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Spin pumping into superconductors: A new probe of spin dynamics in a superconducting thin film
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Spin pumping refers to the microwave-driven spin current injection from a ferromagnet into the adjacent target
material. We theoretically investigate the spin pumping into superconductors by fully taking account of impurity
spin-orbit scattering that is indispensable to describe diffusive spin transport with finite spin diffusion length. We
calculate temperature dependence of the spin pumping signal and show that a pronounced coherence peak appears
immediately below the superconducting transition temperature Tc, which survives even in the presence of the
spin-orbit scattering. The phenomenon provides us with a new way of studying the dynamic spin susceptibility
in a superconducting thin film. This is contrasted with the nuclear magnetic resonance technique used to study a
bulk superconductor.
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I. INTRODUCTION

Investigation of the interplay of superconductivity and
magnetism has a long history. The seminal theoretical work
by Abrikosov and Gor’kov [1] describing the effects of
magnetic impurities on superconductivity initiated the research
field of gapless superconductivity [2]. Besides, the theoretical
prediction on the appearance of nonuniform superconductivity
by paramagnetic depairing effects [3,4] has still had a major
impact on the current research of superconductor/ferromagnet
junctions [5]. In the context of spintronics, the superconducting
tunneling experiment has been applied to the measurement
of the spin polarization in a number of materials [6,7], and
an electrical spin injection into a superconductor is currently
under active investigation [8–11]. Furthermore, the interplay
of superconductivity and magnetism has been a subject of
intense debate [12].

In those investigations mentioned above, the magnetic
degrees of freedom are assumed to be in thermal equilibrium,
and the nonequilibrium dynamics of the magnetization does
not play any active role. In recent years, however, this nonequi-
librium magnetization dynamics in magnetic heterostructures
has drawn great attention as a new means for the spin current
generation, which is now known as spin pumping [13]. In
this method, the nonequilibrium magnetization dynamics in a
ferromagnet is driven by ferromagnetic resonance (FMR), and
it gives rise to the spin injection into the adjacent target material
by transferring spin angular momentum through the s-d ex-
change interaction at the interface. Because the spin pumping
relies only on the spin dynamics and thus enables a charge-free
spin injection [14], by now it is widely used as a versatile
spin injection method. Indeed, the target materials range
from normal metals [15–22], semiconductors [14,23–25],
magnetic metals [26–28], and insulators [29], to more exotic
systems such as graphene [30,31], organic materials [32,33],
a topological insulator [34], and a Rashba system [35]. Given
this background, it is worth investigating and clarifying the
nature of spin pumping into superconductors.

Experimentally, the spin pumping into a superconducting
material was studied almost a decade ago in a Ni80Fe20/Nb
bilayer system [36], and a decrease in the spin pumping
signal was observed below the superconducting transition

temperature Tc. On the theoretical side, one of the recent
progresses is the theoretical finding that the spin pumping
signal is intimately related to the dynamic spin susceptibility
of target materials [37], which was derived in a close analogy to
the linear-response approach to the spin Seebeck effect [38,39].
Indeed, a number of experiments suggesting the correlation
between the spin susceptibility and the spin pumping have been
accumulating [40–42]. Therefore, from the current theoretical
point of view, the problem of calculating spin pumping into
superconductors is reduced to the evaluation of the dynamic
spin susceptibility in the superconducting state.

The dynamic spin susceptibility in superconductors has
long been studied using nuclear magnetic resonance (NMR)
[43], especially by focusing on the behavior of nuclear-spin
relaxation rate [44,45]. Then, a naive expectation would be
that in the literature one could find a detailed calculation of
the dynamic spin susceptibility in a superconducting state. In
actual fact, however, existing theories discussing the NMR
nuclear-spin relaxation rate focus only on a system without
impurity spin-orbit scattering where the spin diffusion length
diverges [46], whereas we do not encounter such a situation
even in a material with relatively long spin diffusion length,
such as Al [47]. Therefore, in order to obtain a physically
reasonable result with nondiverging spin diffusion length, it is
of crucial importance to deal with the impurity spin-orbit scat-
tering in an adequate manner. As far as we know, however, no
such theoretical calculation has been reported in the literature.

In this paper we present a theory of spin pumping into
superconducting materials by fully taking account of the
impurity spin-orbit scattering. Making use of the previous
theoretical finding [37] that the strength of the spin pumping
is proportional to the imaginary part of the dynamic spin
susceptibility of target materials, we calculate temperature
dependence of the spin pumping signal in a bilayer composed
of an insulating ferromagnet and an s-wave superconductor. By
evaluating the dynamic spin susceptibility of the superconduct-
ing target material, we show that a pronounced coherence peak
appears in the signal immediately below the superconducting
transition temperature Tc, which survives even in the presence
of the impurity spin-orbit scattering. Since existing NMR
technique is not suitable for thin film samples, we further argue
that the phenomenon under discussion can be used as a new
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FIG. 1. Schematic view of the system considered in this paper,
where a spin sink (SS) is placed on top of a spin injector (SI). The
SS is an s-wave superconductor in the present paper, whereas it was
assumed to be a weak itinerant ferromagnet in Ref. [37]. In both
cases, the SI is an insulating magnet.

method for detecting the spin dynamics in a superconducting
thin film.

