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Magnetic Möbius stripe without frustration: Noncollinear metastable states
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The recently introduced area of topological magnetism searches for equilibrium structures stabilized by a
combination of interactions and specific boundary conditions. Until now, the internal energy of open magnetic
chains has been explored. Here, we study the energy landscape of closed magnetic chains with on-site anisotropy
coupled with antiferromagnetic exchange and dipolar interactions analytically and numerically. We show that
there are many stable stationary states in closed geometries. These states correspond to the noncollinear spin
spirals for vanishing anisotropy or to kink solitons for high magnetic anisotropy. Particularly, the noncollinear
Möbius magnetic state can be stabilized at finite temperatures in nonfrustrated rings or other closed shapes with
an even number of sites without the Dzyaloshinskii-Moriya interaction. We identify the described configurations
with the stable stationary states, which appear due to the finite length of a ring.
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I. INTRODUCTION

In electronics one uses electric fields for the transmission
and processing of information. In spintronics both electric and
magnetic fields are utilized. The information processing can
also be achieved without any global fields or currents just
using the combination of spin degree of freedom subjected
to internal interactions such as exchange, Ruderman-Kittel-
Kasuya-Yosida (RKKY), or long-range dipolar interactions
with specific boundary conditions [1–3]. The combination of
interactions with boundary conditions is interesting not only
for practical reasons but also from the theoretical point of
view as it gives rise to the direction of topological magnetism
[1,4]. Topological magnetism is the successor of investigations
on metastable magnetic configurations [5,6] and searches for
conditions of stabilization of exotic magnetic states. Until
now linear classical [1,7,8] and quantum [9] spin chains
have been studied. One of the well-known exotic magnetic
states is the Möbius magnetic structure. This configuration
is also known as the antiferromagnetic spin spiral (AFSS).
This structure corresponds to the lowest energy state [10] for
antiferromagnetic chains (see Fig. 1).

Nowadays, in addition to linear chains a variety of one-
dimensional magnetic ring structures with different anisotropy
axes can be experimentally produced. This list includes atomic
spin ensembles [10–12], magnetic nanoarrays [13–15], and
molecular ring structures [16–18], among others. Here, we are
querying which metastable solutions are possible in closed
geometries and how the on-site anisotropy influences these
metastable states. Another important subject is the role of the
free energy in the stabilization of those excited states.

For these purposes, in this paper we study stationary equi-
librium magnetic configurations of rings formed by effective
magnetic moments coupled via short- or long-range interac-
tions. The main objective of our work is to identify which
kind of magnetic states different from the collinear ground
states can be stabilized in closed geometries. Particularly
interesting appear antiferromagnetic rings. Rings comprising
an odd number of magnetic moments became a prototype

of frustrated magnetism, because the incommensurability of
the odd number of sites with antiferromagnetic interactions
leads to the formation of magnetic spirals. By means of
analytical and Monte Carlo (MC) simulations the effect of
changing the number of atoms, the anisotropy constant, and
the dipolar energy on the stable configurations is explored.
It has been found that there are many stable stationary states
in closed geometries. These states correspond to noncollinear
metastable spin spirals for vanishing anisotropy or to magnetic
solitons for high magnetic anisotropy. Particularly, the Möbius
magnetic configuration can be achieved not only in chains with
an odd number of magnetic moments as initially predicted, but
can also be stabilized in closed chains with an even number
of spins. The lifetimes of such equilibrium noncollinear
metastable states in chains with dipolar interactions is larger or
comparable with the observation time in typical experiments.

II. ANALYTICAL CALCULATION OF THE
GROUND STATE

We use an atomistic Heisenberg-like model in our calcu-
lations. Particularly, the considered rings are composed of a
circular line of Fe atoms a distance a = 2.8 Å apart. Each atom
is represented by a Heisenberg magnetic moment �μi = μs

�Si ,
with μs = 2.2μB mimicking a typical atomic or molecular
chain, and �Si the unit and dimensionless vector parallel to
�μi . The magnetic moments can be coupled by dipolar and
exchange interactions and experience an anisotropic field, as
described by the following Hamiltonian:

E = 1

2

∑
i �=j

(DEij − Jij
�Si · �Sj ) − K

∑
i

(�Si · ẑ)2, (1)

where Eij is the dipolar energy given by

Eij = ω
�Si · �Sj − 3(n̂ij · �Si)(n̂ij · �Sj )

r3
ij

, (2)
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FIG. 1. (a) AFM configuration, (b) AFSS Möbius-like configu-
ration, and (c) KS configuration.

