix the “geometric parameters” D1, D2 and d1, d2 by resorting
to the crystal structure (see Sec. III) and by inspecting the
qualitative behavior of the data. We have seen in Sec. III that the
two inequivalent chains in CPB are related by a glide reflection
with a reflection component R = diag(1, − 1,1) representing
a reflection at the a-c plane. This implies that RD1 = D2R and
Rd1 = d2, i.e., g tensors and anisotropy axes of the two chains
must be related by this reflection. It is convenient to specify the
direction e of the external magnetic field in terms of spherical
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coordinates θ , φ with respect to the crystallographic frame
(a′,b,c). Then, e = e(θ,φ) and the g factors gj = ‖ĝj e‖, j =
1,2, of the two chains become functions of θ and φ. Equation
(9) implies that gj (θ,φ) is periodic in θ with period 180◦,
that gj (0,φ) is periodic in φ, also with period 180◦, and that
g2(θ,φ) = g1(θ, − φ).

The most striking feature of the experimental resonance
shift and linewidth shown in Figs. 4 and 5 is that they exhibit a
180◦ periodicity if the field is rotated in planes perpendicular to
the a′-b plane, but a 90◦ periodicity if the field is rotated within
the a′-b plane. The g factors of the individual chains have a
periodicity of 180◦ for all rotation directions. The periods of
resonance field and linewidth induced by the anisotropy of the
individual chains are 180◦ too, as can be seen from Eqs. (11)
and (12). Thus any shorter period or modulation must come
from the superposition of the resonance lines of the two chains.

Let us first consider the variation of the linewidth [see
Eqs. (12) and (14) as well as Fig. 5]. In Eq. (12), the variation
of the g factor with the external field is a subleading effect,
the main variation of the width coming from the variation
of ϑ . In the upper two panels of Fig. 5, no modulation of
the 180◦ periodicity is visible, showing that both angles ϑ1

and ϑ2 and thus both individual widths w1 and w2 have the
same monotonic behavior as function of rotation angle α. By
contrast, the 90◦ modulation of the width in the lower panel
points towards a phase difference of about 90◦ between ϑ1 and
ϑ2. This can be understood if the anisotropy axes lie in the a′-b
plane and are almost perpendicular to each other. Taking into
account that Rd1 = d2, they should enclose an angle of about
45◦ with the a′ axis. Thus the anisotropy axis should either be
directed along the projection of the stretched octahedron axes
onto the a′-b plane or perpendicular to this direction. Only the
latter case is (approximately) in accordance with the reflection
symmetries of the deformed octahedra. For this reason, we
conclude that the anisotropy axes of the chains are located
in the a′-b plane and enclose angles ±(90◦ − φa′) = ±46.56◦
with the a′ axis. As we shall see this will also explain the
behavior of the resonance field, Eqs. (10) and (11), if the g

tensor anisotropy is properly taken into account.
For the g tensor anisotropy, we hypothesize that it is entirely

due to the deformation of the octahedra formed by the Br
and N atoms surrounding the magnetically active Cu2+ spin.
Then, the g tensor should be diagonal in a coordinate system
symmetrically attached to the deformed octahedra. Denoting
by D(α,n) the matrix for a rotation about an axis n by an angle
α, we are setting

D1 = D(φa′,c)D(−θc,b), (15a)

D2 = D(−φa′ ,c)D(−θc,b), (15b)

which means that we are neglecting the small declination away
from the a′-b plane of the line connecting the nitrogen atoms
in the octahedron (see Sec. III and Fig. 2). The above notation
is also useful to represent d1 and d2 explicitly as

d1,2 = D(±φa′ ,c)b = D(±(90◦ − φa′),c)a′, (16)

which means that the anisotropy axis of each chain coincides
with the connecting line of the two nitrogen ions (see Fig. 2).

Presuming Eqs. (15) and (16), we have reduced the model
parameters to be fitted to the angular dependence of the

high-temperature ESR data to δ, g1, g2, g3, A, and β. We reduce
the number of these parameters further by using δ = −0.019
as obtained from our susceptibility measurements. Except for
these model parameters, we also have to determine some
experimental parameters connected with the limited control
over the sample position during our measurements, which are
described below.

The best fit yields for the remaining model parameters

(g1,g2,g3) = (2.065, 2.018, 2.203), (17)

A = 1.3, (18)

β = 0.77. (19)

The estimated error of β is about 3 % and those of the
three g values g1,2,3 are less than 0.5 %. The three values
of g1,2,3 in Eq. (17) together with Eq. (15) determine the
full g tensor for both chain types and are typical for Cu2+

ions in an octahedral environment [44]. For a magnetic field
applied along the chain axes, the g factors of both chain types
are the same due to reflection symmetry and take the value
gc = 2.154. This value is in excellent agreement with the value
obtained independently from high-frequency measurements
(see Sec. V B below).

For a different choice of the model parameter δ, say δ =
−0.01, −0.03, or −0.05, the best fit yields similar values of g1

and g3 as well as of β, all lying in the estimated error intervals.
This can be understood by the observation that the effect of δ

on the resonance position at high temperatures in Eq. (10) is
very small: s(δ) ∼ δ/T . The variation of the fit parameter g2

with δ is slightly larger (up to 1.5 %), leading to values g2 � 2
for δ < −0.04. Furthermore, the model parameter δ enters the
formula of the linewidth, Eq. (12), via the prefactor A · δ2β .
If δ was too small in absolute value, this would yield values
of A not of order one, in contradiction to our expectation (see
Appendix B 1). This way and by demanding that g2 > 2, we
can exclude values of δ greater than −0.01 and less than −0.04,
in agreement with our previous findings.

Except for the model parameters, the fit yields a number
of experimental parameters, for instance, “off-plane” angles
φ(1,2)

op and θ (a′b)
op . The former are angles between the b-c plane

(label 1) or the a-c plane (label 2) and planes rotated about the c

axis by φ(1,2)
op . Their meaning is that during the corresponding

measurement (labels 1 and 2 in Figs. 4 and 5) the crystal
was rotated such that the external magnetic field was lying
in these rotated planes rather than in the unrotated b-c or a-c
planes. During the rotation of the third measurement (label 3
in Figs. 4 and 5) the a′-b plane enclosed an angle θ (a′b)

op with the

external magnetic field. Since θ (a′b)
op is small (see below), we

can neglect it and call this a rotation of the magnetic field inside
the a′-b plane. Further, offset angles α(1,2,a′b)

os are determined
by the fit. They describe (small) misalignments of the external
magnetic field with crystallographic axes, e.g., the c axis for
measurements (1) and (2) or the a′ axis for measurement (3),
at α = 0. They read(

φ(1)
op ,φ(2)

op ,θ (a′b)
op

) = (−6.4◦, 26.9◦, 1.2◦), (20)(
α(1)

os ,α(2)
os ,α(a′b)

os

) = (5.6◦, 1.9◦, − 0.9◦). (21)
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The values of θ (a′b)
op , α(2)

os , and α(a′b)
os are negligible. The order

of magnitude of α(1)
os ∼ 5◦ − 10◦ could have been already

estimated by eye from the corresponding data sets of the upper
panels of Figs. 4 and 5.

Figures 4 and 5 show the experimental data (black dots)
together with the fitted theoretical curves (red solid lines) for
the angular dependence of resonance position and linewidth.
The red dashed lines represent the contributions from the two
inequivalent chains. The linewidth, measured as width at half
height, of the sum of a broad and a narrow line is dominated
by the width of the narrow line. In all cases, we assume equal
intensities of the two lines composing the observed spectral
line. Therefore the width of the observed line is minimal
if the linewidth of one of the two contributing lines has a
minimum (see lower panel of Fig. 5). From our point of view
the agreement of the fitted curves H (α) and w(α) with the
measured data points is rather convincing in all three cases.

In conclusion, from the angular dependence of the ESR pa-
rameters measured at room temperature T � J/kB ≈ 52.0 K,
the eigenvalues of the g tensor could be determined. The
scenario of two anisotropy axes in the a′-b plane explains the
observed angular dependence of resonance field and linewidth.
Furthermore, from heuristic arguments, the possible value of
δ could be restricted to the interval [−0.04, − 0.01], which
is compatible with the value of δ = −0.019 obtained from
susceptibility measurements. Additionally, the values of A

and β in Eq. (12) could be estimated. We expect that, due to
further progress in theory, they may be calculated one day.
For the time being, they provide experimentally measured
quantities of certain time-dependent correlation functions
of the isotropic Heisenberg chain. The value of β = 0.77,
for instance, is related to the algebraic long-time decay of
the finite-temperature correlation function (T ≈ 6J/kB) that
appears under the integral of Eq. (B14c) [see Eqs. (B21)–(B23)
in Appendix B, valid at high temperatures].

In the infinite temperature limit, this correlation function
simplifies to

g∞(t) = 4

2LL

L∑
j,k=1

Tr
(
eiHxxxt s+

j s+
j+1e

−iHxxxt s−
k s−

k+1

)
� α(J t)−γ∞ (22)

with γ∞ = 0.6, i.e., β∞ = 0.71 (see Appendix B 3). The value
of β = 0.77, i.e., γ = 0.70, at T ≈ 6J/kB is in accordance
with a numerical analysis that we performed for finite
temperatures, 1 � kBT /J � 100, and up to 28 lattice sites,
similar to the one in Appendix B 3 for infinite temperature
(see, e.g., Fig. 12).

B. Frequency dependence of the resonance position

We conducted HF-ESR studies of the resonance shift of
the spectral line for comparison with calculations presented
in Refs. [27,28,30,32]. Measurements of the frequency depen-
dence of the ESR parameters were performed at 4 and 300 K
in a frequency range from 50 to 325 GHz on a sample, which
was oriented such that H || [001]. The results for the resonance
positions at both temperatures are shown in Fig. 6.
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FIG. 6. Frequency-field dependence of resonance positions for
CPB at 300 and 4 K with external magnetic field oriented along the
c axis. Arrows in the main plot indicate the resonance positions of
the selected ESR spectra shown in the inset, recorded at 4 K and,
for a better comparison, shifted horizontally by the paramagnetic
resonance frequency as well as vertically by arbitrary amounts.