The outline of the paper is as follows. In Sec. II, our model
is given. In Sec. III, the formulation to derive the dynamic
spin susceptibility of a superconductor is presented, by fully
taking account of the vertex corrections due to impurity spin-
orbit scattering. In Sec. IV, temperature dependence of the
spin pumping into an s-wave superconductor is numerically
evaluated for various strengths of the impurity spin-orbit
scattering. Finally, in Sec. V we discuss and summarize our
results. We use units h̄ = kB = 1 throughout this paper.

II. MODEL

As in Ref. [37], we consider a bilayer composed of a
spin injector (SI) and a spin sink (SS), as shown in Fig. 1.
In Ref. [37], the SS was assumed to be a weak itinerant
ferromagnet such as NiPd. In the present paper, by contrast, we
consider a situation where the SS is an s-wave superconductor
such as Nb. In both cases, the SI is a magnetic insulator, most
typically yttrium iron garnet (YIG). We assume that a static
magnetic field H0 = H0 ẑ is applied to the bilayer in the lateral
direction and that the anisotropy field is much weaker than H0

such that it can be disregarded.
We focus on the situation where an external microwave

with the angular frequency ωac is applied to the SI/SS
bilayer to drive the ferromagnetic resonance (FMR) of the
SI. In the magnon language the external microwave resonantly
excites uniform magnon mode inside the SI, with the angular
frequency ωac. Without the attachment of the SS, the magnon
has an intrinsic damping rate α0ωac, where α0 is the (dimen-
sionless) intrinsic Gilbert damping constant. In the presence
of the SS, because there arises an additional spin dissipation
channel, the magnon acquires an additional Gilbert damping
so that the total Gilbert damping constant α is given by

α = α0 + δα, (1)

where δα is the additional Gilbert damping constant. In
FMR experiments, the additional Gilbert damping constant

Jsd Jsd

χ
SS

SI

FIG. 2. Diagrammatic representation of the magnon self energy
leading to the additional Gilbert damping. A solid line is the electron
Green’s function, a wavy line the magnon propagator, χ the spin
susceptibility, and a black dot the s-d interaction at the SS/SI interface.

is obtained from the FMR linewidth �H through the relation

γ�H = 2√
3

(α0 + δα)ωac, (2)

where γ is the gyromagnetic ratio. The appearance of the
additional spin dissipation channel means that spins are
pumped into the SS, and thus this phenomenon is termed spin
pumping. Because the spins pumped into the SS diffuse in
the form of a spin current, this phenomenon has drawn much
attention as a new means of spin current generation.

Now we briefly review the linear-response approach to
the spin pumping that has been developed in Refs. [37,48].
As already mentioned, the additional Gilbert damping is
regarded in the magnon language as the additional damping
rate of the collective mode, i.e., the magnon. According to
the framework of many-body theory [49], the damping of a
collective excitation can be calculated from the corresponding
self energy �R(ω). In the present case, the self energy is
diagrammatically expressed in Fig. 2, from which we see that
it is related to the dynamic spin susceptibility χR

q (ω) of the SS
as

�R(ω) = −
〈〈
J 2

sd

〉〉
h̄2

∑
q

χR
q (ω), (3)

where Jsd is the s-d interaction at the SS/SI interface, 〈〈J 2
sd〉〉 =

2J 2
sdS0Nint/(NSINSS) with Nint, NSI, and NSS being the number

of localized spins at the interface, and the number of lattice
sites in the SI and SS, respectively. Using the relation δα ωac =
−Im�R(ωac), we arrive at the final result:

δα =
〈〈
J 2

sd

〉〉
h̄2

∑
q

1

ωac
ImχR

q (ωac). (4)

Therefore, the remaining task is to calculate the dynamic spin
susceptibility in the superconducting state.

As mentioned in Sec. I, when calculating the dynamic spin
susceptibility of superconductors, it is quite important to take
account of the spin-orbit scattering by impurities in a proper
way, because it is indispensable to describe the spin dissipation
that produces a finite spin diffusion length. As for the static
spin susceptibility in superconductors such a calculation has
been known [50], which reveals that the spin-orbit scattering
by impurities completely modifies the behavior of the static
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susceptibility, and the resultant temperature dependence of the
susceptibility deviates substantially from that of a pure super-
conductor represented by the Yoshida function [51]. Regarding
the dynamic spin susceptibility in the superconducting state,
on the other hand, there has been no such calculation reported
so far except for Ref. [52], where the analysis is limited only
to a narrow gapless region in the immediate vicinity of the
superconducting transition temperature Tc and in the presence
of pair-breaking perturbation. Therefore, we adopt such a route
that the method of Ref. [50] for the static spin susceptibility
is extended to the dynamic spin susceptibility, by employing
the procedure of analytic continuation from the Matsubara
susceptibility to the retarded susceptibility.