with rij = |�ri − �rj |, n̂ij = (�rj − �ri)/rij , and ω = μ0μ
2
s /4π ,

with μ0 the magnetic permeability in the vacuum. In these
expressions D is a constant that allows us to turn on or off
the dipolar interaction by taking the values 1 or 0, and is
dimensionless. The exchange interaction constant Jij is equal
to J for nearest-neighbor moments and zero otherwise. K is
the anisotropy constant that represents the direction of the easy
axis. K > 0 describes an easy axis along ẑ, and K < 0 is used
when the easy plane is perpendicular to ẑ.

For the sake of clarity we start our study with analytical
calculations of the internal energy of a ring of Heisenberg
spins subject to the on-site magnetic anisotropy and coupled by
an antiferromagnetic exchange interaction. The ground state of
such chain or ring with even number of particles corresponds to
the collinear antiparallel alignment of neighboring moments.
This ideal antiferromagnetic (AFM) configuration is not
possible in rings consisting of an odd number of moments.
In this case, the AFSS state appears, with the two ends of
a chain are antiparallel, while all other spins are forced to
rotate in order to satisfy these boundary conditions. On the
other hand, also the so-called kink solitons have been found
experimentally in layered systems [19]. These structures differ
from the Möbius configuration by the width of the spiral
structure and consist of ideal antiferromagnetic domains with
narrow kinklike solitons (KS) in between (see Fig. 1). The
kink solitons are of high technological importance as they can
be used as bits of information in magnetic storage and logical
devices [19–21].

In our analytical investigations we calculate energies of the
pure AFM state, broad AFSS, and two AFM domains with
a KS in between. For this purpose the AFM and the AFSS
magnetic configurations are mixed with an antiferromagnetic
state with kink solitons. If we consider a closed chain with N

magnetic moments, a KS contains M magnetics moments, with
M < N . In this way, the AFM region is formed by (N − M)
magnetics moments. The internal energy of the ring is then
given by contributions from both regions: the kink solitons
and the antiferromagnetic domains.

First we study the situation with M = N ; that is, the AFSS
is homogeneous and as wide as the ring itself. Magnetization
of such a spiral can be described as

�S(
i,�θ

(N)
k

) = sin
[
(i − 1)�θ

(N)
k

]
x̂ + cos

[
(i − 1)�θ

(N)
k

]
ẑ,

(3)

where i defines the coordinate along the ring and �θ
(N)
k =

2πk/N is the angle between two neighboring moments as
shown in the Appendix. Figure 2 illustrates the internal
energy E for chains with even and odd numbers of sites

FIG. 2. (a) Internal energy of a pure AFSS state for even and odd
number of magnetic moments N when K = −J = 1 meV. When N

is even, the AFSS state is identical to the AFM state. (b) Internal
energy normalized by N for the same parameters used in (a). We
observed that if N increases, the difference |EN/N − EN+1/(N + 1)|
converges to 0.502 meV. We see that the AFSS state for odd number
of magnetic moments is not the minimum of the energy.

acquiring these broad solitons (see the Appendix). Figure 2(b)
illustrates the convergence of the normalized internal energy
when N > 10. In this range, the difference of the energies
of rings with N and N + 1 magnetic moments is given by
|EN/N − EN+1/(N + 1)| = 0.502 meV. Explicitly, when N

is even, the minimal energy corresponds to

E = −N (K − J ), (4)

and for N odd, the minimal energy is

E = JN cos(π/N ) − K

N∑
i=1

cos2[(i − 1)π/N ]. (5)

These two expressions lead to the following conclusions.
For low anisotropies (|K| < |J |) and D = 0, the lowest energy
state for even N corresponds to an AFM configuration, which
is equivalent to an AFSS with �θ = π . Any other kind of
AFSS possess higher energy. The total energy of an AFSS
in a chain with an odd number of sites is always larger than
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FIG. 3. (a) Difference between the internal energies of the AFSS
and KS states for N = 31, J = −1 meV, and different values for K .
�E > 0 indicates that a knot is present. (b) Size of a kink soliton
(knot) as function of the anisotropy for N = 31.

that of the closest chain with an even number of moments
Neven = Nodd ± 1. The larger the length of those two chains,
the more pronounced the total energy difference despite the
almost identical length (±1) as seen in Fig. 2. This effect
occurs due to the frustration inherent to odd chains. Longer
chains exhibit a higher degree of frustration, so their energy is
larger as compared to a chain with an even number of spins.
It becomes also clear from our calculations in the Appendix
that the internal energy for chains with odd N can be reduced
with replacement of a broad soliton by a combination of an
antiferromagnetic domain with a narrow KS.

