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We have investigated codirectional and contradirectional couplings between spin wave and acoustic wave in a
one-dimensional periodic structure (the so-called magphonic crystal). The system consists of two ferromagnetic
layers alternating in space. We have taken into consideration materials commonly used in magnonics: yttrium
iron garnet, CoFeB, permalloy, and cobalt. The coupled mode theory (CMT) formalism has been successfully
implemented to describe the magnetoelastic interaction as a periodic perturbation in the magphonic crystal.
The results of CMT calculations have been verified by more rigorous simulations with the frequency-domain
plane-wave method and the time-domain finite-element method. The presented resonant coupling in the
magphonic crystal is an active in-space mechanism which spatially transfers energy between propagating spin and
acoustic modes, thus creating a propagating magnetoelastic wave. We have shown that CMT analysis of the
magnetoelastic coupling is an useful tool to optimize and design a spin wave–acoustic wave transducer based on
magphonic crystals. The effect of spin-wave damping has been included to the model to discuss the efficiency
of such a device. Our model shows that it is possible to obtain forward conversion of the acoustic wave to the
spin wave in case of codirectional coupling and backward conversion in case of contradirectional coupling. That
energy transfer may be realized for broadband coupling and for generation of spin waves which are of different
wavelength (in particular, shorter) than exciting acoustic waves.
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I. INTRODUCTION

Coupled mode theory (CMT) is a well-known perturbation
method in electromagnetism. It is used to describe coupling
of modes in waveguides or Bragg reflections in periodic me-
dia [1]. In the limit of small perturbations CMT gives a simple
picture of the underlying physical mechanisms, and thus it
is complementary to more accurate numerical techniques like
finite-element method. In particular, Solc filters, waveguide
couplers, and distributed feedback resonators are analytically
characterized by CMT [2–7].

When two modes are resonantly coupled, the energy is ex-
changed between them. We are interested in wave propagation
phenomena, so in this paper we consider the coupling-in-space
mechanism only. Then the modes may be coupled in two
different ways, depending on their relative directions of the
group velocities. In the case of contradirectional coupling,
interacting modes have opposite signs of the group velocities
and the phenomenon is similar to the Bragg reflection at
the frequency from the stop band where the two disperison
branches of opposite slope anticross each other. Therefore, the
mode that enters the area where the coupling mechanism exists
becomes an evanescent wave passing the energy to the other
mode. The outcoming reflected mode will be almost purely
the other mode, providing that the distance of interaction is
long enough. On the other hand, in codirectional coupling,
the modes have the same signs of the group velocities and
the complete conversion of energy from one mode to another
occurs periodically in space in the forward direction at the
distance defined by the coupling coefficient.
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In this article we present the application of CMT formalism
to the interaction of spin waves and acoustic waves in the
so-called magphonic crystal. Magphonic crystal [8,9] is a
periodic structure that is considered a phononic and magnonic
crystal simultaneously, i.e., a system that is periodic both for
acoustic waves and spin waves. Multiple crossings between
spin-wave dispersion branches and acoustic-wave dispersion
branches are present as a consequence of periodicity, i.e.,
a folding-back effect. This creates suitable conditions for
co- and contradirectional couplings which do not exist in
homogeneous materials.

The coupling mechanism between spin waves and acoustic
waves is a magnetoelastic interaction (MEC), i.e., magne-
tostriction [10]. The dynamic magnetization which is related
to the spin wave exerts dynamic strain in the material. On the
other hand, the strain associated with the acoustic wave induces
a dynamic effective magnetic field (inverse magnetostriction).
If the strain field frequency (and its spatial distribution, i.e.,
wavelength) induced by the spin wave matches the frequency
of the magnetic effective field induced by the acoustic wave,
then the resonance criterion for the dynamic magnetoelastic
coupling is satisfied.

The coupled equations of motion for spin wave and acoustic
wave are given in Ref. [11]. It is possible to couple them
in the linear regime only for acoustic waves that have a
transverse component. This effect has been known for a
homogeneous ferromagnetic material since the 1950s [12].
It is now intensively studied for standing waves [13],
dynamic strain-mediated magnetization reversal [14], wave
propagation [15–19], as well as in the femtosecond laser pump-
laser probe experiments [20,21] or acoustic pump-laser probe
experiments [22–25]. In Ref. [26] the transmission of acoustic
energy through a nonmagnetic-ferromagnetic (Pt/yttrium iron
garnet) interface at the vicinity of magnetoelastic anticrossing
has been investigated theoretically. However, to have complete
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picture of the mechanism, more rigorous dynamical descrip-
tion of magnetoelastic coupling in space is needed. Especially,
if the goal is the effective transformation of propagating
excitation from acoustic to magnetic or vice versa, then the
spatial and temporal evolution of the excitations need to be
investigated.