We begin with the following Hamiltonian for the SS:

H = HBCS + Himp, (5)

where the first term,

HBCS =
∑

p

c†pξ pc p − |g|
V

∑
p, p′,k

c
†
p+k↑c

†
− p↓c− p′+k↓c p′↑, (6)

is the BCS Hamiltonian with attractive interaction |g|. Here,
c
†
p = (c†p,↑,c

†
p,↓) is the electron creation operator for spin

projection ↑ and ↓, ξ p is the kinetic energy measured from the
chemical potential, and V is the system volume. The second
term,

Himp =
∑
p, p′

c†pÛ p, p′c p′ , (7)

describes the scattering by impurities, where

Û p, p′ = u0( p − p′) + iuso( p − p′)σ̂ · ( p × p′) (8)

is the impurity potential with σ̂ being the Pauli matrices, and
u0( p − p′) and uso( p − p′) are the amplitude of the momen-
tum scattering and the spin-orbit scattering, respectively. Note
that in the present paper, we use a notation to represent an
operator in the spin space by using “hat” such as Ô.

Following Ref. [53], the Gor’kov equation for the present
system is given by

[Ľ p + V̌ p, p′]Ǧ p, p′(iεn) = (2π )3δ( p − p′)1̌, (9)

where

Ľ p =
(

iεn − ξ p, iσ̂y�

iσ̂y�, −iεn − ξ p

)
(10)

defines the Green’s function in the pure system, εn = 2πT (n +
1/2) is a fermionic Matsubara frequency with n being an
integer, � is the superconducting gap, and we denote a matrix
in the particle-hole (Nambu) space by “check” accent. The
effect of impurities is described by

V̌ p, p′ =
(

Û p, p′ , 0

0, Û t
p′, p

)
, (11)

where Û t means the transpose of a matrix Û in the spin space.
As in Ref. [53], the impurity-averaged Green’s function,

Ǧ p(iεn) =
(

G p(iεn), F p(iεn)iσ̂ y

F†
p(iεn)iσ̂ y, G†

p(iεn)

)
, (12)

plays the role of the zeroth-order Green’s function in the
present approach. Using the self-consistent Born approxima-
tion for the impurity potential, we obtain

Ǧ p(iεn) = −1

ε̃2
n + �̃2 + ξ 2

p

(
(ĩεn + ξ p), �̃iσ̂y

�̃iσ̂y, (−ĩεn + ξ p)

)
,

(13)

where the Matsubara frequency εn and the superconducting
gap � have the common self-energy corrections in the present
situation [50]:

ε̃n = εnη, (14)

�̃ = �η, (15)

η = 1 + �(+)√
ε2
n + �2

. (16)

In the above equation, the scattering rate �(+) has two
contributions as

�(+) = 1

2

(
1

τ0
+ 1

τso

)
, (17)

where τ0 is the momentum relaxation time and τso is the spin-
orbit relaxation time, which are, respectively, given by 1/τ0 =
2πN (0)nimp|u0(0)|2 and 1/τso = 2πN (0)nimp|uso(0)|2〈( p ×
p′)2〉FS. Here, N (0) is the density of states of electrons at
the Fermi level, nimp the number density of impurities, and
〈· · · 〉FS means the average over the Fermi surface.

Finally, the superconducting gap is determined self consis-
tently by the gap equation,

� = |g|
V

∑
εn

∑
p

F p(iεn). (18)

Because of the common form of the self-energy corrections
given by Eqs. (14)–(16), the superconducting transition tem-
perature Tc as well as the gap equation remains the same as in
the pure case, i.e.,

ln

(
T

Tc

)
� = 2πT

∑
εn>0

(
�√

ε2
n + �2

− �

εn

)
, (19)

where we used the relation 1/|g| = ln(T/Tc) +
2πT

∑
εn>0(1/εn). This is a consequence of Anderson’s

theorem [54] because, unlike the case of magnetic impurity
scattering, the momentum scattering as well as the impurity
spin-orbit scattering preserves the time-reversal symmetry of
the electron system.