To make the last statement more apparent we calculate
the difference �EN between the energy of an AFSS state
[E(AFSSN

M )] and a KS state [E(KSN )] as a function of
kink soliton length M . The explicit expression is �EN =
E(AFSSN

M ) − E(KSN ) = K(N ) − K(M), with

K(x) = − Jx[1 − cos(π/x)]

−K

x∑
i=1

cos2[(i − 1)π/x] + Kx. (6)

We find that the total energy of a kink-soliton solution is
still slightly larger than the energy obtained for chains with
an even number of sites of similar length (±1). However, KSs
of a certain width indeed minimize the energy. Figure 3(a)
depicts �EN for N = 31, J = −1.0 meV, and different values
of K , while Fig. 3(b) illustrates the size of the KS (knot)

that minimizes the energy as a function of J . If �EN < 0
the lowest energy state is the AFSS, while if �EN > 0, the
lower energy corresponds to a KS state. We observe that
larger anisotropy values K are associated with smaller kink
solitons. This finding is in good agreement with experiments:
the larger the anisotropy, the narrower the antiferromagnetic
domains walls typically are. Hence, from the point of view of
internal energy the ground state of rings with an even number
of constituents is an AFM configuration, while that of rings
consisting of an odd number of magnetic moments corresponds
to the KS configurations. Herewith we have shown that in
closed rings with an odd number of particles the KS is the
stable magnetic configuration, while the soliton width depends
on material parameters. The ground state of closed rings with
an even number of spins is an ideal AFM configuration.

III. ANALYTICAL CALCULATION OF THE LOWEST
EXCITED STATES

In the next step we analyze the lowest excited configurations
of rings with an even number of spins as well as their free
energy. Since spin spirals are exact solutions of the Heisenberg
exchange model for periodic systems, the lowest excited,
metastable configurations of such structures can be searched
in the phase space of noncollinear spin spirals [22]. First we
restrict our calculations considering an anisotropy axis parallel
to the ring’s axis. For that purpose, AFSS magnetization
configurations with the wave vector �θ have been chosen and
the corresponding internal energy E(�θ ) has been calculated
analytically or numerically. Surprisingly, in addition to the
global energy minima corresponding to configurations with
all spins parallel or antiparallel to the z axis described in
the previous section, the anisotropy energy of a chain with
pairwise spin interactions shows additional, local energy
minima corresponding to the noncollinear states. The number
of those local energy minima is proportional to the number of
spins N in a chain or the closed structure.

An example of an internal energy landscape is given in
Fig. 4(a) for a chain consisting of four magnetic moments
subject to the uniaxial anisotropy and the exchange interaction
J < 0. This example concerns the case of an AFSS with the
angle �θ ⊂ [0,π ] between nearest-neighboring spins. Only
the angle between the first and the last spins in a chain can
differ from �θ if N�θ/π is not integer. The abscissa gives
the polar spherical angle θ1 of the first spin with respect to
the z axis. The spiral is two-dimensional, i.e., the four spins
have the following Sz components: cos(θ1), cos(θ1 + �θ ),
cos(θ1 + 2�θ ), and cos(θ1 + 3�θ ). In this, simplest possible
case, the three nontrivial periodic configurations correspond
to �θ = π/4, π/2, 3π/4 defining π , 2π , 3π magnetization
rotations along a chain, respectively. For |K| � |J |, these
configurations correspond to the band of low-energy saddle
points as seen in Fig. 4(a). Additionally, there are 12 local
energy minima [blue in Fig. 4(a)]. Six of them (dark blue)
correspond to collinear ground states, but the six other (light
blue) to noncollinear metastable configurations with �θ =
π/3 or 2π/3. Hence, already a very short chain with an even
number of magnetic moments at zero temperature can be
frozen in a noncollinear state if the anisotropy is high enough.
Inclusion of the dipolar coupling enhances this effect.
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FIG. 4. Analytical calculation of the internal (a) and Gibbs free
energy (b)–(d) of the four effective magnetic moments coupled by
nearest-neighbor exchange interaction J and subject to uniaxial
anisotropy K for |K| � |J |. �θ is the angle between the nearest-
neighboring spins, while θ1 is the absolute polar spherical angle of
the first spin. The color scheme goes from dark blue (dark gray) for
low energies to light (light gray) for high energies. Panel (a) shows the
internal energy map in the θ1-�θ coordinates. (b), (c) Gibbs energy
G of the same sample in the same phase space at kBT = 0.2K and
kBT = 0.35K , respectively, with K the anisotropy constant (density
of states ρ = 100). (d) Cross section of the maps (a)–(c) at �θ =
π/2 and �θ = 2π/3. Cross-section line styles correspond to those
in (a)–(c).

