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Relativistic theory of magnetic inertia in ultrafast spin dynamics
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The influence of possible magnetic inertia effects has recently drawn attention in ultrafast magnetization
dynamics and switching. Here we derive rigorously a description of inertia in the Landau-Lifshitz-Gilbert
equation on the basis of the Dirac-Kohn-Sham framework. Using the Foldy-Wouthuysen transformation up to the
order of 1/c4 gives the intrinsic inertia of a pure system through the second order time derivative of magnetization
in the dynamical equation of motion. Thus, the inertial damping I is a higher order spin-orbit coupling effect,
∼1/c4, as compared to the Gilbert damping � that is of order 1/c2. Inertia is therefore expected to play a role
only on ultrashort timescales (subpicoseconds). We also show that the Gilbert damping and inertial damping are
related to one another through the imaginary and real parts of the magnetic susceptibility tensor, respectively.
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I. INTRODUCTION

The foundation of contemporary magnetization dynamics is
the Landau-Lifshitz-Gilbert (LLG) equation which describes
the precession of spin moment and a transverse damping of
it, while keeping the modulus of magnetization vector fixed
[1–3]. The LLG equation of motion was originally derived
phenomenologically and the damping of spin motion has
been attributed to relativistic effects such as the spin-orbit
interaction [1,4–6]. In recent years there has been a flood
of proposals for the fundamental microscopic mechanism
behind the Gilbert damping: the breathing Fermi surface model
of Kamberský, where the damping is due to magnetization
precession and the effect of spin-orbit interaction at the Fermi
surface [4], the extension of the breathing Fermi surface model
to the torque-torque correlation model [5,7], scattering theory
description [8], effective field theories [9], linear response
formalism within relativistic electronic structure theory [10],
and the Dirac Hamiltonian theory formulation [11].

For practical reasons it was needed to extend the original
LLG equation to include several other mechanisms [12,13].
To describe, e.g., current induced spin-transfer torques, the
effects of spin currents have been taken into account [14–16],
as well as spin-orbit torques [17] and the effect of spin
diffusion [18]. A different kind of spin relaxation due to
the exchange field has been introduced by Bar’yakhtar et al.
[19]. In the Landau-Lifshitz-Bar’yakhtar equation nonlocal
spin dissipations originate from the spatial dispersion of
exchange effects through the second order space derivative
of the effective field [20,21]. A further recent work predicts
the existence of extension terms that contain spatial as well as
temporal derivatives of the local magnetization [22].

Another term, not discussed in the above investigations,
is the magnetic inertial damping that has recently drawn
attention [23–26]. Originally, magnetic inertia was discussed
following the discovery of earth’s magnetism [27]. Within the
LLG framework, inertia is introduced as an additional term
[9,24,28,29] leading to a modified LLG equation,

∂ M
∂t

= −γ M × Heff + M ×
(

�
∂ M
∂t

+ I ∂2 M
∂2t

)
, (1)
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where � is the Gilbert damping constant [1–3], γ the gyromag-
netic ratio, Heff the effective magnetic field, and I is the inertia
of the magnetization dynamics, similar to the mass in Newton’s
equation. This type of motion has the same classical analog
as the nutation of a spinning symmetric top. The potential
importance of inertia is illustrated in Fig. 1. While Gilbert
damping slowly aligns the precessing magnetization to the
effective magnetic field, inertial dynamics causes a trembling
or nutation of the magnetization vector [24,30,31]. Nutation
could consequently pull the magnetization toward the equator
and cause its switching to the antiparallel direction [32,33],
while depending crucially on the strength of the magnetic
inertia. The parameter I that characterizes the nutation motion
is in the most general case a tensor and has been associated
with the magnetic susceptibility [29,31,33]. Along a different
line of reasoning, Fähnle et al. extended the breathing Fermi
surface model to include the effect of magnetic inertia [9,34].
The technological importance of nutation dynamics is thus
its potential to steer magnetization switching in memory
devices [23–25,32] and also in skyrmionic spin textures
[35]. Magnetization dynamics involving inertial dynamics
has been investigated recently, and it was suggested that its
dynamics belongs to the faster time scales [24,26], i.e., the
femtosecond regime. However, the origin of inertial damping
from a fundamental framework is still missing, and, moreover,
although it is possible to vary the size of the inertia in
spin-dynamics simulations, it is unknown what the typical
size of the inertial damping is.