In Appendix, we briefly review how the present formalism
is applied to the calculation of the static susceptibility of
a superconductor with sizable impurity spin-orbit scattering
[50]:

χ0 = N (0)

(
1 −

∑
εn

πT �2

(ε2
n + �2)

1√
ε2
n + �2 + 2

3τso

)
. (20)

The above result is an extension of the Yoshida function [51]
to the case with impurity spin-orbit scattering, which leads
both to a nondiverging spin diffusion length and to a finite
susceptibility even at zero temperature.
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III. DYNAMIC SPIN SUSCEPTIBILITY IN
SUPERCONDUCTING STATES

As explained in the previous section, temperature depen-
dence of the additional Gilbert damping constant δα is obtained
by calculating the dynamic spin susceptibility χR

q (ωac) [see
Eq. (4)]. Then, our strategy is to extend the method in Ref. [50]
for the calculation of the static susceptibility χ0 into that of
the dynamic susceptibility χR

q (ωac). The procedure consists
of two steps. First, we generalize the uniform and static
external magnetic field assumed in Ref. [50] into a space-time
dependent external magnetic field and consider the following
external Hamiltonian

δH(τ ) = −
∫

d3r σ (r,τ ) · h(r,τ ), (21)

where h(r,τ ) = haĉ z exp(−i�ντ + iq · r). Here, the Bohr
magneton μB is absorbed into the definition of hac = μBHac,
�ν = 2πT ν is a bosonic Matsubara frequency with a positive
integer ν > 0, and the time evolution is defined along the
imaginary time τ as c(r,τ ) = eτHc(r,τ )e−τH. Next, we calcu-
late the resultant dynamic Matsubara susceptibility χq(i�ν)
and perform an analytic continuation from the Matsubara
susceptibility into the retarded susceptibility using the relation

χR
q (ωac) = χq(i�ν → ωac + i0+), (22)

which is detailed below.
In the presence of the space-time dependent external

magnetic field, the matrix Green’s function is, up to the linear
order in hac, written as

Ǧ p,q(iεn,i�ν) = Ǧ p(iεn) + δǦ p,q(iεn,i�ν), (23)

where εn and p are internal frequency and momentum
whereas �ν and q are the external frequency and momentum.
From the linear-response contribution to the Green’s function
δǦ p,q(iεn,i�ν), the Matsubara susceptibility is calculated
to be

χq(i�ν) = − ∂

∂hac

T

2

∑
εn

∫
p

Tr[σ̂ zδĜ p,q(iεn,i�ν)], (24)

where δĜ p,q(iεn,i�ν) is the (1,1) component of the matrix
Green’s function δǦ p,q(iεn,i�ν), and we have introduced the

shorthand notation
∫

p = ∫
d3p

(2π)3 . In the above equation, the
factor 1/2 arises because of the relation 2χ = χzz in the para-
magnetic phase, where χzz is the longitudinal susceptibility.
The linear-response contribution to the Green’s function can
be expressed as

δǦ p,q(iεn,i�ν) = Ǧ p−q(iεn − i�ν)�̌q(iεn,i�ν)Ǧ p(iεn).

(25)

Here, the vertex function �̌ p(iεn) representing the effects
of impurity ladder shown in Fig. 3 satisfies the following
equation:

�̌q(iεn,i�ν) = hacσ̂
z + nimp

∫
p′

V̌ p, p′Ǧ p′−q(iεn − i�ν)

×�̌q(iεn,i�ν)Ǧ p′(iεn)V̌ p′, p. (26)

Now we perform the analytic continuation from the Mat-
subara susceptibility into the retarded susceptibility [Eq. (22)],

FIG. 3. Diagrammatic representation of the vertex correction for
δǦ. A dashed line with a cross means the scattering by impurities.

by using the formula

T
∑
εn

g(iεn) =
∫

C

dz

4π i
tanh

( z

2T

)
g(z), (27)

where the contour is shown in Fig. 4. Following the standard
procedure [49], we find that the contour C1 and C3 result in
the nondissipative part ReχR

q (ωac) which is not of interest to
us because of Eq. (4). By contrast, the contour C2 gives us the
dissipative part:

ImχR
q (ωac) = ∂

∂hac

1

2

∫ ∞

−∞

dε

4π

∫
p

[
tanh

( ε

2T

)
− tanh

(
ε − ωac

2T

)]
Tr

[
σ̂ zδĜRA

p,q(ε,ωac)
]
, (28)

where δĜRA is the (1,1) component of

δǦRA
p,q(ε,ωac) = ǦR

p (ε)�̌RA
q (ε,ωac)ǦA

p−q(ε − ωac). (29)

In the above equation, ǦR
p (ε) = Ǧ p(iεn → ε + i0+), ǦA

p (ε) =
Ǧ p(iεn → ε − i0+), and the vertex function �̌RA defined on
the real-frequency axis satisfies

�̌RA
q (ε,ωac) = hacσ̂

z + nimp

∫
p′

V̌ p, p′ǦR
p′(ε)

×�̌RA
q (ε,ωac)ǦA

p′−q(ε − ωac)V̌ p′, p. (30)