IV. ANALYTICAL CALCULATION OF THE FREE ENERGY

To study the influence of the finite temperature on these
local energy minima the free energy landscape has been
calculated analytically. The free energy can be calculated as

G = E − T S = E − kBT ln(�E), (7)

where E is internal energy, kB the Boltzmann constant, S the
entropy, and �E the number of states with energy E. The �E is
unity for each of collinear states described in the previous para-
graph. For noncollinear states the number of states corresponds
to the length of a circle made by the first spin on the surface of
a unity sphere: �E = ∫ 2π

0 ρ cos(θ1)dθ1 = 2πρ sin(θ1), where
ρ is the number of states per unit radian. Indeed, the first
magnetic moment can have 2πρ sin(θ1) orientations, while
orientations of other moments for a configuration of an
energy E are fixed by the angle �θ between them and the
angle θ1 + n�θ with respect to the z axis. Figures 4(b) and
4(c) give G(θ1,�θ ) for two different temperatures, while
Fig. 4(d) shows the cross sections of the energy landscape of
Figs. 4(a)–4(c) for vanishing J . The two solid lines in Fig. 4(d)
correspond to the internal energy of Fig. 4(a). The straight solid
line shows the band of saddle points at �θ = π/2, while the
sine-shaped solid line corresponds to local energy minimum

at �θ = 2π/3. The dashed and dotted lines correspond to
the free energy for �θ = 2π/3 and kBT = 0.2K and 0.35K ,
respectively. The density of states ρ influences the absolute
value of the free energy but does not change either positions
or shapes of minima and maxima. The total number of
local energy minima is directly proportional to the number
of sites in a chain. Particularly, the minima appear when
�θ = 2πm/(N − 1) with integer m ∈ [1,N − 1]. Therefore,
there are nine local energy minima for the chain consisting of
four effective magnetic moments, while their number increases
to twelve for the chain of five moments, etc. Inclusion of
the dipolar interaction enhances the anisotropy and, therefore,
make the local energy minima deeper. Thus, the number of
noncollinear configurations increases for longer chains.

Interestingly, the entropy changes the energy landscape
significantly. Particularly, the entropy of the internal energy
minima corresponding to noncollinear configurations is much
larger than that of collinear states. As a consequence the
local energy minima at θ1 = 0 split. The splitting increases
with increasing temperature and corresponds to complicated
noncollinear magnetic states. Hence, the local minima of
the free energy in periodic chains might correspond to
AFSS or KS and are very important in determination of
magnetization configurations at finite temperatures. This effect
is particularly important if the lifetime of a metastable state
is comparable to or larger than the characteristic time of the
measurement. Another interesting observation from Fig. 4 is
that the local minima of the free energy correspond to the
nonhomogeneous spin spiral; that is, in one part of the spiral the
rotation happens quicker than in another. One can regard such
configuration as almost collinear antiferromagnetic domains
with knotlike solitons between those described above. Among
other things this finding explains why one finds domain walls
in antiferromagnetic systems, where the domain walls are
energetically unfavorable.

V. MONTE CARLO SIMULATIONS

In realistic systems one has to consider three-dimensional
Heisenberg spins as well as dipolar interactions. This makes
the phase space very complicated and inaccessible by an-
alytical calculations. To check the stability of described
metastable solutions we have performed extended Monte
Carlo (MC) simulations of finite magnetic chains of different
lengths. Particular attention has been paid to the closed rings
consisting of effective magnetic moments coupled by dipolar
and antiferromagnetic exchange interactions as well as subject
to the on-site uniaxial anisotropy, because in this case an
additional aspect of spin parity becomes important.

