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Relaxation time and critical slowing down of a spin-torque oscillator
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The relaxation phenomena of spin-torque oscillators consisting of nanostructured ferromagnets are interesting
research targets in magnetism. A theoretical study on the relaxation time of a spin-torque oscillator from one
self-oscillation state to another is investigated. By solving the Landau-Lifshitz-Gilbert equation both analytically
and numerically, it is shown that the oscillator relaxes to the self-oscillation state exponentially within a few
nanoseconds, except when magnetization is close to a critical point. The relaxation rate, which is an inverse
of relaxation time, is proportional to the current. On the other hand, a critical slowing down appears near the
critical point, where relaxation is inversely proportional to time, and the relaxation time becomes on the order
of hundreds of nanoseconds. These conclusions are primarily obtained for a spin-torque oscillator consisting of
a perpendicularly magnetized free layer and an in-plane magnetized pinned layer, and are further developed for
application to arbitrary types of spin-torque oscillators.
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I. INTRODUCTION

Limit cycles of magnetization with an oscillation frequency
on the order of gigahertz may appear in nanostructured
ferromagnetic/nonmagnetic multilayers as a result of injecting
spin current [1–18]. Spin-torque oscillators utilizing this
self-oscillation provide interesting phenomena in the field of
nonlinear science such as synchronization. The spin-torque
oscillator has also attracted much attention from the viewpoint
of practical applications because its small size, compatibility
with current technology, and unnecessity of resonators are
great advantages for magnetic sensors, microwave generators,
and neuromorphic architectures [19–21]. Considerable efforts
have been put into the development of high-performance
spin-torque oscillators. High emission power (>10 μW), high
quality factor (>103), and wide frequency tunability (>3 GHz)
have been achieved in several kinds of spin-torque oscilla-
tors through material investigations, structural improvements,
and/or utilizing synchronization. These steady-state properties
have also been well studied theoretically, using nonlinear
auto-oscillator models and numerical simulations [22–27].

The next critical issue is to clarify the transient phenomenon
in the spin-torque oscillators. A rapid response to external
forces is a highly desirable property because it determines the
speed of devices. For example, the spin-torque oscillators show
the transition from a self-oscillation state to another under
the application of magnetic pulses, resulting in a frequency
transition [28–30]. To use such a transition as the operating
principle of magnetic sensors, the transition time should be less
than nanosecond order. The transition time will be estimated
by calculating the relaxation time to the final state. The
relaxation phenomenon in spin-torque oscillators, however,
has not yet been fully clarified, particularly from a theoretical
point of view, despite several reports on experiments [29,30]
and numerical simulations [28,31]. A full understanding of the
relaxation phenomena in spin-torque oscillators is therefore
highly desirable for further development in practical devices.

In this paper, we investigate the relaxation time of a spin-
torque oscillator theoretically. Analytical formulas describing
the relaxation of the magnetization to the self-oscillation

state are derived, based on the Landau-Lifshitz-Gilbert (LLG)
equation. The relaxation occurs exponentially within a time
scale on the order of nanoseconds, except when the spin-torque
oscillator is close to a critical point. The validity of the
analytical formula is confirmed by comparison with numerical
simulations, verifying the fast relaxation of magnetization. On
the other hand, a critical slowing down appears near the critical
point, where a linear approximation to the LLG equation is
no longer applicable. The relaxation near the critical point is
described by algebraic functions, rather than exponentials, and
is on the order of hundreds of nanoseconds. These conclusions
are primarily obtained for a particular type of oscillator and
then are further extended to search for arbitrary systems. The
results provide a comprehensive description of the relaxation
and critical phenomena in the spin-torque oscillators.

This paper is organized as follows. In Sec. II, the relaxation
time in a spin-torque oscillator is studied analytically. We focus
on a spin-torque oscillator consisting of a perpendicularly
magnetized free layer and an in-plane magnetized pinned layer
as an example. We also perform a comparison with numerical
simulation. In Sec. III, we generalize a theory of the relaxation
phenomenon in spin-torque oscillators and show that the
exponential relaxation and critical slowing down appear in
general cases. Section IV shows the conclusions.

II. RELAXATION TIME IN SPIN-TORQUE OSCILLATOR
WITH PERPENDICULARLY MAGNETIZED FREE LAYER

In this section, we investigate the relaxation time of the spin-
torque oscillator both analytically and numerically. The spin-
torque oscillator in this section consists of a perpendicularly
magnetized free layer and an in-plane magnetized pinned layer.