So far, only the crossing of acoustic wave band with almost
dispersionless spin-wave band has been considered. This
crossing acts as a band-gap for an acoustic wave but does not
allow us to excite a propagating spin wave. Here, we show that
it is possible to excite a propagating magnetoelastic wave by
introducing codirectional coupling at higher magnetic fields.
Then, we demonstrate that by optimization of the magphonic
crystal structural parameters it is possible to achieve strong
codirectional coupling also for a low magnetic field. Moreover,
in the periodic system multiple contradirectional crossings are
present which result in the formation of the stop bands both
for spin wave and acoustic wave.

We have obtained the exact expression for the coupling
coefficient in the magphonic crystal for anticrossings between
spin-wave and acoustic-wave dispersion branches from differ-
ent bands. We characterized the magnitude of the coupling
as a function of the mode number and filling factor for
magphonic crystals composed of different materials, i.e.,
yttrium iron garnet (YIG), CoFeB, cobalt, and permalloy,
which are commonly used in magnonics. The results have
been compared with the relevant dispersion relations obtained
by the plane-wave method (PWM). The spatial evolution of
magnetoelastic modes is shown for the co-directional and
contradirectional couplings. The predictions of energy transfer
length from acoustic wave to spin wave obtained by CMT
are verified by the time-domain simulations (finite-element
method). The effect of damping both in CMT and in time-
domain simulations is taken into account and discussed for
aforementioned phenomena. Finally, with the help of CMT and
finite-element simulations, we optimize the magphonic crystal
for bulk waves to act as a spin-acoustic wave transducer.

II. COUPLED MODE THEORY FORMALISM

In the calculations the bulk spin wave with dynamic
components of magnetization m1 and m2 (Fig. 1) is coupled
linearly [11] to the transverse bulk acoustic wave described
by the displacement u3. Both waves propagate along the x1

direction. The magphonic crystal consists of alternating layers
of isotropic ferromagnetic materials with the periodicity along
x ≡ x1 described by lattice constant a and filling fraction f .
The spin-wave dynamics is described by the Landau-Lifshitz
equation for magnetization components m1 and m2, which
for propagation in the direction x and in the exchange regime
takes the form:

ṁ1 = ω0m2 − ∂

∂x
�

∂m2

∂x
,

(1)

ṁ2 = −ω0m1 + ∂

∂x
�

∂m1

∂x
,

while the acoustic wave dynamics is described by the wave
equation for displacement u ≡ u3:

ρü = ∂

∂x
c
∂u

∂x
, (2)

FIG. 1. The geometry of considered system. The transverse
acoustic wave described by displacement u3 and the spin wave
described by dynamic magnetization �m = (m1,m2) propagate along
x1, which is the direction of periodicity of the one-dimensional
magphonic structure. The external magnetic field and thus saturation
magnetization Ms is along x3.

where ω0 = γμ0H , � = 2Aγ/Ms , γ = 176 GHz/T
is the gyromagnetic ratio, A is exchange length, H is
external magnetic field, Ms the saturation magnetization,
μ0 the magnetic susceptibility of vacuum, ρ the mass
density, and c ≡ c44 is a component of the elastic tensor.
The material parameters (A, Ms , c, and ρ) taken into CMT
calculations for the magphonic crystal are effective parameters
except the magnetoelastic constant, which is periodic in
space.

The solutions for homogeneous medium may be writ-
ten in the form of normal modes m̃ij exp(kjx − ωt) and
ũj exp(qjx − ωt) indexed by wave vectors kj , qj for
spin modes and acoustic modes respectively at a given
frequency ω = 2πν, i = 1,2. The amplitudes m̃ij and
ũj are normalized here to unity. For the magphonic
crystal:

kj = k0 + Gkj
,

(3)
qj = q0 + Gqj

,

where k0 and q0 are wave vectors in the first Brillouin zone
and Gkj

, Gqj
are reciprocal lattice vectors. If k0 = q0, then it

is a synchronous state; otherwise, it is an asynchronous state.
Now we couple Eqs. (1) and (2) by magnetoelastic terms

proportional to B:

ṁ1 = ω0m2 − �
∂2m2

∂x2
,

ṁ2 = −ω0m1 + �
∂2m1

∂x2
− γB

∂u

∂x
,

ρü = c
∂2u

∂x2
+ 1

Ms

∂

∂x
Bm1. (4)
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Then we express the solution of coupled equations as an
expansion in the normal modes of the homogeneous medium:

mi =
∑

j

Mj (x)m̃ij e
i(kj x−ωt),

(5)
u =

∑
j

Uj (x )̃uje
i(qj x−ωt),

where Mj (x) and Uj (x) are expansion coefficients which are
dependent on x. Substituting to (4), taking into account Eqs. (1)
and (2), and neglecting second derivatives on Mj and Uj

leads to

2�
∑

j

kj

∂Mj

∂x
m̃1j e

ikj x = γB
∑

j

(
qjUj − i

∂Uj

∂x

)
ũj e

iqj x,

(6a)

2c
∑

j

qj

∂Uj

∂x
ũj e

iqj x = 1

Ms

∑
j

[
iB

∂Mj

∂x

−
(

kjB − i
∂B

∂x

)
Mj

]
m̃1j e

ikj x .

(6b)

Neglecting second derivatives is equivalent to the condition
that Mj (x) and Uj (x) varies much slower in space than the
wavelength of spin wave and acoustic wave (weak coupling
approximation):

∂2Uj

∂x2
� q

∂Uj

∂x
,

∂2Mj

∂x2
� k

∂Mj

∂x
. (7)

Since the solutions of Eqs. (1) and (2) form set of orthogonal
modes we can write relations:

ũj · ũ∗
l = δjl, m̃1j · m̃∗

1l = 1

2
δjl, m̃1j · ũ∗

l = 1√
2
. (8)

Using (8), we multiply Eq. (6a) by m̃∗
l e

−iklx and Eq. (6b) by
ũ∗

l e
−iqlx to get:

4�kl

∂Mj

∂x
= γB

∑
j

(
qjUj − i

∂Uj

∂x

)
ei(qj −kl )x,

2cql

∂Uj

∂x
= 1

Ms

∑
j

[
iB

∂Mj

∂x
−

(
kjB−i

∂B

∂x

)
Mj

]
ei(kj −ql )x.

(9)

The set of differential equations (9) describes coupled acoustic
modes and spin modes. The strength of the coupling is
expressed by magnetoelastic constant B which is periodic
in space in magphonic crystal. Therefore, we can expand B

into Fourier series with number n indexing reciprocal wave
numbers Gn:

B =
∑

n

bne
−iGnx (10)

and substitute into (9):

4�kl

∂Mj

∂x
= γ

∑
n

∑
j

bn

(
qjUj − i

∂Uj

∂x

)
ei(qj −kl−Gn)x,

2cql

∂Uj

∂x
= 1

Ms

∑
n

∑
j

bn

[
i
∂Mj

∂x
− (kj + Gn)Mj

]

× ei(kj −ql+Gn)x. (11)

The effective coupling occurs only if the phase matching
criterion is satisfied. If we consider interaction between k ≡ kl

and q ≡ qj modes only, then the value of G ≡ Gn is fixed by
the phase matching criterion to

G = q − k and n = j − l, (12)

which may be satisfied only in the synchronous state.
Otherwise, in the asynchronous state, the phase difference

q = q − k − G appears.

The magnetoelastic coupling is described now only by a
single Fourier term b ≡ bn [Eq. (10)] and the equations take
the form (omitting subscript j at the M and U ):

∂M

∂x
=

(
a1U − ia2

∂U

∂x

)
ei
qx,

∂U

∂x
=

(
ia3

∂M

∂x
− a4M

)
e−i
qx,

a1 = a2q, a2 = bMs

8Ak
,

a3 = b

2cMsq
, a4 = a3(k + G). (13)

We substitute U → Ue−iqx , M → Me−i(k+G)x to get:

∂M

∂x
=

[
i(k + G)M − ia2

∂U

∂x

]
,

∂U

∂x
=

(
iqU + ia3

∂M

∂x

)
. (14)

The general solution for a given values of M(0) and U (0) is

M(x) = e−iβx

{[
cos(Dx) + i


β

D
sin(Dx)

]
M(0)

+ κ12

D
sin(Dx)U (0)

}
,

U (x) = e−iβx

{[
cos(Dx) − i


β

D
sin(Dx)