To study the magnetic states of these structures we carried
out MC simulations with the Metropolis algorithm under local
dynamics and the single spin flip method [23]. Technical
aspects of the MC procedure can be found in [23,24]. The
energy is given in Eq. (1). Since we consider an antiferromag-
netic coupling between neighboring sites J values between
−0.1 and −40 meV have been explored. This range of values
includes systems reported by Savina et al. [25] and references
therein. The simulations have been started with a random
orientation of magnetic moments. The new orientation of
each randomly chosen magnetic moment has been accepted
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FIG. 5. Equilibrium MC configuration of a chain consisting of 50
moments for D = 1, and J = 0 meV and K = 0 meV.

with a Boltzmann probability p = min (1, exp (−�E/kBT )).
The rings were relaxed using a tempered annealing proce-
dure until the equilibrium configuration has been achieved.
Relatively low finite temperatures kBT � |J | have been
used in the calculations. The number of Monte Carlo steps
(MCS) considered in each relaxation process was 3 × 107.
To distinguish between effects induced by different energy
contributions we start looking for equilibrium states of the
system considering involved energies separately. After that
we explore the differences that appear due to variation of the
anisotropy and the number of elements in the ring.

To analyze the impact of the different variables we start
by looking to the purely dipolar case, that is, J = K = 0. In
this case, independently of the number of sites in the ring, the
magnetic configuration at remanence is a closured-vortex-like
state, as illustrated in Fig. 5. For J = 0 and D = 0 two cases
can be distinguished: easy z axis for K > 0 and easy xy plane
for K < 0. For K = 0.1 meV, magnetic moments align them-
selves parallel to the z axis, while the orientation of each mo-
ment (up or down) is random, as shown in Fig. 6(a). When K =
−0.1 meV, the ring exhibits an in-plane magnetization. Simi-
larly to the previous case the orientation of each moment in the
plane is random, as evidenced in Fig. 6(b). In the purely antifer-
romagnetic case, that is K = 0 and D = 0, differences appear
when considering rings with odd and even numbers of sites,

FIG. 6. Equilibrium MC configuration of a chain consisting of
50 moments for D = 0, J = 0 meV and (a) K = 0.4 meV and
(b) K = −0.4 meV.

FIG. 7. Equilibrium MC configuration of a chain consisting of
100 moments for D = 0, K = 0 meV, J = −40 meV: (a) closed
AFM configuration and (b) the same shown with open ends for clarity.

for example N = 100 and N = 101. For even N and with no
anisotropy and dipolar interaction involved a perfect antiferro-
magnetic ordering has been found as shown in Fig. 7(a). When
we include an additional particle, N = 101, a knot soliton
appears due to geometrical frustration, as shown in Fig. 8(a).
Hence, the local energy minima described in Fig. 4 do not
survive in the Monte Carlo simulations, because their lifetimes
are too short and the energy barriers can be easily overcome.

Once the role of every contribution to the energy has been
analyzed separately, we consider all of them together, that is,
D = 1, J = −40 meV, and K = ±0.4 meV. For the sake of
generality the chain length has been varied between 10 and 110
sites. Very short chains do not show any particularly surprising
results. One finds a perfect AFM alignment for even N , while
Möbius configurations for odd N . Depending on the direction
of the easy axis two different orientations of KS can be found
as shown in Figs. 8 and 9. These two different types of KS
are labeled KN and KB due to the similarity they showed to
Néel (see Fig. 8) and Bloch walls (see Fig. 9), respectively.
For K = 0, both types of configurations KB and KN can be
observed. The longer chains with anisotropy, however, show
AFSS as equilibrium states for even N .

We also observe a relation between number of knots,
number of sites, and anisotropy. For an odd number of
sites all rings exhibit knots due to geometrical frustration.
Most interestingly, however, we find the Möbius-like structure
also in antiferromagnetic rings with an even number of
effective moments. When considering an even number of
sites, larger values of K are needed to observe knots at
a lower number of sites. For example, for vanishing K ,
100 sites are needed in the ring to observe a first knot,

FIG. 8. Equilibrium MC configuration of a chain consisting of
100 moments for D = 1, K = −0.4 meV, J = −40 meV: (a) closed
KN configuration and (b) the same shown with open ends for clarity.
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FIG. 9. Equilibrium MC configuration of a chain consisting of
100 moments for D = 1, K = 0.4 meV, J = −40 meV: (a) closed
KB configuration and (b) the same shown with open ends for clarity.