The representation used in Ref. [53],

�̌RA
q (ε,ωac) =

(
�

(1)RA
q (ε,ωac)σ̂ z, �

(2)RA
q (ε,ωac)σ̂ x

−�
(2)RA
q (ε,ωac)σ̂ x, �

(1)RA
q (ε,ωac)σ̂ z

)
,

(31)

FIG. 4. The contour to transform the Matsubara sum into an
integral over ε = Re(z).
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which is validated to apply even in the present case, transforms
Eq. (30) into a set of linear equations for �(1)RA and �(2)RA:(

�̃(1)RA

�̃(2)RA

)
=

(
1

0

)
+

(A, −B
C, D

)(
�̃(1)RA

�̃(2)RA

)
, (32)

where we have introduced the normalization �(i)RA =
hac�̃

(i)RA (i = 1,2) for later convenience. From Eq. (30), the
coefficients from A to D in the above equation are calculated
to be

A = �(−)

πN (0)

∫
p

{
GR

p (ε)GA
p− (ε−) + FR

p (ε)F†A
p− (ε−)

}
, (33)

B = �(−)

πN (0)

∫
p

{
GR

p (ε)F†A
p− (ε−) + FR

p (ε)GA
p−(ε−)

}
, (34)

C = �(−)

πN (0)

∫
p

{
GR

p (ε)FA
p−(ε−) − FR

p (ε)G†A
p− (ε−)

}
, (35)

D = �(−)

πN (0)

∫
p

{
GR

p (ε)G†A
p− (ε−) − FR

p (ε)FA
p−(ε−)

}
, (36)

where p− = p − q and ε− = ε − ωac. Here, the scattering rate
�(−) arising from the vertex corrections is given by

�(−) = 1

2

(
1

τ0
− 1

3τso

)
, (37)

where the factor 3 in front of τso should not be forgotten. After
integrating over the momentum, we obtain

A = �(−)
|W̃ε |2 + |̃ε|2 + |�̃ε |2

|W̃ε |2(2ImW̃ε)

(
1 − v2

Fq
2/3

(2ImW̃ε)2

)
, (38)

B = C = �(−)
ε̃�̃∗

ε + ε̃∗�̃ε

|W̃ε |2(2ImW̃ε)

(
1 − v2

Fq
2/3

(2ImW̃ε)2

)
, (39)

D = �(−)
|W̃ε |2 − |̃ε|2 − |�̃ε |2

|W̃ε |2(2ImW̃ε)

(
1 − v2

Fq
2/3

(2ImW̃ε)2

)
, (40)

where vF is the Fermi velocity, ε̃ = ĩεn|iεn→ε+i0+ , �̃ε =
�̃|iεn→ε+i0+ , W̃ε =

√
ε̃2 − �̃2

ε . Substituting these expressions

into Eq. (28) and comparing the expression of δǦR [Eq. (29)]
to the second term on the right hand side of Eq. (30), the
dynamic spin susceptibility is calculated to be

1

ωac
ImχR

q (ωac) = N (0)

4

∫ ∞

−∞

dε

2T

1

cosh2
(

ε
2T

)
×

(
�̃

(1)RA
q (ε,0) − 1

�(−)

)
, (41)

where �̃(1)RA in the integrand is obtained from Eq. (32), and
we have used the small ωac limit, ωac � min(T ,�), which
is satisfied above 50 mK for a 10 GHz resonance frequency.
Combining the above expression for ImχR

q (ωac) with Eq. (4),
we can calculate the additional Gilbert damping constant:

δα = 〈〈J 2
sd〉〉

h̄2

N (0)

4�(−)

∑
q

∫ ∞

−∞

dε

2T

1

cosh2
(

ε
2T

)
× A(1 − D) − BC

(1 − A)(1 − D) + BC , (42)

which is a manifestation of the spin pumping into supercon-
ducting materials.

IV. RESULTS FOR SPIN PUMPING INTO
SUPERCONDUCTORS

In this section, we calculate temperature dependence of spin
pumping into superconductors using the formalism developed
in the previous section and show that a pronounced coherence
peak appears in the signal immediately below Tc even in the
presence of the impurity spin-orbit scattering.