]
U (0)

− κ21

D
sin(Dx)M(0)

}
, (15)

where

β = G + k + q

2
, 
β = G + k − q

2
,

|κ12| = bMsq

8Ak
, |κ21| = b(k + G)

2cqMs

,

κ = √
κ12κ21 = ∓b

4

√
k + G

Ack
,

D =
√


β2 − κ2, (16)
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where the upper sign for κ codirectional coupling and lower
sign is for contradirectional coupling, which comes from the
fact that κ12 and κ21 are imaginary or real, respectively [3].
Since the coupling coefficient κ describes how fast the
amplitudes M(x) and U (x) vary in space, the results of
CMT calculations are valid under conditions [weak-coupling
approximation, Eq. (7)]

κ � k and κ � q. (17)

The wave vectors of coupled modes in the region close to the
resonance are

β1 = β + D,

β2 = β − D. (18)

Dispersion relations of the coupled modes can be obtained
close to the crossings by calculating new wave numbers β1 and
β2 from Eqs. (18) for a given frequency ω. The values of k and q

are taken for the same frequency from the dispersion relations
of the uncoupled spin wave and acoustic wave, respectively.

A. Codirectional coupling

The solutions of Eqs. (15) for the boundary conditions
M(0) = 0 and U (0) = U0, i.e., when the wave is at the starting
point purely acoustic mode, are

M(x) = U0
κ12

D
sin(Dx)e−iβx,

U (x) = U0

[
cos(Dx) − i


β

D
sin(Dx)

]
e−iβx . (19)

The magnetic and acoustic modes are both sine
or cosine modulated traveling waves exp(−iβx).

We will consider codirectional couplings for the first bands
of spin wave and acoustic wave in the homogeneous material
(j = l = n = 0) and in the magphonic crystal. Then k = k0,
q = q0, and G = 0. Magnetoelastic interaction is described
here by the zeroth Fourier coefficient, i.e., the magnetoelastic
constant has a value as for an effective homogeneous medium:

b = b0 = B1f + B2(1 − f ), (20)

where f is the structure filling fraction with the material 1. In
the synchronous state the coupling coefficient has a maximum
magnitude which is

κmax = b

4
√

Ac
. (21)

The energy transfer length Ltr from the acoustic mode to the
spin mode is defined from zeroing the cosine in Eq. (19) which
gives for a synchronous state:

κLtr = π

2
. (22)

It is worth notiing that since D has higher values for the
asynchronous state [
β 	= 0 in Eq. (16)], the transfer of energy
is more frequent in space than in the synchronous state, but
the total power exchanged between the modes decreases.

B. Contradirectional coupling

In contradirectional coupling the value of D in Eq. (16)
becomes imaginary for the synchronous state. The solution
of Eqs. (15) with the substitution T = iD and the boundary
conditions M(L) = 0 and U (0) = U0, i.e., when the spin mode
is supposed to have zero amplitude at the distance L is

M(x) = U0
κ21

T

cosh T L sinh T (x − L) − i

β

T
sinh T L sinh T (x − L)

1 + κ2
12

T 2 sinh T L
e−iβx,

U (x) = U0
cosh T x − κ2

12
T 2 sinh T L sinh T (x − L) − i


β

T
sinh T x

1 + κ2
12

T 2 sinh T L
e−iβx . (23)

The spin and acoustic modes are both traveling waves
exp(−iβx) modulated by hyperbolic sine or hyperbolic co-
sine. Contradirectional coupling is possible for the periodic
structure, when the folding-back effect occurs and the signs of
q and k are opposite. Then the coupling is described by higher
Fourier coefficients of B in the form:

b = bn = B1 − B2

πn
sin(nπf ). (24)

III. RESULTS

First, in Sec. III A we give the description of the spin
wave–acoustic wave coupling in the homogeneous ferromag-
netic medium. Then the periodicity of the magnetoelastic
constant in the magphonic crystal that consists of alternating
permalloy Ni77Fe23/Ni85Fe15 (Py1/Py2) layers is introduced
in Sec. III B and CMT results are discussed. It is assumed

that all other material parameters are the same between the
layers. Next, we consider permalloy-cobalt magphonic crystal.
In our model the magnetoelastic constant varies periodically
in space while other material parameters are taken as for
effective homogeneous medium. We compare the results of
the CMT with the plane-wave method in frequency domain
and with finite-element time-domain simulations. Details of
PWM calculations are given in Ref. [27]. Finally, in Sec. III C,
we discuss the effect of spin-wave damping onto the multilayer
optimized for acoustic wave–spin wave conversion.