In paramagnets the resonance field and the absorption
frequency of spins probed in ESR experiments are linear
functions of each other. In the presence of spin-orbit coupling,
the resonating spin is sensitive to the crystal field of its
paramagnetic environment whose reaction to an external
magnetic field is then encoded in the (ionic) g tensor.
Antiferromagnetic exchange coupling between neighboring
spins induces an additional shift of the resonance position,
which is a pure many-body effect and depends on the exchange
anisotropy, quantified by δ in our case. In theory, it is easy
and natural to distinguish between the effect of the g tensor
and the (many-body) resonance shift s(δ), see Eq. (10). In
experiments, however, it may be difficult to separate the two
effects, because s(δ) depends linearly on the field for small
fields. In Refs. [27,28], some of us derived a formula that
allows to compute the resonance shift at arbitrary temperature
for a single XXZ chain with the magnetic field applied in the
direction of the anisotropy axis. A strong deviation from the
linear behavior for large enough magnetic fields (h/J � 0.1)
and not too small anisotropy (e.g., δ ≈ −0.1) of the model
Hamiltonian (1) was found. However, it turned out that the
anisotropy of CPB is too small and that the magnetic fields
realizable in our experiments are not strong enough to find a
pronounced deviation from the linear behavior.

Still, a careful analysis of our data allows us to extract
the resonance shift at high and low temperatures. From the
analysis of the ESR data recorded at high-temperature and with
an external field in c direction we obtain, based on Eq. (11)
with ϑ = 90◦, an estimate of the g value gc. The shift at high
temperatures is small and proportional to the resonance field
itself. Therefore it can be absorbed into the proportionality
factor denoted by m in Eq. (24), which is sometimes called
an “effective g factor”. The temperature independent value gc

can then be obtained by fitting a straight line to the resonance
position measured at high temperatures, and taking the
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first-order high-temperature correction into account. Fur-
thermore, higher corrections imply a way to estimate the
magnitude of δ.

At low temperature, the resonance shift as a function of the
resonance field shows stronger deviation from linear behavior.
Fitting different theoretical predictions [27,28,30,32], we shall
obtain two more estimates of the anisotropy parameter δ. Both
of them are compatible with our previously obtained values
within the estimated errors.

Another approach [45] that works for small system sizes
at zero temperature is based on Bethe ansatz techniques and
identifies a certain excited state above the ground state that
contributes most (as compared to all other states, at least
for small system sizes) to the ESR absorption spectrum. We
computed the difference of the energy of this state to the ground
state energy for different magnetic fields up to system size
L = 256 by means of Bethe ansatz. The dependence of this
energy difference on the magnetic field agrees well with the
corresponding resonance shifts of the measured spectra at low
temperatures for all used frequencies and is in accordance
with field theory and the moment-based approach considered
in more detail below.

1. High temperatures

At T = 300 K, we observed single resonance lines which
show a linear frequency-field relation (see Fig. 6). In the high-
temperature regime and for small anisotropies, the resonance
condition for the frequency ν = ω/(2π ) of the incident
microwave and the resonance field Hres reads [see Eqs. (10)
and (11) with ϑ = 90◦]

h̄ω

J
= gc

(
1 + Jδ

4kBT

)
μBμ0Hres

J
+ Jδ2

8kBT
. (23)

This explicit expression is deduced from a perturbation expan-
sion in δ up to second-order and a high-temperature expansion
up to J/(kBT ) of the shifted moment m1, cf. Eqs. (B10),
(B12b), and (B16b). We fit the function y = mx + b with
dimensionless quantities y = h̄ω/J and x = μBμ0Hres/J to
the high-temperature data and obtain

m = gc

(
1 + Jδ

4kBT

)
= 2.1512, (24)

b = Jδ2

8kBT
= 5 × 10−6. (25)

Setting J/kB = 52.0 K and T = 300 K, Eq. (25) provides an
estimate of the magnitude of the anisotropy, |δ| ≈ 0.015. We
would like to point out, however, that the error of b is larger
than b itself, implying that the estimate of |δ| from Eq. (25) is
not reliable. This is mainly due to the fact that the anisotropy δ

of CPB is small and that the y axis intercept b is proportional to
δ2. However, at least, an upper bound of the order of magnitude
can be estimated and agrees well with previous findings of δ.
For other materials with larger anisotropy, this method would
provide a way to estimate δ with a smaller relative error.

We still use this value of δ to estimate the g factor gc

in c direction from Eq. (24), since previously obtained more
reliable values, e.g., δ = −0.019, are close enough to δ =
−0.015. Within the fit error of m, which is less than 0.1 %,
these more reliable values would result in the same value of
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FIG. 7. Resonance shift for CPB at 4 K with the magnetic
field oriented along the c axis, calculated from resonance positions
presented in Fig. 6. Experimental data (squares) are compared with
different theoretical predictions (solid lines for the averaged shift,
dashed lines for the shifts of lines 1 and 2). Frequencies and
resonance fields are rendered dimensionless by multiplying with
h̄/J and gcμBμ0/J (with temperature independent gc = 2.153; see
Sec. V B 1). Arrows indicate the shifts of the exemplary spectra
shown in the inset of Fig. 6.

gc = 2.153. This g value, in turn, is in excellent agreement
with gc = 2.154 obtained in the previous section by fitting to
angular-dependent data.

2. Low temperatures

The temperature-independent value of gc = 2.153 can be
used in the analysis of the resonance shift at low temperatures.
Spectra recorded at 4 K consist of a resonance line (line 1 in the
inset of Fig. 6) present at all frequencies and a second line (line
2), which evolves for higher frequencies and is clearly visible
above 141 GHz. Both lines show an almost linear frequency-
field dependence. The deviations from a straight line can be
attributed to the resonance shift, which is shown in Fig. 7.

We compare three theoretical predictions for the resonance
shift at low temperatures, T � J/kB , with the experimentally
observed data at T = 4 K (black squares in Fig. 7). To
this end, we subtract the dimensionless resonance fields
h/J = gcμBμ0Hres/J from the corresponding dimensionless
frequencies 2πh̄ν/J = h̄ω/J . The result defines the dimen-
sionless ESR resonance shift s(T ,h,δ).

The first prediction for the shift s(T ,h,δ) was obtained by
Oshikawa and Affleck within a field theoretical approach [30]
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(blue lines in Fig. 7). It is supposed to hold for T → 0 and
reads

s0(h,δ) := lim
T →0

s(T ,h,δ) � hδ

Jπ2
ln

(
J

h

)
. (26)

The second prediction (red lines in Fig. 7) is due to Maeda,
Sakai, and Oshikawa [32]. It extends Eq. (26) to larger
resonance fields as it includes logarithmic corrections to field
theory,

s0(h,δ) = hδ

Jπ2

[
L + ln(L)

2
+ 3

2
+ 1 + ln(L)

4L

]
(27)

with L = ln[2J
√

π3/(h
√

2e)]. This equation was derived
from the finite temperature result of Ref. [32] (extended
to arbitrary anisotropy in Ref. [27]) by taking the zero-
temperature limit and expanding for small Zeeman energies h.
In this work, we use a different definition of the resonance shift
(see Appendix B 1) as compared to Refs. [27,32]. Up to first
order in δ, however, the resonance shift at finite temperature
is determined by the same combination of static correlation
functions,

s(T ,h,δ) = δ

〈
sz

1s
z
2 − sx

1 sx
2

〉
T ,h,0〈

sz
1

〉
T ,h,0

. (28)

Finite temperature correlation functions as 〈sz
1s

z
2〉T ,h,0,

〈sx
1 sx

2 〉
T ,h,0, or the magnetization 〈sz

1〉T ,h,0 per lattice site of
the isotropic spin-1/2 chain can be efficiently computed using
the quantum transfer matrix approach of Ref. [23], which
reduces the problem to solving a finite set of well-behaved
nonlinear integral equations (black lines in Fig. 7). Note that
in Eqs. (26)–(28) there is, in general, an angular-dependent
prefactor 3 cos2 ϑ − 1 [see Eq. (B13b) in Appendix B], which
is −1 here, since the magnetic field is perpendicular to the
anisotropy axis.

The three different theoretical curves (26)–(28), for several
values of δ, are shown in Fig. 7, where the resonance shift is
plotted as a function of h/(gcJ ) = μBμ0Hres/J and compared
with the experimental data. We observe that Eq. (26) (solid
and dashed blue lines in Fig. 7) is not fully consistent with our
experimental data. The best fit to the averaged shift extracted
from the two lines (full black squares in Fig. 7) over the full
range of applied resonance fields yields δ = −0.037. On the
other hand, an extrapolation of the experimental data for the
shift of line 1 (upper curve of open black squares) to small
values of h/J and an asymptotic fit by eye of Eq. (26) (dashed
blue line) gives δ = −0.015, which is compatible with our
previous values. Eq. (26) fails to explain the experimental
data at higher resonance fields because the validity of this
formula is restricted to kBT /J � h/J � 1. However, for the
experimentally measured resonance fields μ0Hres � 4 T, i.e.,
h/(gcJ ) � 0.05 (see Fig. 6), the condition h/J � 1 is not
sufficiently fulfilled.

In dimensionless units the temperature of 4 K at which
our data were recorded translates to kBT /J ≈ 0.08. Using
Eq. (28), which is supposed to account of the full temperature
dependence and which is valid for all resonance fields, the
quality of the fit increases considerably (see solid and dashed
black lines in Fig. 7). The only free parameter in this case is the
overall prefactor δ in Eq. (28). A fit to the averaged shift (full
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FIG. 8. Resonance position for CPB as a function of temperature
at 79.59 GHz with the external magnetic field applied along the c axis,
compared with theoretical curves based on Eq. (28). The red solid
line corresponds to δ = −0.015, the dashed lines to δ = −0.012 and
−0.019.

black squares), to the shift of line 1 (open black squares, upper
curve), and to the shift of line 2 (open black squares, lower
curve) implies δ = −0.012, −0.008, and −0.017, respectively.

For comparison, we also show Eq. (27) in Fig. 7. It includes
higher corrections in the magnitude of the resonance field but
no temperature corrections. The difference between Eqs. (27)
and (28) is therefore mostly due to the temperature. In order
to illustrate its effect, we use the δ values obtained from the fit
of s(T ,h,δ) in both cases.