Naturally the question arises whether it is possible to
derive the extended LLG equation including inertia while
starting from the fully relativistic Dirac equation. Hickey
and Moodera [36] started from a Dirac Hamiltonian and
obtained an intrinsic Gilbert damping term which originated
from spin-orbit coupling. However they started from only
a part of the spin-orbit coupling Hamiltonian which was
anti-Hermitian [37,38]. A recent derivation based on Dirac
Hamiltonian theory formulation [11] showed that the Gilbert
damping depends strongly on both interband and intraband
transitions (consistent with Ref. [39]) as well as the magnetic
susceptibility response function, χm. This derivation used the
relativistic expansion to the lowest order 1/c2 of the Hermitian
Dirac-Kohn-Sham (DKS) Hamiltonian including the effect of
exchange field [40].
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FIG. 1. Schematic illustration of magnetization dynamics. The
precessional motion of M around Heff is depicted by the blue solid-
dashed curve, and the nutation is shown by the red curve.

In this paper we follow an approach similar to that of
Ref. [11], but we consider higher order expansion terms of
the DKS Hamiltonian up to the order of 1/c4. This is shown to
lead to the intrinsic inertia term in the modified LLG equation
and demonstrates that it stems from a higher-order spin-orbit
coupling term. A relativistic origin of the spin nutation angle,
caused by Rashba-like spin-orbit coupling, was previously
concluded, too, in the context of semiconductor nanostructures
[41,42].

In the following, we derive in Sec. II the relativistic
correction terms to the extended Pauli Hamiltonian up to
the order of 1/c4, which includes the spin-orbit interaction
and an additional term. Then the corresponding magnetization
dynamics is computed from the obtained spin Hamiltonian in
Sec. III, which is shown to contain the Gilbert damping and
the magnetic inertial damping. Finally, we discuss the size of
the magnetic inertia in relation to other earlier studies.

II. RELATIVISTIC HAMILTONIAN FORMULATION

We start our derivation with a fully relativistic particle, a
Dirac particle [43] inside a material and in the presence of an
external field, for which we write the DKS Hamiltonian:

H = cα · ( p − eA) + (β − 1)mc2 + V 1

= O + (β − 1)mc2 + E, (2)

where V is the effective crystal potential created by the ion-ion,
ion-electron, and electron-electron interactions. In general,
there can be an additional potential term for the DKS exchange
field, however, we suppress to write it explicitly here (see
Ref. [11] for details). A(r,t) is the magnetic vector potential
from the external field, c is the speed of light, m is the particle’s
mass, and 1 is the 4 × 4 unit matrix. α and β are the Dirac
matrices that have the form

α =
(

0 σ

σ 0

)
, β =

(
1 0

0 −1

)
,

where σ is the Pauli spin matrix vector and 1 is 2 × 2 unit ma-
trix. The Dirac equation is then written as ih̄

∂ψ(r,t)
∂t

= Hψ(r,t)
for a Dirac bispinor ψ . The quantity O = cα · ( p − eA)
defines the off-diagonal or odd terms in the matrix formalism,
and E = V 1 are the diagonal, i.e., even terms. The latter have

to be multiplied by a 2 × 2 block diagonal unit matrix in order
to bring them in a matrix form. To obtain the nonrelativistic
Hamiltonian and the relativistic corrections one can write down
the Dirac bispinor in double two component form as

ψ(r,t) =
(

φ(r,t)

η(r,t)

)
,

and substitute those into the Dirac equation. The upper
two components represent the particle, and the lower two
components represent the antiparticle. However the question of
separating the particle’s and antiparticle’s wave functions is not
clear for any given momentum. As the part α · p is off-diagonal
in the matrix formalism, it retains the odd components and
thus links the particle-antiparticle wave functions. One way
to eliminate the antiparticle’s wave function is by an exact
transformation [44] which gives terms that require a further
expansion in powers of 1/c2. Another way is to search for
a representation where the odd terms become smaller and
smaller, and one can ignore those with respect to the even
terms and retain only the latter [45]. The Foldy-Wouthuysen
(FW) transformation [46,47] was the very successful attempt
to find such a representation.

It is a unitary transformation obtained by suitably choosing
the FW operator,

UFW = − i

2mc2
βO. (3)

The minus sign in front of the operator is because β and
O anticommute with each other. The transformation of the
wave function adopts the form ψ ′(r,t) = eiUFWψ(r,t) such
that the probability density remains the same, |ψ |2 = |ψ ′|2.
The time-dependent FW transformation can be expressed as
[45,48]

HFW = eiUFW

(
H − ih̄

∂

∂t

)
e−iUFW + ih̄

∂

∂t
. (4)

The first term can be expanded in a series as

eiUFWHe−iUFW = H + i[UFW,H] + i2

2!
[UFW,[UFW,H]] + ....

+ in

n!
[UFW,[UFW,...[UFW,H]...]] + ... .