A. Codirectional coupling in homogeneous material

To present the codirectional mode coupling in a homoge-
neous medium we chose CoFeB in the high magnetic field
of 1 MA/m, for which the weak coupling condition (17)
is satisfied. Figure 2(a) presents a dispersion relation at the
vicinity of the anticrossing obtained from CMT calculations
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FIG. 2. (a) Codirectional anticrossing of acoustic wave (A) and spin wave (S) in CoFeB calculated by CMT (red triangles) and PWM (black
dots). Solid lines mark dispersion relations in the absence of magnetoelastic coupling. Arrows mark the definition of coupling coefficient κmax.
(b) Spatial distribution of acoustic-wave displacement u and spin-wave dynamic magnetization m1 in the codirectional coupling in CoFeB.
Arrows indicate the propagation direction of waves.

and compared with the PWM method. Both results are in
good agreement. Figure 2(b) shows the space variation of
the spin-wave dynamic magnetization component m1 and
acoustic-wave displacement u [Eq. (4)] in the point of the
maximum coupling (synchronous state). The acoustic wave
is transformed into a spin wave at a distance of about 1 μm.
Then, the spin wave is transformed back to the acoustic wave.
This repetitive forward transformations create a propagating
magnetoelastic wave. We have obtained the same space
evolution by finite-element method time-domain simulations
(see Sec. III C), contrary to the case of low magnetic fields in
Ref. [26] (and long wavelengths), where, although the energy
transfer occurs, the spin excitation does not propagate because
of zero group velocity (flat dispersion relation) and the crossing
acts effectively as a band gap for the acoustic wave.

In Table I we correlated the parameters of four most popular
materials exploited in magnonics: yttrium iron garnet (YIG),
CoFeB, Py, and Co. The maximum value of the coupling
coefficient calculated from (22) is for Co and CoFeB, which
give the transfer length Ltr for materials of about 0.8 μm and 1
μm, respectively. The transfer length is compared with the loss
length Lloss, which is the distance at which the amplitude of
the wave decays by the factor of 1/e of the initial value. In the

TABLE I. Physical parameters of ferromagnetic materials and
comparison of their magnetoelastic properties with the damping
properties. Values of Lloss are given for ν = 60 GHz.

YIG CoFeB Py Co

Ms (kA/m) 140 [28] 1150 [29] 860 [30] 1000 [31]
A (pJ/m) 4 [28] 15 [29] 13 [30] 20 [32]
c (GPa) 76 70 50 80
ρ (kg/m3) 5110 7050 8720 8900
B (MJ/m3) 0.55 [33] 6.5 [34] ± 0.9a [35] 10 [31]
κ (1/μm) 0.36 2.36 0.4 3.03
Ltr (μm) 6.22 1.0 5.62 0.8
α 0.0003 [36] 0.004 [29] 0.01 [37] 0.1 [37]
Lloss (μm) 40 1.8 0.8 0.09

aMinus sign for Py1, plus sign for Py2.

consideration of the effect of damping, we assumed that the
acoustic wave is attenuated much smaller than the spin wave
and this attenuation may be neglected. It is usually correct if
we compare magnetic damping coefficients with acoustic ones
for shear waves in metals [38,39]. For bulk spin wave Lloss is
estimated from damping coefficient α by the formula [28]:

Lloss = vgτ = 4Aγk

Msωα
, (25)

where vg is group velocity and τ is relaxation time. Thus,
for the coupling-in-space mechanism, a high lifetime of a
spin wave together with high group velocity is crucial. The
comparison gives the conclusion that the effect of the energy
transfer is completely suppressed by the spin damping in the
case of Co and Py. Only for CoFeB and YIG does the wave
have a chance to transfer from spinlike to acoustic-like before
being attenuated. Moreover, using high magnetic fields (in
order to achieve high propagation velocities at the point of
crossing as shown above for CoFeB) is somehow problematic
from the point of view of applications. But the latter problem
may be overcome in a periodic system.