In summary, we can infer from Fig. 7 that the field
theoretical result (26) is insufficient to explain our data for
the field dependence of the resonance shift in the full range
h/J � 0.3. At least the logarithmic corrections of Eq. (26)
have to be taken into account. The effect of small finite
temperatures (T = 4 K ≈ 0.077J/kB ) is clearly visible, and
our experimental data are better fitted and provide better
(slightly bigger) fit values of δ if the temperature dependence
is incorporated.

C. Temperature dependence of ESR parameters

In addition to the angular dependence of the ESR param-
eters at room temperature and to the frequency dependence
of the resonance field at high and low temperatures, we
measured the temperature dependence of the ESR parameters
for H || [001] in two different setups, first in the range between
4 K and room temperature at 9.56 GHz, and second for
temperatures between 1.6 and 300 K at 79.59 GHz.

The low-frequency measurements revealed only a very
weak temperature dependence of the resonance shift. From
the HF-ESR measurements, we were able to extract the
resonance shift with sufficient resolution such that we could
compare with Eq. (28). The result is shown in Fig. 8. We
find the agreement of the theoretical prediction with our
measured data quite remarkable as no fitting was applied, and
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FIG. 9. Linewidth for CPB as a function of temperature at
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the values of the model parameters J , δ, and gc were taken
from our previous measurements. Note, in particular, that the
correct sign of δ and the proper angular dependence (factor
3 cos2 ϑ − 1 in front of the angular independent part of the
resonance shift with ϑ = 90◦) are crucial in order to match
experimental and theoretical curves.

The linewidth as a function of temperature, as obtained
in low-frequency ESR, is shown in Fig. 9. Coming from
high temperatures, it increases until it reaches a maximum
of 74 mT at around 150 K and then decreases rapidly
with decreasing temperature. Below 10 K, this decrease is
less steep and the linewidth reaches an apparently constant
value of 2.5 mT at 4 K. The behavior of the linewidth in
our high-frequency experiment is very similar for high and
intermediate temperatures and is also shown in Fig. 9.

For the temperature dependence of the linewidth, we have
no reliable theoretical prediction so far. This is due to the
parameter values that characterize our compound, specifically
due to the very small value of the parameter δ which
causes narrow lines and would require a frequency resolution
beyond the current possibilities of our numerical method (see
Ref. [28]). Analytical results for the full moments, on the other
hand, are available but can be only applied if the magnetic field
is directed along the anisotropy axis, which is impossible as we
are dealing with two inequivalent chains with anisotropy axes
almost perpendicular to each other (see Sec. V A). Moreover,
these results do not compare well with the width at half height
as we have explained in Sec. II and in Appendix B.

In the framework of the phenomenological spin diffusion
theory, the dynamics of the spin system is described by
a diffusion equation. For a one-dimensional system, the
linewidth is then expected to be proportional to T χ (T ) due
to dominating q = 0 fluctuations [16]. The product T χ (T ) is
also shown in Fig. 9. We fitted the curves to the data in the
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FIG. 10. The results of neutron diffraction measurements on D23
instrument. Left: Neutron diffraction intensity along the (H , 0.5, 0.5)
direction of the reciprocal space at the base temperature. Magnetic
Bragg peaks of (0, 0.5, 0.5) type are well pronounced. The solid
lines are guide to the eye. Right: Diffraction intensity as function of
temperature for (0, 0.5, 0.5) magnetic Bragg peak. Onset of magnetic
scattering is visible around TN � 0.72 K.

intermediate temperature range by adapting the constant C in
CT χ (T ). For T � 150 K, the linewidth follows the T χ (T )
behavior but considerably deviates from it for temperatures
above 150 K. These findings hold for the low- as well as
for the high-frequency measurements. For the interpretation,
we should recall that spin diffusion theory is a classical
phenomenology which is expected to give its best results in
the high-temperature regime.

VI. NEUTRON SCATTERING

At TN � 0.72 K, the magnetic moments that are as-
signed to the electron spins of the Cu2+ ions in CPB order
three-dimensionally. The low-temperature neutron diffraction
experiment, after refining the lattice parameters of CPB to
be approximately a = 8.33 Å, b = 17.51 Å, c = 3.93 Å, and
β = 96.6◦ at T = 1 K, allowed us to establish the propagation
vector of the magnetic structure Q = (0,0.5,0.5), which
implies a collinear ordering. Some corresponding magnetic
Bragg peaks are shown in Fig. 10. They disappear around the
same TN as the μSR and specific heat measurements suggest
[17].

The observed propagation vector is fully consistent with the
dominance of antiferromagnetic intrachain interaction, J > 0.
Magnetic moments of nearest neighbors in c direction prefer to
align in an opposite fashion. The body-centered arrangement
of spins within the unit cell leads to a perfect frustration
between the two chain subtypes. Probably, it could be resolved
via taking the quantum fluctuations into account. Such order-
by-disorder type of mechanism is known to select the most
collinear arrangement from the degenerate manifold of states
[46]. A similar example of a system with interpenetrating
collinear magnetic sublattices and perfect frustration between
them is found in the S = 1 quantum magnet DTN [46,47]. We
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thus propose a fully collinear arrangement of spins in CPB.
The tentative structure is shown in Fig. 1.

This low-temperature spin structure is supported by our
analysis of ESR data. Due to negativity of δ the spins prefer
to align inside the plane perpendicular to the anisotropy axis
(see Sec. V A) which is for each chain the plane defined by the
bromine ions (see Fig. 1). For two of the inequivalent chains,
these planes are almost perpendicular to each other. This leaves
the antiferromagnetic arrangement of the spins along the chain
as the only plausible choice for the structure (see Appendix C).

VII. Cu(py)2(Cl1−xBrx)2: IMPACT OF DOPING

Samples with two different Cl concentrations of 2% (x =
0.98) and 5% (x = 0.95) were investigated in order to study the
influence of doping at the halogen sites on spin dynamics. For
both systems, the angular dependence of the ESR parameters
at room temperature as well as their temperature dependence
was measured at 9.56 GHz. The former measurements are
qualitatively similar to the results obtained for CPB and
are not discussed any further. As in the case of the pure
compound, the angular dependence could be used to identify
the crystallographic c axis. Measurements of the temperature
dependence were performed with magnetic field applied along
the c axis in the range between 4 K and room temperature.
A small shift of the resonance fields to higher values with
decreasing temperature was observed, similar to CPB.

The linewidth as a function of temperature is shown in the
upper panel of Fig. 11 for all three systems studied in this
work. Qualitatively, the behavior of the linewidth is the same
for the three compounds. However, a constant low-temperature
linewidth increases with increasing Cl concentration while
at high temperatures this trend is reversed, i.e., the undoped
compound shows the largest linewidth. A possible reason for
this behavior lies in the different contributions to the linewidth.

The disorder in the crystals increases with increasing Cl
content. Thus the inhomogeneous broadening of the resonance
lines, most likely caused by the local and spatially varying
alteration of the g tensor, increases with doping concentration
as well. This effect is temperature independent and dominates
the linewidth at low temperatures, thereby explaining the
observed changes of the low-temperature linewidth.

The second contribution is given by spin dynamics of
the system whose temperature dependence can be studied
by subtracting the contribution of inhomogeneous broadening
�H0 from the data. In the lower panel of Fig. 11, linewidths are
shown after subtraction. Note the use of a linear temperature
scale in this graph which is better suited for the following
discussion. In the high-temperature regime, Eq. (12) holds
and describes a linear relation between linewidth and isotropic
exchange. In Ref. [17], the strength of effective isotropic
exchange was determined for CPB, CPC and various mixed
compounds with different Cl and Br contents. It was found that
isotropic exchange monotonically decreases with increasing
Cl doping and is minimal for CPC. This is in qualitative agree-
ment with the observed decrease of linewidth for increasing Cl
content. Quantitatively, however, the relative change in �H

is larger than the relative change in J . This is illustrated by
a dashed horizontal line in the lower part of Fig. 11, which
indicates the linewidth of the 5 % doped sample at 300 K

FIG. 11. Temperature dependence of the ESR linewidth mea-
sured at 9.56 GHz for x = 1.0,0.98,0.95 (top) and of the contribution
governed by spin dynamics obtained after subtracting the contribution
of the inhomogeneous broadening (bottom). Note the difference in
scales used in the upper and lower panels. The magnetic field was
applied along the c axis. The blue dashed line indicates the linewidth
for x = 0.95 as expected from a relative change in J only.

as expected from the change in J . Thus, the behavior of the
linewidth cannot solely be described in terms of change in
isotropic exchange.

A possible explanation of this finding could be an effective
decoupling of anisotropic exchange from isotropic exchange,
meaning that in Eq. (12), Jδ might vary independently of J as
functions of doping. The existence of such a decoupling was
shown theoretically [48] and experimentally [49] in the case
of chains with ferromagnetic exchange coupling. Note that the
Cu-Br-Cu bond angle of the superexchange path is 89.64◦,
i.e., close to 90◦ for which one would expect a ferromagnetic
exchange [50–52]. The small deviation from 90◦ leads to an
antiferromagnetic but relatively weak isotropic exchange in
accordance with the experimentally determined value.

VIII. DISCUSSION

In previous sections, we presented a combined experimental
and theoretical study of the magnetic properties of the
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spin-chain compounds Cu(py)2(Cl1−xBrx)2 (x = 1.0, 0.98,
0.95). We begin the discussion of the obtained results by
considering ESR measurements of CPB performed at low
frequencies and room temperature. From studies of the angular
dependence of resonance position and linewidth, we inferred
the existence of two distinct anisotropy axes in this system.
These axes are related to the two magnetically inequivalent
chain types and are oriented almost perpendicular to each other
within the plane perpendicular to the chain axis. Moreover,
they coincide with the axis formed by the two nitrogen ligands
of the respective local octahedral environment of the Cu2+

ions (see Fig. 2). The insight into number and orientation of
anisotropy axes in this material is an important finding, as it is
an essential ingredient for modeling of our data.