while 80 sites are needed if K = ±0.01J , and 40 sites are
needed for K = ±0.1J . This means that the local energy
minimum becomes significantly populated only at large N .
MC simulations have been designed to find the statistical
averages by exploring the energy landscape. So, ideally at
the end of the simulation the averaging over the infinitely
long time should result in the exact expectation values for
the observables. At low temperatures and for large systems,
however, the time scale of simulations is much smaller than
the correlation times as we have shown recently [26]. For
the reason of insufficient averaging and long lifetimes of the
excited states the deepest local minima with the lowest number
of knots can be observed in the MC simulations. A typical MC
relaxation of a KB state is shown in Fig. 10. Monte Carlo
steps do not correspond to real time steps and, hence, do not
provide us with reliable information on the nonequilibrium
dynamics or the real relaxation time. However, it is important
to note that the lifetimes of the metastable noncollinear states
described in this paper might be finite and, hence, lowest
KB or KN configurations might be detected experimentally.
The investigation of the nonequilibrium dynamics of these
metastable spin helices, therefore, would be of great interest.
Because the strong anisotropy makes the local minima deeper,
the noncollinear states are more easily found for higher

FIG. 10. Typical MC relaxation of a chain consisting of 50 mo-
ments with D = 1, K = 0.4 meV, J = −40 meV at T = 0.0001 K.
The inset shows the fast part of the relaxation process. In this case,
the magnetic configuration corresponds to KB configuration.

anisotropy values. This nicely corresponds to the analytical
considerations made above.

VI. CONCLUSIONS

To conclude, in this paper we show analytically that closed
chains coupled by antiferromagnetic exchange and subject
to perpendicular magnetic anisotropy possess local energy
minima corresponding to noncollinear topological spin spirals.
Analytical analysis of the free energy at finite temperatures for
chains with dominating anisotropy has shown that anisotropy
increases the depth of the local energy minima. This makes
the noncollinear configurations particularly stable for such
chains (|K| � |J |). The large depth of the local energy
minima results, in turn, in the increase of the activation energy
needed for the relaxation towards the global energy minimum
(collinear antiferromagnetic configuration). As the lifetimes
of magnetic configurations exponentially depend on the
activation energy �E (τ ∝ exp[�E/kBT ]) the lifetimes of the
noncollinear configurations strongly increase with increasing
anisotropy and decreasing temperature. Another important ef-
fect concerned with magnetic anisotropy is that with increasing
anisotropy the extended spin spirals become energetically less
favorable than localized kink solitons. Depending on the sign
of the anisotropy constant two configurations for the kink
soliton are possible: for K > 0, a Bloch-like KB soliton is
stabilized, while for K < 0 a Néel-like KN soliton appears.
A similar effect is observed when the dipolar interaction is
introduced into the Hamiltonian: first, the dipolar interaction
make the local minima deeper because it induces magnetic
anisotropy and, second, it might lead to transformation of the
spin spirals to kink solitons.

The number of the local energy minima increases with
the number of magnetic moments, because the angle between
neighboring magnetic moments for configuration correspond-
ing to an energy minimum in a spiral equals �θ = 2πm/(N −
1). In a kink soliton this relation is more complicated but the
tendency is similar. Therefore, increase of the chain’s length
and the anisotropy leads to a complicated energy landscape
with multiple local energy minima. Some of these minima
are very deep and the lifetimes of corresponding states are
large. For that reason the deepest local energy minima become
populated also in the Monte Carlo simulations in long closed
structures. Particularly interesting is the Möbius antiferromag-
netic configurations with an even number of sites in closed
chains. While the existence of such a configuration in chains
with an odd site number has been reported, a similar config-
uration in chains with an even number of sites was unknown
up to now. The noncollinear states can be found in closed
geometry of any shape. Although both methods, analytical
calculations and numerical simulations, have been performed
independently, they lead to consistent results and allowed us
to validate the conclusions from different points of view.