B. Contradirectional coupling in periodic structure

By introducing periodicity in the medium it is possible
to achieve contradirectional couplings of the spin modes
with the acoustic modes [27]. We considered the propagation
perpendicular to the interfaces of alternating layers (layer
thickness 25 nm, a = 50 nm, f = 0.5) of Ni77Fe23 (Py1) and
Ni85Fe15 (Py2) alloys. The physical parameters of Py1 are
given in Table I. We assumed that Py2 differs from Py1 only
by the sign of the magnetoelastic constant. This can be done
by choosing nickel-iron alloys of different composition [35].
Then the periodicity of the sample is solely due to periodicity
of the magnetostriction.

Figure 3(a) shows the crossing C2 (see Table II) of the first
acoustic mode (j = 0) with the second spin mode (l = −1)
of the Py1/Py2 magphonic crystal for the external magnetic
field H = 100 kA/m. Clearly, at the frequency of about
12 GHz the band gap appears. The results of CMT analytical
calculations are in good agreement with PWM simulations.
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FIG. 3. (a) Contradirectional C2 anticrossing of acoustic wave (A) and spin wave (S) in Py1/Py2 calculated by CMT (red triangles) and
PWM (black dots). Solid lines mark dispersion relations in the absence of magnetoelastic coupling. Arrows mark the definition of coupling
coefficient κmax. (b) Spatial distribution of amplitudes U (x) and M(x) in the contradirectional coupling in Py1/Py2. Arrows indicate the
propagation direction of waves. Insets show acoustic-wave displacement u and spin-wave dynamic magnetization m1 in the fragment of the
structure.

The amplitudes of M(x) and U (x) obtained from Eq. (23)
show [Fig. 3(b)] that the wave undergoes Bragg reflection
together with the transformation from the acoustic-like to the
spinlike. The amplitude of the acoustic wave propagating into
the periodic system decays exponentially, while the amplitude
of the backward-propagating spin wave increases. However,
the distance which is needed to achieve sufficiently strong
energy transfer is in the order of tens of micrometers. What is
also worth noting is that the generated spin mode wavelength
is shorter than the exciting acoustic mode, which is the result
of crossing of dispersion branches of different number.

The magnitude of coupling coefficient κ has been calculated
from Eq. (16) in dependence on the filling factor for the
four consecutive crossings labeled C1, C2, C3, and C4 (see
Table II) of the Py1/Py2 structure. The lattice constant of the
structure is fixed to 50 nm and the filling factor indicates
the percentage of Py2 in the system. The coupling coefficient
has been determined also from the PWM dispersion relations
in the way shown in Fig. 2(a) and Fig. 3(a) [compare with
Eq. (18)]. The results are shown in Fig. 4. The coupling
coefficient for the succeeding crossings obeys the relation of
the succeeding Fourier terms bn [Eq. (20) and Eq. (24)] what
is not surprising since κ is proportional to the magnetoelastic
constant. However, the CMT calculations fully agree with
more rigorous numerical calculations, despite the fact that
only the interaction of two modes are taken into account.

TABLE II. The mode numbers of acoustic wave (j ) and spin wave
(l) and respective number n for particular crossing.

j l n = j − l

C1 0 0 0

C2 0 −1 1

C3 −1 1 −2

C4 1 −2 3

Next, we consider the C2 crossing of Py1/Co periodic
structure of same structural parameters as previously (layer
thickness 25 nm, a = 50 nm, f = 0.5, and magnetic field H =
100 kA/m). The magnetoelastic coefficient vary periodically
in space, while all other physical parameters (A, c, Ms , ρ) of
material are calculated as for effective homogeneous medium.
The comparison of C2 crossing from CMT and PWM is shown
in Fig. 5(a). Clearly, the anticrossing calculated by CMT is
shifted in wave number and frequency due to the shift of
acoustic branch of effective medium with respect to the right
position of the acoustic branch obtained by PWM. Thus it
seems that while the effective medium approximation works
well for the spin wave, it is not the case for acoustic waves.

In Fig. 5(b) the Bragg reflection together with conversion
from acoustic mode to spin mode and wavelength change
is presented by CMT for this anticrossing. Much smaller
multilayer thickness is needed for this conversion compared to

FIG. 4. Dependence of coupling coefficient κ on the filling factor
f in the Py1/Py2 magphonic crystal for the four different crossings.
The lines are result of CMT calculations, while the points come from
PWM simulations.
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FIG. 5. (a) Contradirectional C2 anticrossing of acoustic wave (A) and spin wave (S) in Py1/Co calculated by CMT (red triangles) and
PWM (black dots). Dashed lines mark dispersion relations for the effective medium in the absence of magnetoelastic coupling. (b) Spatial
distribution of acoustic-wave displacement u and spin-wave dynamic magnetization m1 in the contradirectional coupling in Py1/Co. Arrows
indicate the propagation direction of waves.

previous structure [Fig. 3(b)] as a consequence of much bigger
magnetostriction in Co.