Combining this knowledge with novel expressions for
the angular dependence of resonance field and linewidth of
individual chains [Eqs. (11) and (12), respectively] we were
able to describe the observed angular dependence of both ESR
parameters (see Figs. 4 and 5). Thereby, we could determine
the complete g tensor of the pure compound CPB. The g

factors obtained from the fit to our measured data of the angular
dependence of resonance field and linewidth, Eq. (17), agree
well with the values reported in Ref. [43] for measurements
of the g factor angular dependence in the a-c and b-c planes.
In Ref. [43] Pal et al. found for the g factor in b direction
gb = 2.065, which coincides with our value. The minimal and
maximal values of the (effective) g factor when rotating the
field in the a-c plane were found to be g(max)

ac = 2.178 and
g(min)

ac = 2.056 around angles of −20◦ and 70◦, respectively
(labeled by g1, g2, and � in Tab. 1 of Ref. [43]). By means
of our fully determined g tensor we obtain g(max)

ac = 2.175 and
g(min)

ac = 2.047 around −25◦ and +65◦. The differences in g

factors might be attributed to two facts. First, the authors of
Ref. [43] do not take into account the resonance shift due to
the anisotropic exchange of the many-body system. Secondly,
they assume a g tensor of cylindric symmetry (only g‖ and
g⊥ in Ref. [43]) whereas we consider it to be more general
with three different eigenvalues g1, g2, and g3. On the other
hand, we assume the principal axes of the g tensor to coincide
with the symmetry axes of the local octahedral environment
of the Cu ions, whereas in Ref. [43] the angle of the maximum
position of gac is fitted and disagrees by about 5◦ from our
angle. Considering the width of the observed resonance lines,
their data of “peak-to-peak” linewidths (see Fig. 4 in Ref. [43])
agree well with our data for widths at half height shown
in Fig. 5. The difference is a factor of about

√
3, which is

typical for Lorentzian-like lineshapes. Thus our results are
fully consistent with previously published studies.

Furthermore, by fitting the angular dependence of the
linewidth, we could derive the exponent γ ≈ 0.7 of the
algebraic long-time decay of a certain correlation function
of the isotropic model at room temperature (T ≈ 6J/kB).
This correlation function describes the propagation of two
neighboring spin flips through the isotropic chain and enters
our theory through the perturbation expansion in the anisotropy
parameter δ. It is worthwhile mentioning that an analysis
based on Eq. (12) is by no means restricted to the specific
system discussed here. Thus our findings may serve for the
investigation of other close-to-isotropic 1d systems thereby
giving insight into their spin dynamics. Finally, the fits to our

angular-dependent data yielded a range of reasonable values
for the anisotropy parameter, −0.04 � δ � −0.01.

This information on δ was confirmed, and even more spec-
ified, by a detailed analysis of magnetization measurements
which were performed on a CPB crystal for external fields
applied parallel and perpendicular to the spin chains. The
model used for the analysis takes into account the anisotropy
δ of the system as well as the specific orientation of the two
anisotropy axes. Therefore it extends the existing descriptions
of isotropic 1d chains like, for instance, the one employed
in the approach of Ref. [37]. Compared to values reported
in literature, we obtained a refined value of the intrachain
coupling strength J = 4.48 meV, i.e., J/kB = 52.0 K, as well
as the anisotropic exchange coupling Jδ ≈ −0.09 meV, i.e.,
δ ≈ −0.02, which was unknown up to now. The value of J is
close to the previously reported value [17] of J ≈ 4.58 meV.
In any case, it improves estimates obtained in Refs. [53] and
[54], where the authors found J/(2πh̄c) = 33.2 cm−1 and
J/(2πh̄c) = 37.8 cm−1, respectively, i.e., J/kB = 48 K and
J/kB = 54 K, both with errors of the order of 5%.

We emphasize that our procedure of estimating the
anisotropy from two susceptibility measurements with differ-
ent field directions is not limited to the special compound
CPB. The method works for any close-to-isotropic model
with a small anisotropic perturbation V for which the thermal
expectation value of the perturbation term can be computed.
This is explained in detail in Appendix A 1. In Appendix A 2
we also present a simplified method to estimate the anisotropy
as well as the isotropic intrachain coupling strength which is
only based on the ratio of the temperatures at the maxima of
the two susceptibility curves. In the case of an isotropic system
the well-known exact result of Ref. [37] is reproduced by the
novel procedure. Applying the latter to our data measured
on CPB, we obtained δ ≈ −0.03 and J/kB ≈ 52.2 K, which
is in a good agreement with values resulting from fitting
magnetization data over almost the whole experimentally
available temperature range. Thus we provided expressions
which might prove to be useful for an easy estimation of
J and δ in related systems with anisotropies being not too
large.

Besides measurements of magnetization and ESR proper-
ties at low frequencies we performed a HF-ESR study on CPB
in order to investigate the behavior of the resonance shift as a
function of magnetic field and temperature in more detail.
At high temperatures, recorded spectra consist of a single
resonance line. From frequency-dependent measurements at
300 K we extracted the temperature-independent gc-factor,
gc = 2.153 (see Sec. V B 1), which is very close to the X-band
result gc = 2.154 and which is typical for Cu2+ ions in an
octahedral environment [44]. Afterwards, this value for gc was
used for calculating the resonance shift at low temperatures,
as it is discussed below. Moreover, we aimed at extracting
an additional independent value of the anisotropy parameter
from these data. As it turned out, the method of determining the
anisotropy parameter δ from data for the resonance position at
high temperature as a function of frequency is not reliable in
the case of CPB since its anisotropy is too small (|δ| ≈ 0.02).
However, since the quantity from which δ is estimated is
proportional to δ2, we believe that it provides better estimates
if |δ| is bigger, e.g., |δ| � 0.1. Therefore the presented analysis
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may find further applications to systems beyond the scope of
this work.

In contrast to high temperatures, low temperature HF-ESR
spectra of the undoped sample contain two lines visible at high
frequencies. For the explanation of the appearance of these two
spectral lines, we favor a scenario based on the existence of
a (small) intergrown crystal with slightly different orientation
of its c axis. This would explain the different spectral weights
of the two peaks (with the intensity of the smaller peak
proportional to the volume of the intergrown crystal) as well as
the different positions of the peaks (corresponding to different
g factors due to different angles between magnetic field and
the two c axes). This scenario is further supported by the
fact that we could not observe any double-peak structure in
our HF-ESR measurements on the doped samples (data not
shown), which in most other respects behave qualitatively
similar to the undoped sample (see Sec. VII). Another possible
scenario, which cannot be fully ruled out, is that the two lines
can be attributed to the two magnetically inequivalent chains.
However, within this scenario, we also would expect two lines
of equal intensity, which is in contrast to the experimental
findings, rendering this scenario less likely. As it is not possible
to determine the origin of the two lines definitely, we took
into consideration the resonance positions of both lines as
well as the mean resonance field for our investigation of the
low-temperature resonance shifts.

The deviations from a straight line as found in our HF-ESR
measurements at 4 K (see Fig. 7) could be explained by a
low-temperature formula for the resonance shift, yielding a
negative value of the anisotropy as well as an estimate of its
magnitude δ = −0.012. Furthermore, by comparing formulas
stemming from different approaches, we could show that the
field theoretical result (26) is insufficient to explain our data
for frequencies h̄ω/J � 0.1. This evidences the importance
of logarithmic corrections as in Eq. (27) for describing the
resonance shift in magnetic fields which do not fulfill the
condition h/J � 1 as it is the case in our study. An even better
agreement between experimentally obtained and calculated
shifts is found if we take into account finite temperature effects,
cf. Eq. (28), which are visible in our data despite the fact that
measurements were performed for T = 0.08J/kB .

Our temperature-dependent ESR data for the resonance
shift (see Fig. 8) agree very well with the theoretical prediction
(28), using the previously obtained values J/kB = 52.0 K,
gc = 2.154, and δ ≈ −0.02 without any fitting. However, it
seems that the data at very low temperatures (T � 4 K)
are better matched by assuming small anisotropies, e.g.,
|δ| = 0.012, 0.015, instead of |δ| ≈ 0.02. On the other hand,
the overall temperature dependence, in particular at low and
intermediate temperatures, 0.1 � kBT /J � 3, can be well
explained by assuming a larger anisotropy, e.g., |δ| = 0.019
(as obtained from our susceptibility measurements). This fits
with the fact that our derivation of Eq. (28) in Appendix B
assures its validity if the condition δ � kBT /J is satisfied,
while the extension to lower temperatures is based on more
hand-waving arguments.

Furthermore, by combining the information on δ as well as
on the existence of two distinct anisotropy axes with the in-
formation about the propagation vector of the ordered state, as
obtained from neutron scattering experiments, a tentative spin

structure at zero temperature could be proposed (see Fig. 1).
Strong theoretical support for this structure was obtained from
a renormalization group argument (see Appendix C). Thus the
present study is an example for combining ESR measurements,
neutron scattering experiments, and theoretical arguments as
complementary methods to gain information about the spin
structure of the ordered state of a real physical system.

Considering the anisotropy parameter, we obtained at least
three reliable and independent estimates for δ based on
magnetization and ESR measurements, which allowed us to
establish the strength and the sign of the anisotropy of CPB to
be δ ≈ −0.02. The latter finding is an important contribution
to the evaluation of the utility of CPB as a realization of the
XXZ model. As was mentioned in Sec. II, the XXZ model
belongs to the class of integrable lattice models. This fact
makes it possible to calculate its thermodynamic properties and
some of its correlation functions exactly for the infinite chain.
Unfortunately, an external magnetic field generally breaks
the integrability, unless it is applied in the direction of the
anisotropy axis. Our finding that the anisotropy axes of the two
inequivalent chains in CPB are oriented perpendicular to each
other and perpendicular to the chain axes makes it impossible
to apply any of the known exact results for the XXZ model,
except when the external field is switched off, as any finite
field will necessarily be nonparallel to at least the anisotropy
axis of one of the two families of inequivalent chains. For the
applicability of the results obtained in Ref. [27], for instance,
we would have needed that the anisotropy axes would be
oriented along the chain direction. What may be seen as bad
luck with the orientation of the anisotropy axes was somewhat
compensated by our finding that the anisotropy parameter is
very small in modulus. This fact allowed us to perform a
first-order perturbation theory in δ and to use exact results for
the isotropic Heisenberg chain, which remains integrable for
an arbitrary direction of the applied magnetic field. As the
comparison with the experimental results shows, this works
very well for the susceptibility of the XXZ chain and for the
description of the temperature dependence of the resonance
shift. We have further combined the perturbative expansion
in δ with a high-temperature analysis and with an analysis
of the cutoff dependence of modified moments, which gave
us access to the angular dependence of the linewidth in the
high-temperature regime. Altogether, the challenges provided
by the experimental data have inspired the development of new
ideas on the theory side whose applicability is not restricted
to our specific example but can also be applied to take into
account, for instance, small XYZ anisotropy, small next-to-
nearest neighbor coupling, or the coupling of adjacent chains.