A. System description

A schematic of the system under consideration is shown
in Fig. 1(a), where two ferromagnets sandwich a thin non-
magnet. The top and bottom ferromagnets correspond to
the perpendicularly magnetized free and in-plane magnetized
pinned layers, respectively [13]. The unit vectors pointing in
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FIG. 1. (a) Schematic view of the system. In the self-oscillation
state, the magnetization precesses on an orbit with a constant mz =
m∗

z = cos θ . (b) When the magnitude of the external field changes
from the initial value H0 to a different value H1, the magnetization
moves to a different self-oscillation state. When H1 < H0, m∗

z in the
new state is smaller than the initial value, whereas m∗

z is larger than
the initial value when H1 > H0.

the magnetization direction of the free and pinned layers are
denoted as m and p, respectively. The z axis is normal to the
film plane, whereas the x axis is parallel to the magnetization
of the pinned layer, i.e., p = +ex . The electric current I is
applied along the z direction, which excites the magnetization
dynamics by the spin-transfer effect [32,33]. The positive
current corresponds to the electron flow from the free to the
pinned layer; i.e., the spin torque excited by the positive current
prefers the antiparallel alignment of the magnetization. Recent
experiments have shown that the magnetization in this type of
spin-torque oscillator is well described by the LLG equation
with the macrospin model [7,13],

dm
dt

= −γ m × H − γHsm × (p × m) + αm × dm
dt

, (1)

where γ and α are the gyromagnetic ratio and the Gilbert
damping constant, respectively. The magnetic field H consists
of the perpendicular anisotropy field and the external magnetic
field Happl, expressed as

H = [Happl + (HK − 4πM)mz]ez, (2)

where HK and 4πM are the crystalline and shape anisotropy
fields, respectively. The magnetization has two energetically
stable states at mz = ±1. For convention, we assume that
the magnetization maintains the stable state in the positive z

direction in the absence of the current. The spin-torque strength
Hs [34] is

Hs = h̄ηI

2e(1 + λm · p)MV
, (3)

where M and V are the saturation magnetization and volume
of the free layer, respectively. The spin polarization of the
electric current and spin-torque asymmetry are denoted as
η and λ, respectively. The values of the parameters used in
the following calculations are derived from Refs. [13,35,36]
as M = 1448.3 emu/c.c., HK = 18.616 kOe, V = π × 602 ×
2 nm3, η = 0.537, λ = 0.288, γ = 1.764 × 107 rad/(Oe s),
and α = 0.005.
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FIG. 2. The time derivative of mz, dmz/dt̃ , obtained from Eqs. (4)
(black solid) and (11) (red dotted), respectively, for the case with I =
2.5 mA and Happl = 2.0 kOe. The black and white circles indicate the
stable and unstable fixed points, respectively, whereas the direction
of the black arrows indicates the direction of the vector field, dmz/dt̃ .

A self-oscillation is excited when the spin-torque balances
with the damping torque during a precession, and the field
torque, −γ m × H in Eq. (1), becomes the dominant term
determining the magnetization dynamics. The field torque
describes the steady precession of the magnetization on a
trajectory with a constant cone angle θ = cos−1 mz. Therefore,
we use an approximation to average the LLG equation over
the trajectories on a constant cone angle [23,24,37]. The LLG
equation for mz is then given by

dmz

dt̃
=α(mz + h)

(
1 − m2

z

)−hs

λ

⎡
⎣ 1√

1 − λ2
(
1 − m2

z

)−1

⎤
⎦mz,

(4)

where we introduce the following dimensionless quantities,
for simplicity,

t̃ ≡ γ (HK − 4πM)t, (5)

h ≡ Happl

HK − 4πM
, (6)

hs ≡ h̄ηI

2eMV (HK − 4πM)
. (7)