(5)

The time dependency enters through the second term of Eq. (4)
and for a time-independent transformation one works with
∂UFW

∂t
= 0. It is instructive to note that the aim of the whole

procedure is to make the odd terms smaller and one can
notice that as it goes higher and higher in the expansion, the
corresponding coefficients decrease of the order 1/c2 due to
the choice of the unitary operator. After a first transformation,
the new Hamiltonian will contain new even terms, E ′, as well
as new odd terms, O′ of 1/c2 or higher. The latter terms can be
used to perform a next transformation having the new unitary
operator as U ′

FW = − i
2mc2 βO′. After a second transformation

the new Hamiltonian H′
FW is achieved that has the odd terms

of the order 1/c4 or higher. The transformation is a repetitive
process, and it continues until the separation of positive and
negative energy states is guaranteed.

After a fourth transformation we derive the new trans-
formed Hamiltonian with all the even terms that are correct up
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to the order of 1
m3c6 as [48–50]

H′′′
FW = (β − 1)mc2 + β

( O2

2mc2
− O4

8m3c6

)
+ E

− 1

8m2c4
[O,[O,E] + ih̄ ∂tO]

+ β

16m3c6
{O,[[O,E],E]}+ β

8m3c6
{O,[ih̄ ∂tO,E]}

+ β

16m3c6
{O,(ih̄)2 ∂ttO}. (6)

Here ∂t ≡ ∂/∂t stands for the first-order time derivative. Note
that [A,B] defines the commutator, while {A,B} represents
the anticommutator for any two operators A and B. A sim-
ilar Foldy-Wouthuysen transformation Hamiltonian up to an
order of 1/m3c6 was derived by Hinschberger and Hervieux in
their recent work [51], however there are some differences, for
example, the first and second terms in the third line of Eq. (6)
were not given. Once we have the transformed Hamiltonian as
a function of odd and even terms, the final form is achieved by
substituting the correct form of odd terms O and calculating
term by term.

Evaluating all the terms separately, we derive the
Hamiltonian for only the positive energy solutions, i.e., the
upper components of the Dirac bispinor as a 2 × 2 matrix
formalism [40,51,52]:

H′′′
FW = ( p − eA)2

2m
+ V − eh̄

2m
σ · B − ( p − eA)4

8m3c2

− eh̄2

8m2c2
∇ · Etot + eh̄

8m3c2
{( p − eA)2,σ · B}

− eh̄

8m2c2
σ · [Etot × ( p − eA) − ( p − eA) × Etot]

− eh̄2

16m3c4
{( p − eA),∂t Etot} − ieh̄2

16m3c4
σ

· [∂t Etot × ( p − eA) + ( p − eA) × ∂t Etot]. (7)

The higher order terms (1/c6 or more) will involve similar
formulations and more and more time derivatives of the
magnetic and electric fields will appear that stem from
the time derivative of the odd operator O [48,51]. The fields
in the last Hamiltonian (7) are defined as B = ∇ × A, the
external magnetic field, Etot = Eint + Eext are the electric
fields where Eint = − 1

e
∇V is the internal field that exists

even without any perturbation and Eext = − ∂ A
∂t

is the external
field (only the temporal part is retained here because of the
Coulomb gauge).

A. The spin Hamiltonian

The aim of this work is to formulate the magnetization
dynamics on the basis of this Hamiltonian. Thus, we split the
Hamiltonian into spin-independent and spin-dependent parts
and consider from now on electrons. The spin Hamiltonian is
straightforwardly given as

HS(t) = − e

m
S · B + e

4m3c2
{( p − eA)2,S · B}

− e

4m2c2
S · [Etot × ( p − eA) − ( p − eA) × Etot]

− ieh̄

8m3c4
S · [∂t Etot × ( p − eA)

+ ( p − eA) × ∂t Etot], (8)

where the spin operator S = (h̄/2) σ has been used. Let us
briefly explain the physical meaning behind each term that
appears in HS(t). The first term defines the Zeeman coupling
of the electron’s spin with the externally applied magnetic
field. The second term defines an indirect coupling of light to
the Zeeman interaction of spin and the optical B field, which
can be shown to have the form of a relativistic Zeeman-like
term. The third term implies a general form of the spin-orbit
coupling that is gauge invariant [53], and it includes the effect
of the electric field from an internal as well as an external field.
The last term is the new term of relevance here that has only
been considered once in the literature by Hinschberger et al.
[51]. Note that, although the last term in Eq. (8) contains the
total electric field, only the time derivative of the external field
plays a role here, because the time derivative of internal field
is zero as the ionic potential is time independent. In general
if one assumes a plane-wave solution of the electric field in
Maxwell’s equation as E = E0e

iωt , the last term can be written
as eh̄ω

8m3c4 S · (E × p) and thus adopts the form of a higher-order
spin-orbit coupling for a general E field.