In order to verify the prediction [27] of a strong deviation
from the linear dependence of the ESR resonance shift on the
magnetic field in XXZ magnets, not only a material with a
single anisotropy axis would be required, but we would need
a material with smaller J and larger δ. In such a material, we
would also have a chance to reliably calculate cutoff dependent
moments numerically, which would give us direct access to the
experimentally measured linewidth at half height.

IX. CONCLUSIONS

A detailed theoretical analysis of the experimental data
presented in this paper has shown that the magnetic properties
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of CPB as seen in ESR and magnetization measurements can
be well understood within the following simple picture tightly
connected with the crystal structure of this compound. The
copper ions in the crystal form antiferromagnetic spin-1/2
chains with an exchange coupling of J = 4.48 meV. The local
environment of a magnetic ion consists of four bromine and
two nitrogen ligands which form a stretched octahedron. As
a consequence of the asymmetry of this local environment,
the three eigenvalues of the g tensor, whose principal axes
coincide with the symmetry axes of the stretched octahedron,
are mutually different, (g1,g2,g3) = (2.065, 2.018, 2.203).

Furthermore, the isotropic exchange interaction is distorted
by a small anisotropic component. This component is well
accounted for by a small Ising interaction of strength Jδ =
−0.09 meV directed perpendicular to the bromine planes.
As there are two types of octahedra in the material, which
map onto each other by a glide reflection, there are two
inequivalent spin chains whose anisotropy axes are (almost)
perpendicular to each other and perpendicular to the chain
direction. As compared to the intrachain coupling J , the
interchain interaction is weak as can be seen from the small
value of the ordering temperature TN = 0.72 K, confirmed
by neutron scattering experiments. Applying renormalization
group arguments to the model of two weakly coupled XXZ
chains (see Appendix C), we suggested a magnetic structure
in the ordered phase (T < TN ) that is consistent with the
propagation vector Q = (0, 0.5, 0.5) obtained from neutron
scattering experiments and consists of antiferromagnetically
ordered collinear spins oriented along the chain direction.
From the dependence of the linewidth on doping concentra-
tion, we found evidence for an effective decoupling of the
anisotropic component Jδ from the isotropic exchange J as
function of doping. Here the details remained open. Their
explanation would require further theoretical studies.

On the theoretical side of this work, we have developed
an approach to estimate the exchange anisotropy δ from
static magnetization measurements with fields applied in
different directions (see Appendix A), which is applicable to
spin-chain compounds with small anisotropies. Our analysis
of the ESR data relied on a novel approach to computing ESR
parameters from moments of the dynamical susceptibility with
an inherent cutoff in frequency (see Appendix B). Since this
approach connects the angular dependence of the linewidth
with the algebraic decay in time of a certain correlation
function of the isotropic Heisenberg chain, we were able to
determine the corresponding exponent γ for high temperatures
experimentally.

For the future, we hope from the experimental side for
the development of more efficient theoretical methods for the
computation of dynamical correlation functions at finite tem-
perature which would allow us to obtain a better prediction for
the behavior of the experimental linewidth at all temperatures.
Our hope from the theoretical side is that the search for experi-
mental systems with simpler geometry (such that an alignment
of the magnetic field along a single anisotropy axis is possible)
will be successful. At the same time, spin-chain materials with
bigger anisotropy and smaller J (such that higher effective
fields h/J are accessible) are much sought after. These are
expected to show an interesting nonmonotonic behavior [27]
of the resonance shift as a function of the external field.
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APPENDIX A: STATIC SUSCEPTIBILITY
OF CLOSE-TO-ISOTROPIC MODELS

In this section, we propose a new method to obtain quan-
titative estimates of anisotropic perturbations of magnetically
isotropic many-body systems by means of magnetization or
susceptibility measurements. For simplicity, we will consider
magnetization and susceptibility as scalars. This is motivated
by the fact that the magnetic field direction is often chosen
(almost) parallel to one of the principal axes of the suscepti-
bility tensor. The static zero-field susceptibility χ (T ) can then
be expressed by the magnetization m(T ,h) per lattice site,

χ (T ) = ∂hm(T ,h)|h=0 ≈ m(T ,h)

h

∣∣∣∣
h small

, (A1)

where the Zeeman energy h = gμBμ0H is proportional to
the strength H of the magnetic field. Note that the first
relation in (A1) implies that Jχ (T ) is dimensionless, like
the magnetization m(T ,h) itself. Standard units as in Eqs. (3)
and (5) can be restored in the end. The second relation in
(A1) assumes a linear dependence of the magnetization on the
applied field which is typically justified in antiferromagnets if
the field is not too large. The magnetization of CPB, discussed
in the main body of the text, for instance, was measured in
small residual fields of about 0.1 T.

The main idea to be worked out below is to measure
the static zero-field susceptibility χ (T ) (or equivalently the
magnetization for small fields) as a function of temperature
for different magnetic field directions. A comparison of the
susceptibility profiles then allows us to gain information about
the magnetic anisotropy of the perturbation.

1. Perturbation expansion of the magnetization

We consider a Hamiltonian of the form

H = H0 + HZ + λV (A2)

with Zeeman term HZ = −hS · e and SU(2)-symmetric
Hamiltonian H0. The operator V characterizes the anisotropic
perturbation. We assume that both, H0 and V , have the same
typical energy scale J and that λ is a small dimensionless
number. Furthermore, e = ĝH/|ĝH|, where ĝ is the g tensor,
will denote a unit vector in field direction, S = ∑L

j=1 sj is
the total spin, and h = μBμ0|ĝH| is the Zeeman energy
corresponding to the magnetic field ĝH . Then, the component
in field direction of the dimensionless magnetization per lattice
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site reads

m(T ,h,λ) = kBT

L
∂h ln[Tr(e−H/(kBT ))]. (A3)

A perturbation expansion up to first order in λ yields

m(T ,h,λ) � m(T ,h,0) − λ

L
∂h〈V 〉T ,h,0 (A4)

⇒ χ (T ) � χ (0)(T ) − λ

L
lim
h→0

∂2
h〈V 〉T ,h,0, (A5)

where

χ (0)(T ) = lim
h→0

∂hm(T ,h,0) (A6)

is the zero-field susceptibility of the unperturbed, isotropic
system. The corrections to Eqs. (A4) and (A5) are of order
O(λ2) and O(λ2J 2/(kBT )2), the latter meaning that temper-
atures are restricted to the regime T � λJ/kB . Thus, if the
temperature dependence of the zero-field susceptibility of the
unperturbed isotropic model is known and if the expectation
values 〈V 〉T ,h,0 of the perturbation term with respect to the
unperturbed HamiltonianH0 + HZ can be computed, Eq. (A5)
provides a useful means to determine the anisotropy parameter
λ.

Naively, one might try to proceed by measuring the
susceptibility of the full system, i.e., the left hand side of
Eq. (A5), and fitting the measured data with the computed right
hand side, using λ as a fit parameter. One problem with such
kind of procedure would be that the offsets and proportionality
factors (like geometry factors or g factors) of the measured
susceptibility χ (T ) are usually unknown. The energy scale J

may be unknown as well, whereas theoretical predictions of
Jχ (0)(T ) and J∂2

h〈V 〉T ,h,0 are typically functions of kBT /J .
In the literature, an estimate of J is sometimes obtained by
fitting the susceptibility χ (0)(T ) of the isotropic Hamiltonian
to measured susceptibility data, neglecting effects of small
anisotropies. This value cannot be used. The coupling J rather
has to be extracted, together with offsets, prefactors, and the
anisotropy parameter λ, from the same fit. However, if one
uses a single susceptibility curve, the fit can become unstable
since the second term in Eq. (A5) is small as compared to
the first one.

A considerable improvement can be achieved if several sus-
ceptibility curves are recorded with magnetic fields applied in
different directions, say e(i) = ĝH (i)/|ĝH (i)|, i = 1,2, . . . ,n.
For the theoretical analysis we rather rotate the chain and
keep the direction associated to the Zeeman term HZ fix. A
rotation does not affect the isotropic, SU(2)-invariant part H0

of the total Hamiltonian (A2), but transforms the anisotropic
part V into generally different operators V (i). Plugging those
into Eq. (A5) and denoting first-order terms by χ (i)

corr(T ) =
− λ

L
limh→0 ∂2

h〈V (i)〉T ,h,0 this yields

χ (i)(T ) � χ (0)(T ) + χ (i)
corr(T ). (A7)

Taking also the possibility of different offsets χ
(i)
0 and

geometry factors A(i) for different directions e(i) into account
we arrive at (i = 1, . . . ,n)

χ (i)(T ) = A(i)
(
χ (0)(T ) + χ (i)

corr(T )
) + χ

(i)
0 , (A8)

which is the general form of Eq. (6) of the main text. Unknown
parameters are offsets χ

(i)
0 , geometry factors A(i), energy scale

J , and last but not least the anisotropy parameter λ. They
can be determined by a simultaneous fit of all equations (A8)
with i = 1, . . . ,n to the measured data. An advantage of a
combined fit (instead of two individual fits) is that it stabilizes
the algorithm. The two correction terms in Eqs. (6a) and (6b)
are in a way counteractive to each other.