The black solid line in Fig. 2 is an example of Eq. (4), showing
dmz/dt̃ as a function of mz, where I = 2.5 mA and Happl =
2.0 kOe. There are two points satisfying dmz/dt̃ = 0, which
are called the fixed points [38]. The black arrows indicate
the direction of dmz/dt̃ ; i.e., the arrow points to the positive
(negative) mz direction when dmz/dt̃ is positive (negative).
The fixed point at mz = +1 (white circle) corresponds to an
unstable fixed point, whereas the other fixed point at mz � 0.55
(black circle) is called a stable fixed point or attractor [38]. In
the following, we denote the stable fixed point as m∗

z . The stable
fixed point corresponds to the self-oscillation state. Therefore,
the relaxation time can be defined as the time necessary to
move from a certain mz to the stable fixed point. Equation (4)
should be solved with respect to mz to evaluate the relaxation
time. However, this equation is still difficult to solve. Thus, we
use the two approximations shown below, i.e., an expansion
of Eq. (4) around |λ| = 0, Eq. (11), or mz � 1, Eq. (21). First,
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however, we discuss the validity of the approximation used in
Eq. (4).

B. Validity of the averaging technique

In the previous section, we applied the averaging technique
of the LLG equation over a trajectory with a constant
cone angle. This technique enables us to easily understand
the magnetization dynamics analytically. In this section, we
discuss both the applicability and limitations of this averaging
technique.

First, we explain the details of the approximation used in
the averaging technique, which was briefly described in our
previous work [35]. The spin and damping torques should
cancel each other to sustain the oscillation excited by the
field torque, −γ m × H. In the present system, however, it is
impossible to balance these torques during the entire preces-
sion, because the torques have different angular dependences.
This can be understood as follows. The damping torque,
−αγ m × (m × H), points to the z direction because the states
m = ±ez are energetically stable. On the other hand, the spin
torque with the positive current forces the magnetization in
the antiparallel direction to p = +ex . The spin torque thus has
a component parallel to the damping torque when mx > 0,
whereas it has a component antiparallel to the damping torque
when mx < 0. As a result, a complete cancellation between
the spin and damping torques during the entire precession is
impossible. We therefore need to relax the conditions to sustain
the self-oscillation.

For the typical ferromagnets, such as Co, Fe, Ni, and
their composites, used in spin-torque oscillators, the damping
constant α is on the order of 0.001–0.01 [39]. Therefore,
the strength of the damping torque is at least two orders of
magnitude smaller than that of the field torque. The strength
of the spin torque is also smaller than the field torque, because
it should compensate for the damping torque. Therefore, the
difference between the exact trajectory of the magnetization
dynamics and the trajectory determined by the field torque is
small. Accordingly, it is a good approximation to average the
LLG equation on a trajectory determined by the field torque,
which in the present system corresponds to an orbit with a
constant cone angle of θ = cos−1 mz. The relaxed condition
necessary to sustain the self-oscillation becomes such that the
averaged spin and damping torques cancel each other. In other
words, dmz/dt averaged over a constant cone angle is zero, as
mentioned in Sec. II A.

However, it is important to investigate the applicability of
this averaging technique to validate the calculations in the
following sections. Due to the angular dependence of the spin
torque mentioned above, the exact solution of mz = cos θ is
not a constant with time variance. We note that the difference
of the exact mz from a constant value should be periodic, due to
the periodicity of the self-oscillation. The averaging technique
cannot take into account such an oscillating component.
Therefore, we study the comparison between the exact and
analytical solutions of the LLG equation for the present system.
Figure 3(a) shows the trajectory of the self-oscillation for
Happl = 2.0 kOe and I = 2.5 mA, obtained by solving Eq. (1)
numerically. The time evolutions of mx and mz are shown in
Fig. 3(b) by the red dashed and black solid lines, respectively.
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FIG. 3. (a) A steady precession trajectory of the magnetization
for Happl = 2.0 kOe and I = 2.5 mA. (b) Time evolutions of mx (red
dashed) and mz (black solid), respectively. (c) Current dependences
of the analytical mz (black line) and numerically evaluated max[mz]
(red square), and min[mz] (blue circle). (d) Current dependences of
the oscillation frequencies estimated from the analytical theory (black
line) and numerical simulations (red circle).

The important point in Fig. 3(b) with respect to the discussion
in this section is that it provides clear evidence that the exact
solution of mz is not a constant.