The spin-dependent part can be easily rewritten in a shorter
format using the identities:

A × ( p − eA) − ( p − eA) × A = 2A × ( p − eA)

+ ih̄∇ × A (9)

A × ( p − eA) + ( p − eA) × A = −ih̄∇ × A (10)

for any operator A. This allows us to write the spin Hamilto-
nian as

HS = − e

m
S · B + e

2m3c2
S · B

[
p2 − 2eA · p + 3e2

2
A2

]

− e

2m2c2
S · [Etot × ( p − eA)] + ieh̄

4m2c2
S · ∂t B

+ eh̄2

8m3c4
S · ∂tt B . (11)

Here, the Maxwell’s equations have been used to derive the
final form that the spatial derivative of the electric field will
generate a time derivative of a magnetic field such that ∇ ×
Eext = − ∂ B

∂t
, while the curl of an internal field results in zero

as the curl of a gradient function is always zero. The final spin
Hamiltonian (11) bears much importance for the strong laser
field-matter interaction as it takes into account all the field-
spin coupling terms. It is thus the appropriate fundamental
Hamiltonian to understand the effects of those interactions on
the magnetization dynamics described in Sec. III.

B. Single Dirac particle spin dynamics

Although the dynamics of a macroscopic magnetization is
important for many technological applications, the dynamics
of a single spin- 1

2 Dirac particle is of fundamental value in its
own right. Assuming that the electron’s spin does not explicitly
depend on time, the single spin dynamics in the Heisenberg
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picture reduces to

∂ S
∂t

= 1

ih̄
[S,HS(t)]. (12)

The derivation of the ensuing spin dynamics is then straight-
forward, substituting the Hamiltonian terms given in (11)
in the equation of motion and carrying out the different
commutators. We use the commutator algebra of two spins
[Sj ,Sk] = ih̄εjklSl . The spin dynamics of a single Dirac
particle becomes

∂ S
∂t

= e

m
S × B − e

2m3c2
S × B

[
p2 − 2eA · p + 3e2

2
A2

]

+ e

2m2c2
S × [Etot × ( p − eA)]

− ieh̄

4m2c2
S × ∂t B − eh̄2

8m3c4
S × ∂tt B . (13)

This is an insightful result describing the relativistic (up to the
order of 1/c4) spin dynamics of a single electron. Even though
this is given as spin angular momentum operator dynamics, it
can be recognized, first, that the dynamics contains a spin
precession (first two terms), stemming from the common
nonrelativistic precession (first term) and a relativistic cor-
rection to it (second term). Note that there is no exchange
field for a single spin- 1

2 particle. The third term describes the
dynamics due to the conventional spin-orbit interaction and
the spin-orbit torque due to the applied electromagnetic field.
The fourth term containing the first-order time derivative of
the magnetic field causes the transversal relaxation of spins
(reminiscent of the Gilbert damping). The last term, which
contains the second-order time derivative of B leads to nutation
(see below) and thus establishes the existence of nutation even
for a single spin. The obtained single spin dynamics thus
contains precession, damping, electromagnetic field torque,
and nutation and should be valid for any Dirac spin- 1

2 particle
under the influence of an external electromagnetic field (cf.
Refs. [54,55]).

III. MAGNETIZATION DYNAMICS

In general, magnetization is given by the magnetic moment
per volume element in a magnetic solid. Our next goal is
to derive the dynamics of such a magnetization element. We
work here in the framework of the DKS Hamiltonian that
can be seen as an effective collective Hamiltonian describing
all the electrons in a system. The general equation for the
expectation value of an observable O is 〈O〉 = Tr[ρO], where
ρ is the density matrix. Considering that we are working in the
Heisenberg picture, the density matrix does not evolve with
time, so we can assume it to be the (diagonal) density matrix,
which in the energy eigenstate representation adopts the form:

ρnk;nk(r) = f (Enk)ψ∗
nk(r)ψnk(r), (14)

where f (Enk) is the Fermi-Dirac distribution, ψnk(r) are
eigenstates of the DKS Hamiltonian in coordinate represen-
tation, and Enk are the corresponding nth band electronic
energies with momentum k. Here we are focusing on the
magnetization of some small volume, which can be written

as an expectation of the collective spin of the electrons, as

M(t) = gμB



∫


d rTrσ [Sρ(r)], (15)

where  is a suitably chosen volume, e.g., the unit cell volume.
At this point we can make a partition of the unit volume of the
considered material, for instance taking volume elements j

enclosing the individual atoms of the unit cell. In this way we
can split the integral in Eq. (15) in different volume elements
and obtain information on the magnetization localized on each
individual atom of the unit cell. We can thus write:

M(t) =
∑

j

gμB



∫
j

d rTrσ [Sρ(r)] =
∑

j

gμB


〈Sj 〉. (16)

Next, we introduce a coarse graining for the macroscopic
material, where the spacial coordinate is associated with the
position of one of the unit cells or atomic volumes at position
Rj , i.e., M(r,t) = M(t)|r=Rj

.
To derive the dynamics, we take the time derivative on both

sides of Eq. (16) and, employing the Heisenberg equation
of motion, we arrive at the equation for the magnetization
dynamics as [36,56,57]

∂ M
∂t

=
∑

j

gμB



1

ih̄
〈[Sj ,HS(t)]〉. (17)

Now the task looks simple; one needs to substitute the spin
Hamiltonian (11) and calculate the commutators in order to
find the equation of motion. Note that the dynamics only
considers the local dynamics as we have not taken into account
the time derivative of the particle density operator (for details,
see Ref. [11]). Incorporating the latter would give rise to local
as well as nonlocal processes (i.e., spin currents) within the
same footing.