If one is merely interested in a rough estimate of λ rather
than in all parameters including offsets and geometry factors
of the experimental susceptibility data, and if the isotropic
susceptibility χ (0)(T ) has a maximum at a known temperature
T (0)

max, one can use a simplified procedure that requires no fitting
and only needs two different directions of the magnetic field,
labeled 1 and 2 in the following. It further does not require
knowledge of the full temperature dependence of the isotropic
susceptibility χ (0)(T ). If the perturbation parameter λ is small
enough, the maximum of χ (0)(T ) at T (0)

max gets slightly shifted
by χ (1,2)

corr (T ), resulting in two new maxima at T (1)
max and T (2)

max.
The difference of these two temperatures can be computed as

T (1)
max − T (2)

max ≈ − ∂T χ (1)
corr(T ) − ∂T χ (2)

corr(T )

∂2
T χ (0)(T )

∣∣∣∣
T =T

(0)
max

, (A9)

where we used expansions of T (1,2)
max up to first order in λ and

implicit differentiation. Inserting the definitions of χ (1,2)
corr (T )

and solving for λ yields

λ ≈ A0
T (1)

max − T (2)
max

T
(0)

max

(A10)

with

A0 = T ∂2
T ∂h〈Sz〉T ,h,0

∂T ∂2
h(〈V (1)〉T ,h,0 − 〈V (2)〉T ,h,0)

∣∣∣∣h = 0
T = T

(0)
max

. (A11)

A particular example where A0 and T (0)
max can be explicitly

calculated is presented below.

2. Example: spin-1/2 XXZ chain

For a single spin-1/2 XXZ chain, Eq. (1) with anisotropy/
perturbation parameter δ = λ, one can measure the zero-field
susceptibility in a magnetic field parallel to the anisotropy
axis (χ (‖)) and perpendicular to it (χ (⊥)). After a suitable spin
rotation, which brings the Zeeman term to the form −hSz, the
corresponding perturbations become V (‖) = J

∑
j sj

zsj+1
z

and V (⊥) = J
∑

j sx
j sx

j+1. Their expectation values can be
computed exactly by solving nonlinear integral equations
which arise in the context of the quantum transfer matrix
approach to the thermodynamics of integrable models [see
comment between Eqs. (5) and (6) of the main text]. Inserting
the expectation values of V (⊥) and V (‖) into Eq. (A11), we
obtain

A0 =
T ∂2

T ∂h

〈
sz

1

〉
T ,h,0

J∂T ∂2
h

〈
sz

1s
z
2 − sx

1 sx
2

〉
T ,h,0

∣∣∣∣∣h = 0
T = T

(0)
max

≈ 2.39, (A12)
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where we used T (0)
max ≈ 0.64085J/kB [37]. Therefore

λ ≈ 2.39
T

(‖)
max − T (⊥)

max

T
(0)

max

≈ 2.39

(
T

(‖)
max

T
(⊥)

max

− 1

)
. (A13)

Note that in our notation used in the analysis of the
compound CPB [see main body of the text, in particular
Eqs. (3) and (5) in Sec. IV] the labels (‖) and (⊥) mean parallel
and perpendicular to the crystallographic c axis rather than to
the anisotropy axis. Due to the special arrangement of the
anisotropy axes in CPB, the difference of the two perturbation
terms is minus one half of the difference of the two perturbation
terms of the single anisotropic chain. Hence the prefactor A0

is twice as big and negative, A0 ≈ −4.78, and the formula to
estimate δ from the positions of the maxima reads

δ ≈ −4.78

(
T

(‖)
max

T
(⊥)

max

− 1

)
. (A14)

A simple fit of our CPB data around the locations of the
maxima, T ∈ [25 K,42 K], yields T

(‖)
max ≈ 33.25 K, T (⊥)

max ≈
33.05 K, T

(‖)
max/T (⊥)

max ≈ 1.006, and hence δ ≈ −0.03. Note
that “around the locations of the maxima” is ambiguous and
that outliers and asymmetry of the maxima caused some
difficulties. We determined an optimal temperature range using
a polynomial of degree three as fit function.

The value of the isotropic exchange interaction can as well
be estimated from the temperature value at the maximum T

(‖)
max

using the theoretical prediction J/kB ≈ T
(‖)

max/(0.64085 +
δ/8 + δ2/20) ≈ 52.2 K. The δ corrections in the denominator
are obtained by varying δ, calculating for each δ the quantity
kBT

(‖)
max/J exactly, i.e., to high numerical precision by solving

nonlinear integral equations [23,37], and approximating the
resulting curve around δ = 0 by a polynomial of degree two.
For δ = 0, the exact result of Ref. [37] is reproduced.

The values of J and δ obtained by this simplified
procedure are compatible with the values δ = −0.019 and
J/kB = 52.0 K obtained by a fit to the data over almost the
entire temperature range (see Sec. IV), omitting only very
low temperatures, where the perturbation expansion is not
valid, and temperatures above room temperature, where the
susceptibility data are less precise.

APPENDIX B: THEORETICAL DESCRIPTION OF ESR
PARAMETERS

In this section, we discuss the ESR parameters “resonance
shift” and “linewidth” and derive some expressions used in
the main body of the manuscript. We consider an interacting
spin system in a homogeneous magnetic field (in z direction)
which couples to the total spin. If the interactions between the
spins are purely isotropic, like, e.g., in Eq. (1) with δ = 0, the
Hamiltonian of the spin system commutes with the total spin,
and the dynamical susceptibility χ ′′

+−(ω,h) of Eq. (2) sim-
plifies to χ ′′(ω,h) = πm(T ,h) δ(ω − h/h̄), where m(T ,h) =
〈sz

1〉T ,h,0 is the magnetization per lattice site. This means that
the absorbed intensity has a single sharp resonance peak at
the paramagnetic resonance frequency ω = gμBμ0H/h̄. The
total magnetic moment of the spin system rotates about the
magnetic field direction. In a weakly anisotropic system, e.g.,

Eq. (1) with δ �= 0, energy is transferred from the rotation to
internal excitations which causes a shift and a broadening of
the paramagnetic resonance peak.

We wish to identify appropriate measures for this resonance
shift and linewidth, that are both, accessible by theory and
extractable from experimental data. In the introduction of this
manuscript, we have discussed different measures of these
ESR parameters, in the first place the maximum position of the
peak and its width at half height. The latter can be easily read
off from measured absorption curves, but are unfortunately so
far inaccessible by theory. A measure which is more convenient
for a theoretical description is defined in terms of moments of
the absorption profile I (ω,h)/I0 (“method of moments”; see
Sec. II). It requires an integration over all frequencies or fields.
This, in turn, is often problematic with experimental data, since
absorption profiles away from a close vicinity of the location
of the maximum of the peak may be heavily distorted by
systematic and statistical errors like underground, noise, and
drift.

A problem with the two different kinds of measures
discussed above is that they may behave quite differently as
functions of temperature and magnetic field and therefore
cannot be compared naively. For instance, if we consider
experimental data of the width at half height as a function
of temperature (see Fig. 11) and theoretical predictions for
the linewidth of I (ω,h) based on its moments (see, e.g.,
Refs. [27,28]), they show different monotonic behavior, and we
observe a clear mismatch, in particular at low temperatures. We
have discussed two possible explanations of this discrepancy in
the introduction: distributions with “heavy tails” and different
“directions” used in theory (“ω direction”, i.e., fixed magnetic
field) and in experiments (“h direction”, i.e., fixed frequency).

In order to address the first problem, we shall suppress the
spectral weight of the frequency tails by considering the so-
called shape function 8I (ω,h)/[ω(1 − e−h̄ω/(kBT ))] instead of
the absorbed intensity. For the XXZ spin chain with anisotropy
axis parallel to the magnetic field, it becomes a function
of the difference h̄ω − h in the high-temperature limit [28].
Hence, in this limit, the second problem, the inequivalence
of h and ω directions, is resolved as well. We also believe
that ω and h directions remain more or less comparable at
infinite temperature even if the anisotropy axis of the XXZ
spin chain is tilted away from the direction of the magnetic
field. Therefore, at high temperature, using the shape function
should reduce both causes for the mismatch (heavy tails and
different directions) at the same time.

At lower temperatures the situation is different. Although
the spectral weight of the high-frequency tails of the nor-
malized shape function is suppressed as compared to the
weight in the tails of the absorbed intensity I (ω,h)/I0 [by a
factor ω(1 − e−h̄ω/(kBT ))], there is still a mismatch between
experimental data and the moment-based linewidth of the
numerically computed shape function [28]. Our numerical
investigations have shown that the linewidth as obtained
from an integration in h direction has the same monotonic
behavior as the width at half height (at least for temperatures
T � J/kB), but a quantitative discrepancy remains between
experimental linewidth, measured as width at half height, and
moment-based linewidths calculated by means of the shape
function.
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In order to resolve this discrepancy, one either has to
find a way to enhance the quality of the experimental
data, rendering computations of moments of the absorp-
tion line possible, or one has to find other theoretical
measures for the resonance position and linewidth that
can be computed and have a known relationship to the
experimentally accessible measures maximum position and
width at half height. Below, we generalize the moment-
based approach by introducing certain cutoff functions, which
effectively restrict the range of integration in the definition
of the moments to a vicinity of the maximal absorption
and suppress the experimentally inaccessible high-frequency
tails.

At first sight this may look like a simple remedy to the
above described problems. However, on the theoretical side, a
cutoff in general spoils our method to calculate the moments.
Moments are relatively easy to calculate if the cutoff is sent to
infinity and if we consider the dynamical susceptibility rather
than the shape function. In this case, the moments can be
expressed in terms of certain static short-range correlation
functions [27,28]. Still, as we shall point out below, moments
of a shape function restricted by a cutoff can be analyzed,
if we take into account the simplifications coming from a
perturbation theory in small anisotropy parameter δ and from
a high-temperature expansion.

After presenting the precise definition and some properties
of moments in the next subsection, we will focus on two
cases. In the first case, we keep the angle between magnetic
field and anisotropy axis constant, ϑ = 90◦, and exploit
only the smallness of the anisotropy. The zeroth and first
moment turn out to be independent of the cutoff to lowest
order in δ. This means that they provide a measure for the
resonance shift for all temperatures that is compatible with
the experimentally determined peak position. For the second
moment, we have to resort to a numerical calculation of
certain time-dependent correlation functions. In 3d systems,
the decay of these functions is fast (within a time scale
of order h̄/J ), which leads to Lorentzian-like spectra with
linewidths proportional to δ2(1 + cos2 ϑ). In 1d systems, they
decay much slower (usually algebraically as t−γ ), leading to
possibly differently shaped spectral lines with a broader but
still narrow central peak [35]. It turns out that the small cutoff
in frequency, required for the narrow absorption lines we
have observed in our experiments, would make it necessary
to calculate these time-dependent correlation functions for
long times, which is beyond the scope of our numerical
method.