The coupling coefficient κ for Py1/Co changes with filling
factor in a similar way as for the Py1/Py2 system and is
determined by bn (Fig. 6). However, the maxima in the C2,
C3, and C4 crossings are no more symmetrical and they have
a smaller maximum for a higher filling factor (more cobalt).
For example, the maximum of κ for the C2 crossing is for the
f = 0.45, which is the consequence of changing the effective
material paramaters [A and c in Eq. (21)] of the medium with
the filling factor.

The comparison of CMT with PWM reveals that although
the qualitative dependence of the coupling coefficient is
reproduced by CMT, it quantitatively gives overestimated
values of κ , especially for high values of the filling factor.
For high filling with cobalt, it seems that effective medium
approximation is not accurate. However, by taking other modes
into account or expanding parameters into Fourier series,
one can easily fit to PWM, but one also loses the most

FIG. 6. Dependence of coupling coefficient κ on the filling factor
f in the Py1/Co magphonic crystal for the four different crossings.
The lines are result of CMT calculations, while the points come from
PWM simulations.

important advantage of CMT, which is its simplicity and
physical transparency.

C. Time-domain simulations and the effect of damping

Since we deal with the coupling-in-space mechanism, it is
important to consider the acoustic wave–spin wave transfer
length together with the effect of damping. As mentioned in
Sec. III A, the damping of spin waves in cobalt is very high and
for α = 0.1 gives the loss length Lloss = 90 nm for a bulk wave
with a frequency of 60 GHz. This is a distance that is much
smaller than the transfer length (Table I), so the energy transfer
due to the magnetoelastic effect is completely suppressed. On
the other hand, CoFeB has much lower damping together with
a comparable value of the magnetoelastic constant. Therefore,
we solved Eqs. (4) in time-domain finite-element simulations
for Py1/CoFeB instead of a Py1/Co multilayer structure.

The Py1/CoFeB multilayer parameters were optimized to
get broad codirectional coupling of spin and acoustic branches
[Fig. 7(a)]. This was achieved for a lattice constant of 55 nm
and an external magnetic field of 160 kA/m. For those values,
the third acoustic branch (j = 1) overlaps with the fifth spin
branch (l = 2) of the dispersion relation (see Table II) and
we obtain broadband magnetoelastic coupling. The details
of this optimization and plane-wave method calculations
with magnetoelastic coupling are described in Ref. [27]. The
strength of the coupling for the branches is also quite strong
since the difference between the spin wave number and the
acoustic wave number is of the one reciprocal lattice vector
[n = −1 in Eq. (12)]. Thus, the coupling coefficient changes
with the filling factor similarly as for C2 crossing (compare
Table II) in Fig. 4 and it becomes maximum for f = 0.47.

The transfer length for the Py1/CoFeB structure is cal-
culated by CMT from Eqs. (16), (22), and (24) to be
Ltr = 3.3 μm. We constructed in COMSOL Multiphysics the
multilayer of thickness more than twice that distance, i.e., 7
μm. The acoustic wave of 60 GHz is continuously excited at
the point indicated by S [Fig. 7(b)]. Both spin and acoustic
wave are damped at the edges of the simulated area to avoid
reflections. The results of time-domain simulations described
by Eqs. (4) are shown in Fig. 7(b) after 10 ns of excitation.
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FIG. 7. (a) Dispersion relation for Py1/CoFeB magphonic crystal
optimized for codirectional coupling obtained by PWM simulations.
(b) Spatial distribution of acoustic displacement u (top) and spin-wave
dynamic magnetization m1 (bottom) in the codirectional coupling in
Py1/CoFeB. Blue and red are oscillations without damping; black
dashed lines and solid lines are absolute amplitudes of the waves with
damping from FEM simulations and CMT calculations, respectively.
Black horizontal line at the x axis indicates the area of the magphonic
crystal; the acoustic wave is excited at point S; patterned areas are
damping edges.

Without damping, the acoustic wave is completely transformed
into spin wave at the distance 3.4 μm, which is almost the same
as predicted by CMT calculations. The energy is transferred
back to the spin wave after the distance 2Ltr. It is worth
noting that while the wavelength of acoustic wave is about
50 nm, the wavelength of the spin wave is half that, about
23 nm.