The first term in the spin Hamiltonian produces the
dynamics as

∂ M (1)

∂t
= −γ M × B, (18)

where γ = g|e|/2m defines the gyromagnetic ratio and
the Landé g factor g ≈ 2 for spins, the electronic charge
e < 0. Using the linear relationship of magnetization with
the magnetic field B = μ0(H + M), the latter is replaced in
Eq. (18) to get the usual form in the Landau-Lifshitz equation,
−γ0 M × H , where γ0 = μ0γ is the effective gyromagnetic
ratio. This gives the Larmor precession of magnetization
around an effective field H . The effective field will always
have a contribution from the exchange field (and the relativistic
corrections to it), which has not been explicitly written out
in this paper, as they are not in the focus here. For detailed
calculations yet including the exchange field, see Ref. [11].

The second and third terms in the Hamiltonian (11) contain
products of spin and orbital degrees of freedom. At this point
it is important to notice that neither the spin nor the orbital
degrees of freedom commute with the Hamiltonian due to the
spin-orbit coupling and the 1/c4 corrections, which implies
that the equilibrium density matrix ρ cannot be expressed
exactly as ρ = ρS ⊗ ρO where ρS is the reduced density
matrix for the spin degrees of freedom and ρO is the reduced
density matrix of the orbital degrees of freedom. Considering
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an observable O acting on the orbital degrees of freedom
in Hilbert space (for instance the momentum or the orbital
angular momentum or some function depending on them) and
S the spin, due to the impossibility to separate orbital and spin
parts of the density matrix we are not, in principle, allowed to
write

Tr[ρSO] = Tr[ρS S] Tr[ρOO] = M〈O〉. (19)

It is important to realize that the nonseparability (entangle-
ment) of the orbital and spin parts of the density matrix
is due to the spin-orbit coupling and its corrections (since
it prevents both quantities to be conserved). However, in
ferromagnetic materials the energy separation of the spin
states is mostly due to the exchange magnetic field which
is orders of magnitude larger than the spin-orbit coupling
and its corrections. As a consequence, the separation of the
density matrix as a direct product of spin and orbital parts
is a good approximation, therefore we can employ Eq. (19).
Moreover, due to the large splitting of spin bands and the
continuous smooth behavior of the energy levels as a function
of momentum, the out-of-equilibrium dynamics on the latter
degrees of freedom is faster than the dynamics of the spin
degrees of freedom.

Using now the approximation (19), the second term in the
spin Hamiltonian (11) will result in a relativistic correction
to the magnetization precession. Within a uniform field
approximation (A = B × r/2), the corresponding dynamics
will take the form

∂ M (2)

∂t
= γ

2m2c2
M × B

〈
p2 − eB · L + 3e2

8
(B × r)2

〉
,

(20)

with L = r × p the orbital angular momentum. The presence
of γ /2m2c2 implies that the contribution of this dynamics to
the precession is relatively small, while the leading precession
dynamics is given by Eq. (18). For sake of completeness we
note that a relativistic correction to the precession term of
similar order 1/m2c2 was obtained previously for the exchange
field [11].

The next term in the Hamiltonian is a bit tricky to handle
as the third term in Eq. (11) is not Hermitian, not even the
fourth term which is anti-Hermitian. However together they
form a Hermitian Hamiltonian [11,37,38]. Therefore one has
to work together with those terms and cannot only perform the
dynamics with an individual term. In an earlier work [11] we
have shown that taking a uniform magnetic field along with the
gauge A = B×r

2 will preserve the Hermiticity. This uniform-
field condition is usually fulfilled for thin-film samples, where
the skin depth of the electromagnetic field is longer than the
film thickness. For thicker samples a field that is uniform over
a part of the sample could alternatively be introduced. The
dynamical equation of spin motion with the second and third
terms can thus be written in a compact form for harmonic
applied fields as [11]

∂ M (3,4)

∂t
= M ×

(
A · ∂ M

∂t

)
, (21)

with the intrinsic Gilbert damping parameter A that is a tensor
defined by

Aij = γμ0

4mc2

∑
n,k

[〈ripk + pkri〉 − 〈rnpn + pnrn〉δik]