First of all, let us briefly comment on the choice of parame-
ters that characterizes the system under discussion. The present
formalism contains two parameters representing the strength
of scattering amplitudes: the momentum relaxation time τ0

and the spin-orbit relaxation time τso. Because it is almost
impossible in experiments to tune τ0 and τso independently,
it is more convenient to use parameters having a direct
connection with physical observables. Thus, we chose to use
the following two lengths ltr and λsd to characterize the sample
inhomogeneity. The first one, ltr = vFτtr, is the mean free path
which enters into the charge conductivity σ = e2N (0)vFltr/3,
where e is the electron charge and τtr = 1/(τ−1

0 + τ−1
so ) is the

transport lifetime. The second one, λsd = √
Dτsf , is the spin

diffusion length which can be measured experimentally, for
example, by the nonlocal spin valve [55], where τsf = (3/4)τso

is the spin-flip relaxation time [46,56] and D = v2
Fτtr/3 is

the diffusion coefficient. In our numerical calculation, we
normalize the above two lengths by the BCS coherence length
ξBCS = vF/π�0, where �0 = 1.76Tc is the superconducting
gap at T = 0. Thus, to characterize the system, we use
the following dimensionless parameters in our numerical
calculation:

l̃tr ≡ ltr

ξBCS
, and λ̃sd ≡ λsd

ξBCS
, (43)

where these two quantities are expressed by �(+) and �(−) as

l̃tr = π

2

�0

�(+)
(44)

and

λ̃sd = π√
12

�0√
�(+)(�(+) − �(−))

. (45)

In the case of Nb, the BCS coherence length is estimated to
be of the order of ξBCS ≈ 200 nm by using [57] Tc ≈ 9 K and
vF ≈ 1.4 × 106 m/s. Note that in the dirty limit (ltr � ξBCS)
which is usually the case in thin-film systems under discussion,
the coherence length ξ that is extracted from the upper critical
field becomes comparable to the mean free path (ξ ∼ ltr), and
hence ξ differs considerably from the BCS coherence length
ξBCS, i.e., ξ � ξBCS [58].

Before presenting results for the spin pumping, it is
instructive to examine the behavior of the uniform spin
susceptibility in order to see the role of the impurity spin-
orbit scattering. Considering the fact that a thin-film sample
usually has a rather short mean free path ltr in comparison
to the BCS coherence length ξBCS, it is realistic to work
in a relatively dirty limit l̃tr < 1.0 [10]. The main panel of
Fig. 5 shows temperature dependence of the uniform spin
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FIG. 5. The uniform susceptibility χ0 [Eq. (20)] as a function
of temperature, for a fixed value of l̃tr = 0.1 and for λ̃sd = ∞ (solid
line), 0.5 (dashed line), and 0.2 (dash-dotted line), where l̃tr and λ̃sd are
defined by Eq. (43). Inset: Density of states [Eq. (46)] for T/Tc = 0
and T/Tc = 0.95.

susceptibility χ0, calculated for a fixed value of l̃tr = 0.1 and
for several choices of λ̃sd. In the absence of impurity spin-orbit
scattering, the curve coincides with the Yoshida function [51]
which is suppressed exponentially at low temperatures as
χ0 ∼ exp(−�0/T ). Upon introducing the impurity spin-orbit
scattering and reducing the spin diffusion length λsd, there
appears a finite susceptibility χ0 even at the zero temperature
limit. In the inset of Fig. 5, the density of states

NS(ε) = N (0)Re

[
ε̃

W̃ε

]
(ε > 0) (46)

is plotted as a function of energy ε for T/Tc = 0 and T/Tc =
0.95. As was already mentioned near the end of Sec. II,
the momentum scattering as well as the impurity spin-orbit
scattering preserve the time-reversal symmetry of the electron
system. Therefore, unlike the case with magnetic impurity
scattering, the present system satisfies Anderson’s theorem
[54] and thus a clear superconducting gap appears in the
density of states irrespective of the strength of the impurity
scattering. This is in stark contrast to gapless superconductors
[2], where the time-reversal-symmetry-breaking perturbation
destroys the energy gap even when the system is in a
superconducting state.

Let us now discuss the additional Gilbert damping caused
by the spin pumping. Again, we work in a relatively dirty case
l̃tr < 1 and examine the effect of impurity spin-orbit scattering.
Figure 6(a) shows temperature dependence of the additional
Gilbert damping constant, calculated from Eq. (42) for a
fixed value of l̃tr = 0.1 and for several values of λ̃sd. First we
see that, unlike the ballistic limit calculation (̃ltr = ∞,̃λsd =
∞) [44], there remains a finite signal even in the zero
temperature limit. This behavior is consistent with that of the
uniform spin susceptibility (Fig. 5), where a nonzero value
survives in the T → 0 limit. Second, we find that, even in
the presence of the spin-orbit impurity scattering, a clear
coherence peak appears immediately below the superconduct-
ing transition temperature Tc. With increasing the impurity
spin-orbit scattering and reducing the spin diffusion length
λsd, the height of the coherence peak is gradually enhanced

λsd
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FIG. 6. (a) The additional Gilbert damping constant δα [Eq. (42)]
is shown as a function of temperature for a fixed value of l̃tr = 0.1, by
varying λ̃sd = 2.0 (solid line), 0.5 (dashed line), and 0.2 (dash-dotted
line). Here l̃tr and λ̃sd are defined by Eq. (43). (b) Peak value versus
λ̃sd for l̃tr = 0.1.

as is seen in the comparison of “peak value” there. This
tendency is best visible in Fig. 6(b), where peak value is
plotted as a function of normalized spin diffusion length λ̃sd.
Thus, the impurity spin-orbit scattering enhances the height
of the coherence peak. We note again that such effects on the
coherence peak due to the impurity vertex corrections have not
been investigated in the literature.