We compare the constant mz in the analytical theory and
oscillating mz as a function of the electric current. This is
because the relation between the applied current I (or voltage)
and the frequency f has been investigated in experiments
[7,13,36], and mz is related to the frequency. Using Eq. (4)
with the condition dmz/dt = 0, the current necessary to excite
self-oscillation with a constant cone angle θ = cos−1 mz is
given by [35]

I (θ ) = 2αeλMV

h̄η cos θ

(
1√

1 − λ2 sin2 θ
− 1

)−1

× [Happl + (HK − 4πM) cos θ ]. (8)

The oscillation frequency at this cone angle is

f (θ ) = γ

2π
[Happl + (HK − 4πM) cos θ ]. (9)

Note that the self-oscillation is excited above the critical
current Ic = limθ→0 I (θ ),

Ic = 4αeMV

h̄ηλ
(Happl + HK − 4πM), (10)

which is 1.6 mA for Happl = 2.0 kOe. The current dependence
of mz = cos θ estimated from Eq. (8) is shown in Fig. 3(c)
by the black solid line. We also show the maximum and
minimum values of mz in the numerical simulations by the
red squares and blue circles, respectively. It is shown that
the analytical theory based on the averaging technique well
reproduces the exact value of mz estimated from the numerical
simulation, particularly in the low-current region. We also
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compare the numerically evaluated oscillation frequency of mx

with the analytical theory given by Eq. (9) in Fig. 3(d). A good
agreement between the numerical simulation (red circles) and
the analytical theory (black solid line) is obtained in the low-
current region. On the other hand, a large difference between
them is found in the high-current region, except for the good
agreement of mz in Fig. 3(c), due to the following reason. As
mentioned above, the spin torque forces the magnetization to
move to the direction antiparallel to p = +ex . With increasing
cone angle θ , the projection of the spin torque to the x direction
increases, which affects the phase of the oscillation around the
z axis, as well as the frequency. We note that this effect of
the spin torque on frequency is not included in Eq. (9), and
therefore, the difference between the numerical simulation and
analytical theory appears.

To summarize the above results, the averaging technique
works well to study the self-oscillation of magnetization in the
low-current region. For typical spin-torque oscillators using
magnetic tunnel junctions, the maximum current available
to be applied is about 5 mA, which corresponds roughly
to 500 mV [13]; a current larger than this value results
in an electrostatic breakdown. The available value of the
current increases for spin-torque oscillators using a giant
magnetoresistive structure. It typically becomes 10 mA [7].
Comparing these values with the results shown in Figs. 3(c)
and 3(d), we consider that the averaging technique is applicable
to the current range available in the experiments.

We should note that the averaging technique is unnecessary
for systems having high symmetry. For example, when both
the free and pinned layers have perpendicular anisotropy, as
in Ref. [25], the LLG equation for mz is independent of the
in-plane components, mx and my , and the spin and damping
torque always cancel each other in the self-oscillation state.
Then, the solution of mz in the self-oscillation state is exactly
constant. We also note in Sec. III below that the averaging
technique over a trajectory having a constant cone angle will
be generalized to that over a constant energy curve.

C. Rapid relaxation

Now let us return to the subject of the relaxation phe-
nomenon in the spin-torque oscillator. Usually, the spin-torque
asymmetry λ is a small parameter, |λ| � 1 [35]. Thus, keeping
the lowest order terms of λ, we approximate Eq. (4) as

dmz

dt̃
�

(
1 − m2

z

)
2

[(2α − λhs)mz + 2αh]. (11)

The red dashed line in Fig. 2 shows Eq. (11), indicating that
Eq. (4) can be well approximated by Eq. (11). The stable fixed
point estimated from Eq. (11) is given by

m∗
z = 2αh

−2α + λhs
. (12)

Since |m∗
z | < 1, the stable fixed point given by Eq. (12) exists

when 2αh/(−2α + λhs) < 1, or equivalently, when I/Ic > 1,
is satisfied, where Ic is the critical current to excite the self-
oscillation given by Eq. (10). Another condition on the current
to excite self-oscillation is summarized in Appendix A. For
a given m∗

z , the frequency of the self-oscillation is given by
Eq. (9) with cos θ = m∗

z .