Eventually, we would like to discuss the results presented
above in view of experiments. First of all, obtained data allow
us to explain several existing experiments. Particularly, there
are several reports on experimental observation of antiferro-
magnetic domain walls—for example in Fe monolayers on
W(001) [27] or in antiferromagnetic chains on the basis of
superlattices [28] despite the fact that the ground state for
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both systems is known to be a collinear antiferromagnetic
configuration. The existence of antiferromagnetic domain
walls has always been attributed to pinning, to defects, or
to very rapid relaxation of a system. However, the reason
why a rapid relaxation should lead to the domain walls and
not to another trapped configuration has never been clarified.
Our results demonstrate that indeed an abrupt cooling of an
antiferromagnetic system should lead to formation of kink
solitons which are mathematically equivalent to the domain
walls. Additionally, our investigation calls for reinvestigation
of some experimental results. Particularly, the magnetic con-
figuration in antiferromagnetic chains found experimentally
in [2] has limited agreement with theoretically predicted
ground states at low fields. One possible reason could be
that the measured configurations are not the ground states
but rather the antiferromagnetic metastable spin spirals with
long lifetimes predicted in the present paper. Hence, our
investigation brings light onto the known results and might
explain existing experimental data.

ACKNOWLEDGMENTS

E.Y.V. and M.K. acknowledges support by the Collabora-
tive Project of DFG SFB668. In Chile we acknowledge sup-
port from Fondecyt Grant No. 1160198 and Financiamiento
Basal para Centros Científicos y Tecnológicos de Excelencia
FB0807. S.C.-S. also acknowledges support from a Conicyt
fellowship for doctoral studies.

APPENDIX: DETAILS OF CALCULATIONS

1. Energy of an antiferromagnetic spin spiral

Let us consider a chain with N magnetic moments coupled
by a nearest-neighbor antiferromagnetic exchange interaction,
which are in a spiral configuration. In this case the spatial
dependence of magnetization can be described as

�S(
i,�θ

(N)
k

) = �Sx

(
i,�θ

(N)
k

) + �Sz

(
i,�θ

(N)
k

)
, (A1)

�Sz

(
i,�θ

(N)
k

) = cos
[
(i − 1)�θ

(N)
k

]
ẑ,

�Sx

(
i,�θ

(N)
k

) = sin
[
(i − 1)�θ

(N)
k

]
x̂. (A2)

To have a ring with periodic boundary conditions
�S(1,�θ

(N)
k ) = �S(N + 1,�θ

(N)
k ), it is necessary that N�θ

(N)
k =

2πk, with k an integer value between 1 and N − 1. If N = 2P ,
then �θ = πk/P . On the other hand, since k can take values
between 1 and N − 1, there is a stable antiferromagnetic
configuration. When N = 2P + 1, 2k will be always an even
number and smaller than N ; i.e., it is not possible to obtain
π . Therefore the antiferromagnetic configuration is forbidden.
Let us see this situation in terms of the energy of the system:

E
(
�θ

(N)
k

) = J
N∑

i=1

�S(
i,�θ

(N)
k

) · �S(
i + 1,�θ

(N)
k

) − K

N∑
i=1

S2
z

(A3)

= JN cos
(
�θ

(N)
k

) − K

N∑
i=1

cos2
[
(i − 1)�θ

(N)
k

]
,

(A4)

with J = −J . Minimizing the previous equation, we have

dE

d�θ
(N)
k

(
�θ

(N)
k

) = −JN sin
(
�θ

(N)
k

)

+ 2K

N∑
i=1

(i − 1) cos
[
(i − 1)�θ

(N)
k

]
× sin

[
(i − 1)�θ

(N)
k

] = 0. (A5)

When N is even, the solution is �θ
(N)
N/2, but when N is

an odd number, the system has two solutions that satisfy the
minimum energy condition �θ

(N)
(N/2)±(1/2). This is equivalent to

the existence of an antiferromagnetic state for N even, i.e.,

N�θ
(N)
N/2 = πN ⇒ �θN

N/2 = π, (A6)

with energy given by

E = −JN − KN = −N (J + K). (A7)

When N is odd, �θ
(N)
(N/2)±(1/2), then in the minimum energy

state we have

N�θ
(N)
(N/2)±(1/2) = π (N ± 1) ⇒ �θN

N/2 = π ± π

N
, (A8)

and its energy is

E = −JN cos(π/N ) − K

N∑
i=1

cos2[(i − 1)π/N ]. (A9)

Figure 1 of the main text illustrates the energy for different N

values.