A similar conclusion can be derived for the dependence of
the coherence peak on the mean free path ltr. In Fig. 7(a),
temperature dependence of the additional Gilbert damping
constant is plotted by varying l̃tr for a fixed value of λ̃sd = 1.0.
As one can see in Fig. 7(b), again the coherence peak is
enhanced by increasing the strength of scattering events, which
causes a decrease of the mean free path ltr. Therefore, the
results displayed in Figs. 6 and 7 show that the coherence peak
in the additional Gilbert damping constant is enhanced by the
momentum scattering as well as the spin-orbit scattering.

Next, we investigate the case of a weak spin-orbit scattering
and hence a very long spin diffusion length, which may be
valid when the SS is made of Al [47]. Figure 8(a) shows
temperature dependence of the additional Gilbert damping
constant, calculated for a fixed value of λ̃sd = 100. As in
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FIG. 7. (a) The additional Gilbert damping constant δα [Eq. (42)]
is shown as a function of temperature for a fixed value of λ̃sd = 1.0, by
varying l̃tr = 0.9 (solid line), 0.5 (dashed line), and 0.2 (dash-dotted
line). (b) Peak value versus l̃tr for λ̃sd = 1.0.
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FIG. 8. (a) The additional Gilbert damping constant δα [Eq. (42)]
is shown as a function of temperature for a fixed value of λ̃sd = 100,
by varying l̃tr = 90 (solid line), 25 (dashed line), and 5 (dash-dotted
line). (b) Peak value versus l̃tr for λ̃sd = 100.

the previous case, we find that there appears a coherence
peak below Tc, and the height of the coherence peak is an
increasing function of the strength of the impurity scattering.
However, a crucial difference from the previous results with
sizable spin-orbit scattering (Figs. 6 and 7) is that the additional
Gilbert damping is largely suppressed at low temperatures.
This result is in line with the suppression of the uniform spin
susceptibility χ0 at low temperatures (solid curve in Fig. 5)
and also consistent with the ballistic limit calculation [44].

Finally, it is worth mentioning that once we recall a
similarity of the quantity under discussion to the spin-lattice
relaxation rate in NMR, the above conclusion on the impurity
dependence of the coherence peak is consistent with an
experimental result of Ref. [59], where the coherence peak
measured by the NMR spin-lattice relaxation rate in Cu/Nb
multilayers was found to increase with the reduction of the
mean free path.

V. DISCUSSION AND CONCLUSION

The main message of the present paper is that the spin
pumping into superconductors can be used as a new technique
for probing the spin dynamics in a superconducting thin film.
This is contrasted with the NMR technique used to study a bulk
superconductor. When applied to thin film superconductors,
the spin pumping has the following advantages over NMR.
First, while NMR suffers from a lowering of signal-to-noise
ratio in thin film, the spin pumping does not because it is
based on a thin-film technology from the beginning. Second,
NMR sometimes requires an isotope substitution to secure
probe nuclei, but there is no such issue in the spin pumping
as the system is a ferromagnet/target bilayer such that the
ferromagnetic resonance condition is ensured by the choice of
ferromagnet. Thus, we hope that the present method is applied
to a wide range of superconducting materials.

It would be informative to discuss the difference between
the present work and the previous theoretical study [60]. In
short, the main difference lies in the modeling of the ferromag-
net/superconductor interface. In the present work, because an
insulating ferromagnet is used as the SI, it is assumed that
the exchange interaction Jsd at the interface is weak enough,

such that it can be dealt with by a perturbative approach (see
the last paragraph of Sec. II in Ref. [48]). In this case the
resultant superconducting gap � as well as the anomalous
correlation F(ε)F†(ε) survives at the interface, which gives
rise to the coherence peak in the spin pumping signal as we
have seen in Figs. 6–8. In Ref. [60], by contrast, because a
metallic ferromagnet is used as the SI (see also Ref. [36]), it
is assumed that the exchange interaction at the interface is so
strong that the superconducting gap is completely suppressed
there [61]. The latter condition would result in the vanishing
of the coherence peak. Note that one data set of Ref. [60]
shows a nonmonotonic behavior of the additional Gilbert
damping below Tc, but such a behavior is visible only in
a system containing pair-breaking magnetic impurities not
considered in the present work. Under a condition assumed
in the present work, i.e., without magnetic impurities, the
additional Gilbert damping calculated in Ref. [60] only shows
a monotonic decrease below Tc. This suggests that the origin
of the nonmonotonic behavior found in Ref. [60] is different
from that of the coherence peak found in the present work.