× (
1 + χ−1

m

)
kj

. (22)

Here χm is the magnetic susceptibility tensor of rank 2
(a 3 × 3 matrix), 1 is the 3 × 3 unit matrix, and 〈· · · 〉
stands for the expectation value with respect to the DKS
electronic states ψnk. Note that for diagonal terms, i.e.,
i = k the contributions from the expectation values of rkpi

cancel each other. The damping tensor can be decomposed
and shown to have contributions from isotropic Heisenberg-
like, anisotropic Ising-like, and Dzyaloshinskii-Moriya-like
tensors, as detailed in the following. First, the damping tensor
Aij is decomposed into a symmetric and an antisymmetric part
defined as A

sym
ij = 1

2 (Aij + Aji) and Aanti
ij = 1

2 (Aij − Aji).
The symmetric tensor can further be written as A

sym
ij =

Iij + αδij , where α defines the isotropic diagonal components,
i.e., the Heisenberg-like contribution, and Iij are the Ising-
like contributions. Note that if the Heisenberg contributions
are such that α = 1

3 Tr{Asym
ij }, the trace of the Ising-like

contributions becomes zero, Tr{Iij } = 0. The antisymmetric
matrix can be decomposed into a vector multiplied by the
antisymmetric Levi-Civita tensor, Aanti

ij = εijk Dk , which gives
the Dzyaloshinskii-Moriya-like contribution. The complete
damping dynamics can then be written as [11]

∂ M (3,4)

∂t
= α M × ∂ M

∂t
+ M ×

[
I · ∂ M

∂t

]

+ M ×
[

D × ∂ M
∂t

]
. (23)

The antisymmetric Dzyaloshinskii-Moriya term has been
shown to lead to a chiral damping [11]; experimental observa-
tions of such damping have been reported recently [58]. The
other cross term having the form E × A in Eq. (11) is related
to the angular momentum of the electromagnetic field and
thus provides a torque on the spin that has been at the heart
of angular magnetoelectric coupling [53]. This relativistic
Hamiltonian providing spin-photon coupling has been shown
recently [59] to explain the coherent ultrafast magnetism
observed in pump-probe experiments [60]. A possible effect
in spin dynamics including the light’s angular momentum has
been investigated in the strong field regime, and it has been
shown that one has to include this cross term in the dynamics
in order to explain the qualitative and quantitative strong field
dynamics [55].

For the last term in the spin Hamiltonian (11) it is rather
easy to formulate the spin dynamics because it is evidently
Hermitian. Working out the commutator with the spins gives
a contribution to the dynamics as

∂ M (5)

∂t
= δ M × ∂2 B

∂t2
, (24)

with the constant δ = γ h̄2

8m2c4 .
Let us work explicitly with the second-order time derivative

of the magnetic induction by the relation B = μ0(H + M),
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using a chain rule for the derivative:

∂2 B
∂t2

= ∂

∂t

(
∂ B
∂t

)
= μ0

∂

∂t

(
∂ H
∂t

+ ∂ M
∂t

)

= μ0

(
∂2 H
∂t2

+ ∂2 M
∂t2

)
. (25)

This is a generalized equation for the time derivative of the
magnetic induction which can be used even for nonharmonic
fields. The magnetization dynamics is then given by

∂ M (5)

∂t
= μ0δ M ×

(
∂2 H
∂t2

+ ∂2 M
∂t2

)
. (26)

Thus the extended LLG equation of motion will have these
two additional terms: (1) a field-derivative torque and (2)
magnetization-derivative torque, and they appear with their
second order time derivative. It deserves to be noted that, in
a previous theory we also obtained a similar term—a field-
derivative torque in first order-time derivative appearing in the
generalized Gilbert damping. Specifically, the extended LLG
equation for a general time-dependent field H(t) becomes

∂ M
∂t

= −γ0 M × H + M ×
[
Ā ·

(
∂ H
∂t

+ ∂ M
∂t

)]

+μ0δ M ×
(

∂2 H
∂t2

+ ∂2 M
∂t2

)
, (27)

where Ā is a modified Gilbert damping tensor (for details, see
Ref. [11]).