In the second case, we consider the angular dependence
of the moments in the high-temperature regime T � J/kB

and for small anisotropy parameter δ. Then, the two lowest
moments can be calculated explicitly and determine the
angular dependence of the resonance shift. The cutoff further
enables the analysis of the scaling behavior of the second
moment. This scaling behavior, whose analysis is supported
by numerical investigations (see below), connects the second
moment with the experimentally determined width at half
height. This way we derive a new formula for the angular
dependence of the linewidth, Eq. (B23), which is consistent
with the picture of inhibited-exchange narrowing [35] in one
dimension.

1. Moments of the shape function

In the following, we set kB = μB = h̄ = 1. We will
restore the standard units at the very end by dimensionality
considerations. The function

fαβ(ω,h) = 2

L

∫ ∞

−∞
dt eiωt 〈Sα(t)Sβ〉T ,h,δ (B1)

is called the shape function (of a chain of length L). The
difference to the dynamical susceptibility is just a multiplica-
tive factor (1 − e−ω/T )/4. This can be seen by expressing
the function fαβ by its Lehmann series, as shown e.g., in
Appendices A.7, 8 of Ref. [28]. The index pair (α,β) takes
values (x,x), (+,−), and so on, depending on the polarization
of the incident wave. The time evolution Sα(t) = eiHt Sαe−iHt

is governed by the Zeeman term −hSz of a magnetic field in
z direction plus the Hamiltonian of the XXZ model, where, in
general, the direction of the anisotropy axis is different from
the magnetic field direction. The full Hamiltonian reads

H = Hxxx − hSz + δ · H′(ϑ,ϕ), (B2a)

Hxxx = J

L∑
j=1

(
sx
j sx

j+1 + s
y

j s
y

j+1 + sz
j s

z
j+1

)
, (B2b)

H′(ϑ,ϕ) = J

L∑
j=1

[
cos ϑ sz

j − sin ϑ

2
(eiϕs+

j + e−iϕs−
j )

]

×
[

cos ϑ sz
j+1 − sin ϑ

2
(eiϕs+

j+1 + e−iϕs−
j+1)

]
,

(B2c)

where ϑ and ϕ are azimuth and polar angles in the reference
frame (x,y,z). Thermal averages in Eq. (B1) are defined by
〈A〉T ,h,δ = Tr{e−H/T A}/Tr{e−H/T }.

Our aim is now to define theoretical measures of the reso-
nance shift and the linewidth of the central peak around ω = h

of the absorbed intensity I (ω,h), which can be connected to
experimental measures of the ESR parameters. In the case
of small anisotropy δ and not too small applied frequencies
ν = ω/2π of the incident microwaves, we may assume that
the width of this peak is small compared to the resonance
field close to h = ω. This assumption has several important
consequences.

(1) First of all, it is reasonable to assume that, when
investigating only the central peak (in a proper definition of
ESR parameters), it does not matter whether we consider the
shape function f (ω,h) as a function of frequency ω for fixed
field h (ω direction) or the other way round (h direction). In
this section, we will focus on the former setup.

(2) Secondly, additional factors like ω/2 [see paragraph
below Eq. (2) of the main text] and (1 − e−ω/T )/4, which
connect the shape function fαβ with the intensity I , can be
neglected since they are almost constant over the whole region
in which I (ω,h) is non-negligible. Hence ESR parameters of
the shape function should be comparable to those of I (i.e.,
equal up to leading order), as long as tails of fαβ are not taken
into account in their definition.

(3) A third consequence is that for a linearly polarized
incident wave we can neglect all terms in the expansion fxx =
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1
4 (f++ + f+− + f−+ + f−−) except for f+−. The neglected
terms either belong to the peak around ω = −h and are
therefore small for ω = h (f−+) or are very small for all
frequencies (f±± � f±∓).

(4) Last but not least, due to the previous point, the leading
orders of the ESR parameters do not depend on ϕ. Hence
we may choose any value of ϕ in Eq. (B2c), e.g., ϕ = 0 for
convenience.

In conclusion, we may focus on the peak around ω = h of
the shape function f+−. We omit the index +− and denote it
by

f (ω) = 2

L

∫ ∞

−∞
dt ei(ω−h)t 〈eihtS+(t)S−〉T ,h,δ. (B3)

In order to analyze the corresponding resonance shift and
linewidth, we define the shifted moments

mn(�) =
∫ ∞

−∞

dω

2π
μ�(ω − h)(ω − h)nf (ω). (B4)

This definition differs from the one of Refs. [27,28] in that
we have inserted a cutoff function μ� under the integral. As
discussed in the introduction of this section, this function is
supposed to suppress the high-frequency tails of the shape
function that are invisible in the experiments. We imagine
μ� as a symmetric function which falls off rapidly for large
arguments and depends on a cutoff �. To keep notations
simple, we drop in the following the cutoff dependence of μ�

and mn(�). We consider μ together with its Fourier transform
μ̂(t) = ∫ ∞

−∞
dω
2π

μ(ω)eiωt . The precise form of these functions
does not matter for our arguments below. Examples are

μ(ω) = χ[−�,�](ω), μ̂(t) = sin(�t)

πt
, (B5a)

μ(ω) = sin(ω/�)

ω/�
, μ̂(t) = �

2
χ[− 1

�
, 1

�
](t), (B5b)

μ(ω) = e
− ω2

2�2 , μ̂(t) = �√
2π

e− t2�2

2 . (B5c)

Here, χI is the characteristic function of the interval I . In
general, we require that the cutoff function depends on a cutoff
� in such a way that lim�→∞ μ(ω) = 1.

Using the Fourier transform μ̂(t), the moments can be
expressed as

mn =
∫ ∞

−∞
dt μ̂(t)(i∂t )

nf̂ (t), (B6)

where f̂ (t) = 2
L
〈eihtSα(t)Sβ〉T ,h,δ . For the lowest moments,

we thus obtain the following explicit expressions:

m0 = 2

L

∫ ∞

−∞
dt μ̂(t)〈eihtS+(t)S−〉T ,h,δ, (B7)

m1 = 2δ

L

∫ ∞

−∞
dt μ̂(t)〈eiht [S+,H′](t)S−〉T ,h,δ, (B8)

m2 = 2δ2

L

∫ ∞

−∞
dt μ̂(t)〈eiht [S+,H′](t)[H′,S−]〉T ,h,δ. (B9)

The shape function is real and positive. If we divide by the
zeroth moment with infinite cutoff, m

(∞)
0 = lim�→∞ mn(�),

its integral over all frequencies is normalized to one. We may

therefore interpret f (ω)/m
(∞)
0 as a distribution function. If this

function has a single symmetric peak, then the position of its
maximum agrees with the average frequency 〈ω〉, and the first
moment becomes a measure for the resonance shift,

s = 〈ω − h〉 = m
(∞)
1

/
m

(∞)
0 . (B10)

Similarly, the variance

�ω =
√

m
(∞)
2

/
m

(∞)
0 − s2 (B11)

may be considered as a measure for the width of the peak. Such
an interpretation of the variance is common within the context
of Heisenberg’s uncertainty relation. Still, if the distribution
function is not just a Gaussian, the variance and the more
intuitive width at half height may assume rather different
values. For this reason, we cannot directly compare the width
calculated by means of Eq. (B11) with linewidths as usually
obtained in ESR experiments. The only remaining question
is if we can determine the moments mn(�) theoretically for
small cutoff �, which we address in the following sections.

2. Small anisotropy

The expressions for the moments simplify considerably if
we expand them for small δ around the isotropic point,

m0 � 2

L
〈S+S−〉T ,h,0 + O(δ), (B12a)

m1 � 2δ

L
〈[S+,H′]S−〉T ,h,δ + O(δ3) + 2δ2J

iL

∫ ∞

−∞
dt μ̂(t)

×
∫ t

0
dt1 eiht1〈[S+,H′](t1)[H′,S−]〉(0)

T ,h,0,

(B12b)

m2 � 2δ2

L

∫ ∞

−∞
dt μ̂(t)eiht 〈[S+,H′](t)[H′,S−]〉(0)

T ,h,0

+O(δ3). (B12c)

Here the superscript (0) indicates that the time evolution is
generated by H0 = Hxxx − hSz. As in case of the anisotropic
corrections to the susceptibilities our derivation guarantees the
validity of the above formulas for temperatures T � δJ .

The most striking feature of the moments m0 and m1 in
(B12a) and (B12b) is that, to the lowest order in δ, they do
not depend on the cutoff. Hence we may assume that the
cutoff is small. Since our measured resonance peaks for CPB
are, moreover, rather symmetric, the shift of the position of
the maximum should be well described by Eq. (B10) for
all temperatures T � δJ . Since the resonance shift is robust
against changes of the high-frequency tails that are symmetric
with respect to ω − h, we expect that the validity of Eq. (B10)
extends down to low temperature. For the second moment, on
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the other hand, the cutoff dependence remains. Inserting the
Hamiltonian (B2) into Eqs. (B12), the leading orders in δ read

m0 =
4
〈
sz

1

〉
T ,h,0

1 − e−h/T
, (B13a)

m1 = (3 cos2 ϑ − 1)
4Jδ

〈
sx

1 sx
2 − sz

1s
z
2

〉
T ,h,0

1 − e−h/T
, (B13b)

m2 � 2δ2

L

∫ ∞

−∞
dt μ̂(t)eiht

〈
[[S+,H′](t)[H′,S−]]

〉(0)
T ,h,0.

(B13c)

For the comparison with our experimental data, we have
to recall that we recorded the temperature dependence of the
ESR parameters for an external field along the c axis, i.e.,
perpendicular to the anisotropy axes of both of the inequivalent
chains in our CPB sample. This situation corresponds to ϑ =
90◦ and ϕ = 0 in Eq. (B2c) for both chains, which equally
contribute to the resonance. With this choice of the angles,
Eqs. (B12a)–(B12c) turn into

m0 =
4
〈
sz

1

〉
T ,h,0

1 − e−h/T
, (B14a)

m1 =
4Jδ

〈
sz

1s
z
2 − sx

1 sx
2

〉
T ,h,0

1 − e−h/T
, (B14b)

m2 � δ2

8L

∫ ∞

−∞
dt μ̂(t)gT (t) (B14c)

with

gT (t) = 4
L∑

j,k=1

〈[(
sz
j s

+
j+1 + s+

j sz
j+1

)
(t)

× (
sz
ks

−
k+1 + s−

k sz
k+1

)]〉(0)
T ,h,0 + (h ↔ −h). (B15)

We use Eq. (B10) with (B14a) and (B14b) in Secs. V B 2
and V C in order to determine the field and temperature
dependence of the resonance shift. As for the width, we
computed the correlation function in Eq. (B15) numerically
and tried to compare the second moment obtained from the
experimental data with the theoretical value predicted by
Eq. (B14c). It turned out that the frequency cutoff required by
the experimental data is too small for our numerically available
resolution.