The spin-wave loss length is about 1 μm in permalloy
(α = 0.01) and 2 μm in CoFeB (α = 0.004) for the bulk
wave at 60 GHz. Black dashed lines in Fig. 7(b) are the
absolute amplitudes of acoustic wave and spin wave with
the effect of damping. From this it is visible that the
acoustic wave still excites the spin wave in the Py1/CoFeB
structure and the maximum amplitude of the spin wave
is twice smaller than without damping. Then, from the
distance of 3 μm, the amplitude of the SW decreases
but it seems that it is not transferred back into acoustic
wave.

The results of the time-domain simulations are compared
with the CMT calculations, where the damping effect was
taken into account by introducing complex spin wave number
k = kr + iki . The value of ki is introduced to the calculations
to be ki = 1/L̂loss = 0.8 μm−1, where L̂loss is the averaged
loss length of the Py1/CoFeB structure. Figure 7 shows that
the evolution of the acoustic mode and spin mode amplitudes
obtained by CMT are in full agreement with that of FEM
simulations.

The effect of damping onto the wave space distribution is
shown again in Fig. 8 by comparing its amplitudes with that
without damping. In case of codirectional coupling [Fig. 8(a)]
it is seen that the excited spin-wave amplitude is decreased
and it reaches its maximum value in a smaller distance, i.e.,
x ≈ 2 μm. However, the value of Ltr has actually increased
since U (x) reaches zero at x ≈ 10 μm. Further it grows again
and reaches maximum for x ≈ 12.5 μm, while M(x) reaches

FIG. 8. Amplitudes U (x) (blue line) and M(x) (red line) in the
Py1/CoFeB system without damping (solid lines) and with damping
(dashed lines) in (a) codirectional coupling and (b) contra-directional
C2 crossing.

minimum. However, the amplitudes of both modes become
negligible above x ≈ 10 μm.

While for a lossless system D, κ , 
β, and β̄ are either real
or imaginary, they become complex if the complex value of k is
introduced. Then, neither U (x) nor M(x) may be considered
as a functions described by purely trigonometric or purely
hyperbolic functions, as in the case of the codirectional and
contradirectional couplings described in Secs. II A and II B.
They are complex superposition of trigonometric functions
describing mode energy transfer and exponential decay due to
a damping. Therefore, the maximum value of M(x) is shifted
to a smaller distance because of the exponential damping of
the wave, despite the higher value of the transfer length. It
is worth noting that while in the case of the asynchronous
state the Ltr becomes smaller but the energy exchange is only
partial, damping causes the increase of Ltr but modes exchange
all of the energy which is not yet lost.

For completeness, in Fig. 8(b) we present M(x) and
U (x) in the lossless and damped Py1/CoFeB system for the
contradirectional crossing C2 [Fig. 7(a)]. It is seen that the
distance required for almost full power exchange between
modes is larger for the damped system and the outgoing spin
wave has an amplitude that has been reduced by more than
half.

IV. SUMMARY

The codirectional and contradirectional couplings between
spin waves and acoustic waves in the magphonic crystal have
been described. It is an active in-space mechanism which
transfers energy between magnetic and mechanic degrees
of freedom. Coupled mode theory formalism allows for
quantitative description of the MEC strength. The structure has
been optimized for an efficient and broadband codirectional
coupling. In this case, magnetoelastic wave propagates through
the magphonic crystal. The phenomenon may be utilized for
a conversion of an acoustic wave to a spin wave or vice versa.
For example, the Py1/CoFeB multilayer considered above
should be of about 2 μm thick to obtain maximum forward
energy transfer to the spin wave at the output [Fig. 8(a)]. On
the other hand, in contradirectional coupling the magphonic
crystal thickness should be as thick as possible to obtain a
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backward spin wave at the output (in case of acoustic wave at
the input).

We have shown that it is possible to resonantly excite a spin
wave by an acoustic wave in the case of bulk waves, where the
damping is very strong. From Table I it is evident that YIG is
the most promising candidate in the context of magnetoelastic
coupling. The value of the transfer length is much less than
the loss length. Furthermore, it should be possible to achieve
this effect in thin films, since the loss lengths are much larger
for magnetostatic surface and volume spin waves than for bulk
exchange waves. Further engineering of the band structures in
magphonic crystals together with the development of CMT

analysis for surface waves are required to optimize this
effect.
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