However for harmonic fields, the response of the fer-
romagnetic materials is measured through the differential
susceptibility, χm = ∂ M/∂ H , because there exists a net
magnetization even in the absence of any applied field. With
this, the time derivative of the harmonic magnetic field can be
further written as:

∂2 H
∂t2

= ∂

∂t

(
∂ H
∂ M

∂ M
∂t

)
= ∂

∂t

(
χ−1

m · ∂ M
∂t

)

= ∂χ−1
m

∂t
· ∂ M

∂t
+ χ−1

m · ∂2 M
∂t2

. (28)

In general the magnetic susceptibility is a spin-spin response
function that, in reciprocal space, is wave-vector and frequency
dependent, χm = χm(q,ω). Substituting this expression in
Eq. (26), the dynamics assumes the form with the first and
second order time derivatives as

∂ M (5)

∂t
= M ×

(
K · ∂ M

∂t
+ I · ∂2 M

∂t2

)
, (29)

where the parameters Iij = μ0δ(1 + χ−1
m )

ij
and Kij =

μ0δ ∂t (χ−1
m )ij are tensors. The dynamics of the second term

is that of the magnetic inertia that operates on shorter time
scales [25].

Having all the required dynamical terms, finally the full
magnetization dynamics can be written by joining together
all the individual parts. Thus the full magnetization dynamics
becomes, for harmonic fields,

∂ M
∂t

= M ×
(

−γ0 H + � · ∂ M
∂t

+ I · ∂2 M
∂t2

)
. (30)

Note that the Gilbert damping parameter � has two con-
tributions, one from the susceptibility itself, Aij , which
is of order 1/c2 and an other from the time derivative
of it, Kij of order 1/c4. Thus, �ij = Aij + Kij . However
we will focus on the first one only as it will obviously
be the dominant contribution, i.e., �ij ≈ Aij . Even though
we consider only the Gilbert damping term of order 1/c2 in
the discussions, we shall explicitly analyze the other term of
the order 1/c4. For an ac susceptibility, i.e., χ−1

m ∝ eiωt we
find that Kij ∝ μ0δ ∂t (χ−1

m )ij ∝ iμ0ωδ χ−1
m , which suggests

again that the Gilbert damping parameter of the order 1/c4

will be given by the imaginary part of the susceptibility,
Kij ∝ −μ0ωδ Im(χ−1

m ).
The last equation (30) is the central result of this work, as

it establishes a rigorous expression for the intrinsic magnetic
inertia. Magnetization dynamics including inertia has been
discussed in a few earlier articles [24,30,31,61]. The very last
term in Eq. (30) has been associated previously with the inertial
magnetization dynamics [32,62,63]. As mentioned, it implies
a magnetization nutation, i.e., a changing of the precession
angle as time progresses. Without the inertia term we obtain
the well-known LLG equation of motion that has already been
used extensively in magnetization dynamics simulations (see,
e.g., Refs. [64–68]).

IV. DISCUSSIONS

Magnetic inertia was discussed first in relation to the earth’s
magnetism [27]. From a dimensional analysis, the magnetic
inertia of a uniformly magnetized sphere undergoing uniform
acceleration was estimated to be of the order of 1/c2 [27],
which is consistent with the here-obtained relativistic nature
of magnetic inertia.

The spin dynamics derived for a single Dirac particle
[Eq. (13)] is a general and fundamental result, which estab-
lishes the existence of nutation even for any Dirac particle.
To describe the magnetization dynamics of a small volume
element, we introduce a collective macroscopic variable M,
stemming from the spin degrees of freedom, where the other
degrees of freedom (e.g., electronic orbitals, environments) are
averaged out.

The derived magnetization dynamics, based on the fun-
damental Dirac-Kohn-Sham Hamiltonian, provides explicit
expressions for both the Gilbert and inertial dampings. Thus,
a comparison can be made between the Gilbert damping
parameter and the magnetic inertia parameter of a pure system.
As noticed above, both the parameters depend on the magnetic
susceptibility tensor, however it should be noted that the
quantity 〈rαpβ〉 is imaginary itself, because [11]

〈rαpβ〉 = − ih̄

2m

∑
n,n′,k

f (Enk) − f (En′k)

Enk − En′k
pα

nn′p
β

n′n. (31)

Here the momentum matrix elements pα
nn′ are taken with

respect to the states ψnk that follow from the DKS Hamiltonian
(2) or (approximately) from Hamiltonian (6). The Gilbert
damping parameter should consequently be given by the
imaginary part of the susceptibility tensor [36,69]. On the other
hand the magnetic inertia tensor must be given by the real part
of the susceptibility [31]. This is in agreement with a recent
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article where the authors also found the same dependence
of real and imaginary parts of susceptibility to the nutation
and Gilbert damping, respectively [33]. In our calculation, the
Gilbert damping and inertia parameters adopt the following
forms, respectively,

�ij = iγμ0

4mc2

∑
n,k

[〈ripk + pkri〉 − 〈rnpn + pnrn〉δik]

× Im
(
χ−1

m

)
kj

= − μ0γ h̄

4mc2

∑
n,k

[ 〈ripk + pkri〉 − 〈rnpn + pnrn〉δik

ih̄

]

× Im
(
χ−1

m

)
kj

= − ζ
∑
n,k

[ 〈ripk + pkri〉 − 〈rnpn + pnrn〉δik

ih̄

]