Before conclusion, we add a few remarks on the key
points in performing experiments. First, unlike the previous
experiment [36] where a metallic ferromagnet Ni80Fe20 was
used as the spin injector, we consider in the present paper
an insulating magnet as the spin injector to simplify the
physics involved. Second, it is assumed in our analysis that
any spin backflow from the superconducting spin sink is
negligibly small. This means that, for a YIG/Nb system, the
Nb thickness should be larger than the Nb spin diffusion length
(λsd ∼ 50–100 nm for Nb [47]), while the YIG film should be
as thin as possible in order to enhance the spin pumping signal.

To conclude, we have theoretically studied the spin pump-
ing into superconductors and predicted that its temperature
dependence exhibits a pronounced coherence peak just below
Tc even in the presence of the impurity spin-orbit scattering.
Besides, we have revealed that the height of the coherence peak
increases upon the increase of the momentum scattering rate
as well as the spin-orbit scattering rate. We propose that the
present phenomenon can be used as a new probe for the spin
dynamics in a superconducting thin film. Because the present
theory fully takes account of the vertex corrections by impurity
spin-orbit scattering, it offers a proper description of the
diffusive spin dynamics in s-wave superconductors. Moreover,
since we can draw parallel between the spin pumping signal
and the NMR spin-lattice relaxation rate, the present result
can also be applied to an analysis of the NMR data when we
discuss the effects of the impurity spin-orbit scattering.
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APPENDIX: REVIEW OF THE DERIVATION
OF STATIC SUSCEPTIBILITY

In this Appendix, we briefly review the procedure [50,53] to
calculate the static spin susceptibility that fully takes account
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of the impurity spin-orbit scattering. We consider the uniform
and static limit of Eq. (21) for the external Hamiltonian:

δH = −
(∑

p

c†pσ̂
zc p

)
· h0, (A1)

where h0 = h0̂ z is a uniform and static external magnetic field
with the Bohr magneton μB being absorbed into the definition
of h0 = μBH0. The uniform spin susceptibility is calculated
from the q → 0, i�ν → 0 limit of Eq. (24):

χ0 = − ∂

∂h0

T

2

∑
εn

∫
p

Tr[σ̂ zδĜ p(iεn)]. (A2)

Here, δĜ p(iεn) is the (1,1) component of the matrix Green’s
function

δǦ p(iεn) = Ǧ p(iεn)�̌(iεn)Ǧ p(iεn), (A3)

which is proportional to h0. In the above equation, the
vertex function �̌(iεn) due to the impurity ladder satisfies the
following equation,

�̌(iεn) = h0σ̂
z + nimp

∫
p′

V̌ p, p′

×Ǧ p′(iεn)�̌(iεn)Ǧ p′(iεn)V̌ p′, p. (A4)

The representation similar to Eq. (31) transforms Eq. (A4)
into a set of linear equations for �(1) and �(2):

�(1)(iεn) = h0 + A�(1)(iεn) − B�(2)(iεn),

�(2)(iεn) = C�(1)(iεn) + D�(2)(iεn), (A5)

where the coefficients A, B, C, and D are expressed as

A = �(−)

πN (0)

∫
p
{G p(iεn)G p(iεn) + F p(iεn)F†

p(iεn)}, (A6)

B = �(−)

πN (0)

∫
p
{G p(iεn)F†

p(iεn) + F p(iεn)G p(iεn)}, (A7)

C = �(−)

πN (0)

∫
p
{G p(iεn)F p(iεn) − F p(iεn)G†

p(iεn)}, (A8)

D = �(−)

πN (0)

∫
p
{G p(iεn)G†

p(iεn) − F p(iεn)F p(iεn)}, (A9)

and the scattering rate �(−) is given in Eq. (37). After
integrating over the momentum p, we obtain A =
�(−)�̃

2/(̃ε 2
n + �̃2)3/2, B = C = i�(−)�̃̃εn/(̃ε 2

n + �̃2)3/2,
D = �(−)̃ε

2
n /(̃ε 2

n + �̃2)3/2.
In order to calculate the susceptibility, it is convenient to

use the relation between Eq. (A3) and the last term of Eq. (A4),
which yields

χ0 = − ∂

∂h0
πN (0)T

∑
εn

�(1) − h0

�(−)
, (A10)

where the expression for the summand is transformed into

�(1) − h0

�(−)
= �2h0

(ε2
n + �2)

1√
ε2
n + �2 + �(+) − �(−)

(A11)

after solving Eq. (A5). As is seen from the fact that the right-
hand side of Eq. (A11) vanishes in the normal state (� = 0),
it drops the normal state contribution when we firstly integrate
over the momentum. Avoiding this singularity by adding the
normal state contribution N (0), we finally arrive at Eq. (20).
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