3. Small anisotropy, high temperature, and low frequency

Further simplifications occur at high temperature. We
consider the first three moments, Eqs. (B13). For temperatures
T � J , we can expand thermal averages 〈A〉T ,h,δ in the small
parameter J/T . This way we obtain entirely explicit and cutoff
independent expressions for the zeroth and first moments
(neglecting subleading orders in J/T ),

m0 � 1, (B16a)

m1 � Jδ

4T

(
(1 − 3 cos2 ϑ)h + Jδ

2
(1 + cos2 ϑ)

)
. (B16b)

On the other hand, the high-temperature expression for the
second moment,

m2 � J 2δ2

4

∫ ∞

−∞
dt μ̂�(t)g∞(t)

[
(1 − 3 cos2 ϑ)2

2

+ 5 sin2 ϑ cos2 ϑ cos(ht) + sin4 ϑ

2
cos(2ht)

]
,

(B16c)

remains cutoff dependent and contains the infinite-temperature
dynamical correlation function

g∞(t) = 4

L

L∑
j,k=1

〈
eiHxxxt s+

j s+
j+1e

−iHxxxt s−
k s−

k+1

〉
∞, (B17)

where 〈·〉∞ = limT →∞〈·〉T ,h,δ = Tr(·)/2L. We use Eqs. (B16a)
and (B16b) together with Eq. (B10) in order to analyze
the angular dependence of the resonance shift in the high-
temperature regime [see Eqs. (10), (11), and (23) in Secs. V A
and V B 1].

The angular dependence of the linewidth at high tempera-
tures, Eq. (12) in Sec. V A, has been inferred from the scaling
behavior of the second moment that can be calculated from
(B16c) under certain assumptions about the size of the cutoff
and the asymptotics of the function g∞. The scaling behavior
connects the width at half height with the second moment.
The argument proceeds as follows. The ESR absorption line
of our experiments consists of a single peak located at around
h = ω with a width at half height of 2η. It is reasonable to
assume that a rescaling of the width η → aη, a > 0, amounts
to a rescaling of the shape function

f (ω + h) → 1

a
f

(
ω + h

a

)
. (B18)

This is true, for instance, if the ESR absorption line around the
location of its maximum is shaped like a Lorentzian f (ω) =
2η/(η2 + (ω − h)2).

Under this scaling transformation the second moment (B4)
transforms like

m2(�) → a2m2(�/a). (B19)

If now m2 is a homogeneous function of degree γ , then

m2(�) → a2−γ m2(�). It follows that the ratio [m2(�)]
1

2−γ /η

is scale invariant and thus

η ∝ [m2(�)]
1

2−γ , (B20)

which relates the width at half height with the second moment.
Let us now argue that the second moment is indeed a

homogeneous function of the cutoff if we restrict ourselves
to an appropriate parameter regime. We hypothesize that the
function g∞ in (B17) behaves for large times, t � 1/J , as

g∞(t) � α(J t)−γ , (B21)

where α is of order one and 0 < γ � 1. We can support this
claim by numerical calculations for finite system sizes up to
L = 32, as shown in Fig. 12. A fit of a straight line to the double
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FIG. 12. Dynamical correlation function g∞ as function of time
J t for lattice sites L = 16, 24, and 32 (dotted, dashed, and solid
black lines) together with an exact short time expansion (STE) of the
infinite chain up to t40 (red line). (Inset) Data for L = 32 in a double
logarithmic plot (black circles) together with an asymptotic fit (red
line) of g∞(t) = α(J t)−γ with γ = 0.6 and α = 0.272.

logarithmic data in the asymptotic time regime 8 � J t � 16
provides γ = 0.6 and α = 0.272 (see inset of Fig. 12). In
the main body of the text, we refer to this value as γ∞, to
indicate that this is the value of γ at infinite temperature. This
value is not in contradiction to the value γ = 0.70 reported
at the end of Sec. V A, since this is the measured value at
large but finite temperature (T/J ≈ 6 < ∞). We performed
further numerical calculations at finite temperatures (down to
T/J = 1) which are in accordance with these findings.

In order to evaluate the time integral in Eq. (B16c), we
choose the cutoff function Eq. (B5b) for our convenience.
The integral in Eq. (B16c) is then restricted to the interval
[−1/�,1/�]. The cutoff � should not be too small in order
to cover the whole central peak, say � � h. Such a choice of �

is possible if h � J , which holds true for our measurements on
CPB. We can therefore neglect all oscillations and approximate
cos(ht) ≈ cos(2ht) ≈ 1 in Eq. (B16c). We eventually obtain

m2(�) ≈ J 2δ2(1 + cos2 ϑ)

4

2α

1 − γ

(
�

J

)γ

(B22)

for the cutoff dependence of the second moment.
Then, Eq. (B20) implies that

η ∝ J

[
δ2

4

(
1 + cos2 ϑ

)] 1
2−γ

, (B23)

where δ is the small anisotropy parameter of the Hamiltonian
(B2) and ϑ the angle between magnetic field and anisotropy
axis. Restoring standard units and assuming that the propor-
tionality factor does not depend on ϑ or δ, Eq. (B23) turns into
Eq. (12) of the main text.

APPENDIX C: SPIN CONFIGURATION AT ZERO
TEMPERATURE

In this section, we present arguments on why the spin
structure of the zero-temperature ordered ground state in CPB
is as indicated by the arrows in Fig. 1, in particular why
an alignment of the assigned magnetic moments along the
direction of the chains is preferred. The reasoning is based on
scaling arguments similar to those of Ref. [55]. We interpret
the interchain coupling as a small perturbation and determine
the relevance of the corresponding operators in the sense of
renormalization group theory. To this end, we shall calculate
the large distance behavior of the correlation function of the
interchain operators and compare scaling dimensions of the
different terms with the marginal value of 2, the latter being
characteristic for the underlying 1+1 dimensional conformal
field theory.

We consider two anisotropic spin-1/2 Heisenberg chains
of type (1) with a small anisotropy parameter δ < 0 and with
anisotropy axes perpendicular to the chain direction as well as
perpendicular to each other. Furthermore, the two chains are
parallel and shifted against each other by half of the lattice
constant (zigzag ladder). This configuration is closely linked
to the structure of the compound CPB (see the main body
of the text). We assume a small isotropic (antiferromagnetic)
interchain interaction, J ′ � J , whose Hamiltonian reads

Hint = J ′ ∑
j

hj hj = s(1)
j · s(2)

j + s(1)
j · s(2)

j+1, (C1)

where the superscripts (1) and (2) distinguish the two chains.
Note that for classical systems the geometrical frustration
results in the vanishing of the interchain coupling for antiferro-
magnetically ordered chains. This is not the case for quantum
chains. Still, the frustration renders the interchain coupling
being a perturbation close to marginal.

Since δ is negative, each single chain is in the antifer-
romagnetic gapless phase. We parametrize the anisotropy as
δ = cos γ − 1. For small values of |δ|, the inverse relation
γ = arccos(1 + δ) can be approximated by γ ≈ √

2|δ|. The
CPB value δ ≈ −0.02, for instance, yields γ ≈ 0.2. From con-
formal field theory, it is known that large distance correlation
functions of the XXZ Heisenberg chain at zero temperature
decay as [8,9]

〈
sα

1 sα
r+1

〉 ∼ (−1)r

r2x±
, α = x,y,z. (C2)

The exponent is 2x+ = (1 − γ /π )−1 if α coincides with the
direction of the anisotropy axis, and it is 2x− = 1 − γ /π if the
α direction is perpendicular to it [56]. The quantities x± are
called scaling dimensions of spin-spin correlation functions.
Since γ /π is small, e.g., γ /π ≈ 0.06 for CPB, we can expand
the first exponent as 2x+ = 1 + γ /π + γ 2/π2. Therefore we
have x+ + x− = 1 + γ 2/(2π2).

Let us fix the direction of the two chains to z and the direc-
tions of their anisotropy axes to x and y, respectively. After
a straightforward calculation, we obtain for the correlation
function of the interchain operator hj in the ground state of
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decoupled chains:

〈h1hr+1〉 =
∑
α,β

〈
sα

1
(1)(

sα
1

(2) + sα
2

(2))
s
β

r+1

(1)(
s
β

r+1

(2) + s
β

r+2

(2))〉

=
∑

α=x,y,z

〈sα
1 sα

r+1〉(1)〈(sα
1 + sα

2 )(sα
r+1 + sα

r+2)〉(2)

∼ 4(x2
+ + x2

−) + 2(x+ + x−)

r2(x++x−+1)
+ 4x2

− + 2x−
r2(2x−+1)

.

(C3)

Here, the superscripts (1) and (2) again refer to spin operators
acting on the first or on the second spin chain, respectively. The
first term of the last line stems from the α = x,y contributions,
where the spin direction is parallel to one of the anisotropy axes

and perpendicular to the other one. The second term is the
α = z contribution, where the spin direction is perpendicular
to both anisotropy axes at the same time. We infer that the
scaling dimension of the perturbation terms with spin direction
α perpendicular to the chain is x+ + x− + 1 = 2 + γ 2

2π2 > 2,
whereas it is 2x− + 1 = 2 − γ /π < 2 for the perturbation
with spin direction along the chain. The marginal scaling
dimension is 2. Therefore the sz-sz term (and only this one)
represents a relevant perturbation of the critical system.

For just two weakly coupled chains, this relevant per-
turbation would result in dimer order. In case of infinitely
many chains (as in the compound CPB), however, we like to
argue that true long-ranged antiferromagnetic order in the sz

components of the local spins sets in, which can be interpreted
as “collinear spins”.
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