× Im
(
χ−1

m

)
kj

, (32)

Iij = μ0γ h̄2

8m2c4

[
1 + Re

(
χ−1

m

)
ij

] = ζ h̄

2mc2

[
1 + Re

(
χ−1

m

)
ij

]
,

(33)

with ζ ≡ μ0γ h̄

4mc2 . Note that the change of sign from damping
tensor to the inertia tensor is also consistent with Ref. [33] and
also that a factor of two is present in inertia. However, most
importantly, the inertia tensor is h̄/mc2 times smaller than the
damping tensor as is revealed in our calculations. Considering
atomic units we can evaluate

ζ ∼ μ0

4c2
∼ 0.00066

4 × 1372
∼ 8.8 × 10−9,

ζ h̄

2mc2
∼ ζ

2c2
∼ 8.8 × 10−9

2 × 1372
∼ 2.34 × 10−13.

This implies that the intrinsic inertial damping is typically
4 × 104 times smaller than the Gilbert damping, and it
is not an independently variable parameter. Also, because
of its smallness magnetic inertial dynamics will be more
significant on shorter timescales [24,26]. As recently outlined
by Wegrowe and Olive the quite different time scales of Gilbert
and inertial dampings can be exploited to study the effect of
the fast inertial motion on the slower precessional motion [26].

A further analysis of the Gilbert and inertial parameters
can be made. One can use the Kramers-Kronig transformation
to relate the real and imaginary parts of a susceptibility tensor
with one another. This suggests a relation between the two
parameters that has been found previously by Fähnle et al.
[34], namely I = −�τ , where τ is a relaxation time. We
obtain here a similar relation, I ∝ −�τ̄ , where τ̄ = h̄/mc2

has time dimension.
Even though the Gilbert damping is c2 times larger

than the inertial damping, the relative strength of the two
parameters also depends on the real and imaginary parts of
the susceptibility tensor. In special cases, when the real part
of the susceptibility is much higher than the imaginary part,
their strength could be comparable to each other. We note in
this context that there exist materials where the real part of the
susceptibility is 102–103 times larger than the imaginary part.

Finally, we emphasize that our derivation provides the
intrinsic inertial damping of a pure, isolated system. For the
Gilbert damping it is already well known that environmental
effects, such as interfaces or grain boundaries, impurities, film
thickness, and even interactions of the spins with quasiparti-
cles, for example, phonons, can modify the extrinsic damping
(see, e.g., Refs. [70–72]). Similarly, it can be expected that the
inertial damping will become modified through environmental
influences. An example of environmental effects that can
lead to magnetic inertia have been considered previously, for
the case of a local spin moment surrounded by conduction
electrons, whose spins couple to the local spin moment and
affect its dynamics [31,32].

V. CONCLUSIONS

In conclusion, we have rigorously derived the magneti-
zation dynamics from the fundamental Dirac Hamiltonian
and have provided a solid theoretical framework for, and
established the origin of, magnetic inertia in pure systems.
For a single spin- 1

2 Dirac particle under the influence of an
electromagnetic field we have derived the relativistic spin
dynamics and showed that it contains an inertia term. For the
dynamics of a macroscopic magnetic volume element, we have
derived expressions for the Gilbert damping and the magnetic
inertial damping on the same footing and have shown that both
of them have a relativistic origin. The Gilbert damping stems
from a generalized spin-orbit interaction involving external
fields, while the inertial damping is due to higher-order (in
1/c2) spin-orbit contributions in the external fields. Both
have been shown to be tensorial quantities. For general time
dependent external fields, a field-derivative torque with a first
order time derivative appears in the Gilbert-type damping,
and a second order time-derivative field torque appears in the
inertial damping.

In the case of harmonic external fields, the expressions
of the magnetic inertia and the Gilbert damping scale with
the real part and the imaginary part, respectively, of the
magnetic susceptibility tensor, and they are opposite in sign.
Alike the Gilbert damping, the magnetic inertia tensor is
also temperature dependent through the magnetic response
function and also magnetic moment dependent. Importantly,
we find that the intrinsic inertial damping is much smaller than
the Gilbert damping, which corroborates the fact that magnetic
inertia was neglected in the early work on magnetization
dynamics [1–3,19]. This suggests, too, that the influence of
magnetic inertia will be quite restricted, unless the real part
of the susceptibility is much larger than the imaginary part.
Another possibility to enhance the magnetic inertia would
be to use environmental influences to increase its extrinsic
contribution. Our theory based on the Dirac Hamiltonian leads
to exact expressions for both the intrinsic Gilbert and inertial
damping terms, thus providing a solid base for their evaluation
within ab initio electronic structure calculations and giving
suitable values that can be used in future LLG magnetization
dynamics simulations.
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