2. Energy of antiferromagnetic domains separated
by a spin spiral

Let us consider a system with N magnetic moments, where
M magnetic moments form the helical configuration, and N −
M magnetic moments are in an antiferromagnetic state. In this
case we have

E = E
(
AFMN

M

) + E
(
�θ

(M)
k

)
. (A10)

a. N even and M odd

In this case, N − M is an even number; therefore, if the
first magnetic moment of the AFM region is ↓, then the last
magnetic moment will be ↑. The energy of this AFM region is

E
(
AFN

M

) = −J (N − M − 1) − K(N − M). (A11)

Now, if we have a spiral state with the first magnetic moment
pointing ↑, which, because of the boundary conditions, is also
the last magnetic moment of the AF state, the energy of this
state is

E
(
�θ

(M)
k

) = JM cos
(
�θ

(M)
k

)
−K

M∑
i=1

cos2
[
(i − 1)�θ

(M)
k

]
, (A12)

with M�θ
(M)
k = 2πk. Finally, the interaction between the first

magnetic moment of the spiral configuration and the first
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magnetic moment of the AFM configuration is −J , so the
energy is

E = −J (N − M) − K(N − M) − JM cos
(
�θ

(M)
k

)
−K

M∑
i=1

cos2
[
(i − 1)�θ

(M)
k

]
. (A13)

Then �θ
(M)
k minimizes Eq. (A13) for k = M/2, i.e., if

�θ
(M)
M/2 = π . Therefore, the energy of this spiral configuration

will be the same as the full AFM state [see Eq. (A7)], i.e.,

E = −N (J + K). (A14)

b. N even and M odd

In this case N − M is odd, so if the first magnetic moment
of the AFM region is ↓, then the last one will be ↓. For this
case, the energy of the region is

E
(
AFMN

M

) = −J (N − M − 1) − K(N − M). (A15)

Now, we can consider the spiral state whose formation
starts with a magnetic moment pointing ↑, and satisfies that
this magnetic moment is also the last magnetic moment in the
AFM state. The energy obtained in this case is given by

E
(
�θ

(M)
k

) = JM cos
(
�θ

(M)
k

) − K

M∑
i=1

cos2 [
(i − 1)�θ

(M)
k

]
,

(A16)

with M�̄θ
(M)
k = 2πk − π . Finally, the interaction between the

first magnetic moment of the spiral configuration and the first
magnetic moment of the AFM configuration is given by −J ,
so the energy expression is

E = −J (N − M) − K(N − M) − JM cos
(
�̄θ

(M)
k

)
−K

M∑
i=1

cos2
[
(i − 1)�̄θ

(M)
k

]
. (A17)

We minimize this term when �̄θ
(M)
k = π , and then we obtain

the AFM state again.

c. N odd and M odd

In this case N − M is even. In this way, if the first magnetic
moment of the AFM semistate is pointing ↓, then the last
moment will be pointing ↑. Therefore, the energy of this

semistate is given by

E
(
AFMN

M

) = −J (N − M − 1) − K(N − M). (A18)

Let us consider now the spiral region that starts with a magnetic
moment pointing ↑. This moment is the same as the last
moment of the AFM region. Under this consideration, the
energy of this state is

E = −JM cos(π/M) − K

M∑
i=1

cos2[(i − 1)π/M]. (A19)

The total energy is

E
(
AFMN

M

) = −J (N − M) − K(N − M) − JM cos(π/M)

−K

M∑
i=1

cos2[(i − 1)π/M]. (A20)

If we compare this energy with the full AFM configuration
energy for a ring with an odd number of elements N , we have

�E = −JN cos(π/N )

−K

N∑
i=1

cos2[(i − 1)π/N ] + J (N − M)

+K(N − M) + JM cos(π/M)

+K

M∑
i=1

cos2[(i − 1)π/M], (A21)

�E = J {N [1 − cos(π/N )] − M[1 − cos(π/M)]}

−K

{
N∑

i=1

cos2[(i − 1)π/N ] −
M∑
i=1

cos2[(i − 1)π/M]

}

+K(N − M). (A22)

If �E > 0, then the second configuration minimizes the
energy. If we consider the function

K(x) = J x[1 − cos(π/x)] − K

x∑
i=1

cos2[(i − 1)π/x] + Kx,

(A23)

then

�E = K(N ) − K(M). (A24)

Figure 3(a) of the main text shows the behavior of �E for
J = 1 meV and N = 31. There is no change in the behavior
of M as a function of K for any N . This is shown in Fig. 3(b)
of the main text.
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