We study the relaxation time using Eq. (11). Let us assume
that the magnetization is in a certain self-oscillation state when
t � 0. Denoting the magnetic field for t � 0 as Happl = H0, or
h0 in the dimensionless unit, the stable fixed point for t � 0 is
given by m∗

z (t � 0) = 2αh0/(−2α + λhs). Then, imagine that
an additional external field is applied from t = 0, and the total
external magnetic field becomes a different value, Happl = H1,
or h1 in the dimensionless unit, as shown schematically in
Fig. 1(b). The magnetization will move to a new stable fixed
point

m∗
z (t → ∞) = 2αh1

−2α + λhs
, (13)

where we assume that H1 satisfies 2αh1/(−2α + λhs) < 1.
When H1 < H0, m∗

z (t → ∞) is smaller than m∗
z (t � 0),

while m∗
z (t → ∞) > m∗

z (t � 0) when H1 > H0, as shown
in Fig. 1(b). This relaxation is described by the following
equation obtained from Eq. (11) as

d

dt̃
δmz � −rδmz − uδm2

z, (14)

where δmz(t) = mz(t) − m∗
z (t → ∞), whereas r and u are

defined as

r ≡ 1

2

(
1 − m∗2

z

)
(λhs − 2α)

= 1

2

[
1 −

(
2αh1

−2α + λhs

)2
]

(λhs − 2α), (15)

u ≡ −m∗
z (λhs − 2α) = −2αh1. (16)

Note that r is a positive quantity in the present case because
λhs > 2α(1 + h1) > 2α is satisfied. The solution of Eq. (14)
is

mz(t > 0) = m∗
z (t → ∞) + δmz(0)re−r t̃

r + δmz(0)u(1 − e−r t̃ )
, (17)

where δmz(0) = m∗
z (t � 0) − m∗

z (t → ∞) is given by

δmz(0) = 2α(h0 − h1)

−2α + λhs

. (18)

Equation (17) satisfies limt→0 mz(t) = m∗
z (t � 0) and

limt→∞ mz(t) = m∗
z (t → ∞). Equation (17) indicates that the

relaxation occurs exponentially within the time scale given by

tr ≡ 1

γ (HK − 4πM)r

= 2

γ (HK − 4πM)(λhs − 2α)

[
1 −

(
2αh1

−2α + λhs

)2
]−1

.

(19)

The exponential dependence of Eq. (17) guarantees a fast
relaxation of magnetization. Note that the averaging technique
of the LLG equation is valid when the oscillation period,
Eq. (9), is shorter than the relaxation time, i.e., 1/f � tr.

One might consider that the exponential dependence of
the relaxation is a natural conclusion as a result of the
existence of the linear term in the LLG equation, Eq. (14).
However, the linear approximation is no longer applicable
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FIG. 4. The numerical solution of mz obtained from Eq. (1) is
shown by the blue line, where the magnitude of the magnetic field is
changed from H0 = 2.0 kOe to H1 = 2.4 kOe at t = 0. The analytical
solution, Eq. (17), is also shown by the red line. The inset shows mz

near t = 0.

near a critical point, and the relaxation cannot be described by
the exponentials, as shown in Sec. II E below.

We confirm the validity of Eq. (17) by comparing it with the
numerical simulation of Eq. (1). We assume that the magnetic
field before t = 0, H0, is 2.0 kOe. The field is then changed
to H1 = 2.4 kOe at t = 0. The time evolution of mz(t) around
t = 0 obtained by numerically solving Eq. (1) is shown in
Fig. 4 by the blue line. As shown, mz moves to a different state
corresponding to the oscillation frequency of 7.6 GHz. It can
be seen from Fig. 4 that Eq. (17) well describes the relaxation
of magnetization from one self-oscillation state to another.
Both the numerical and analytical solutions indicate that the
relaxation occurs within a time on the order of nanoseconds.
The quantitative value of the relaxation time, Eq. (19), for
the present parameters is 6.3 ns. We note that the condition,
1/f � tr, to guarantee the validity of Eq. (19) is quantitatively
satisfied.

D. Current dependences of relaxation time and agility

The solid line in Fig. 5 represents the current dependence
of the relaxation time given by Eq. (19) for Happl = H1 =
2.4 kOe. For a large current, I 	 Ic � 1.8 mA, the relaxation
time is on the order of nanoseconds or less, guaranteeing a
fast relaxation of the magnetization. On the other hand, the
divergence of the relaxation time near Ic indicates the break-
down of the description of relaxation based on exponential
dependence. This problem is solved in Sec. II E.

Another quantity characterizing the relaxation is the agility
in response to the magnetic field, which is defined as

∂f

∂Happl
� γ

2π

(
1 + 2α

−2α + λhs

)
, (20)

where we use Eqs. (9) and (12) (see also Appendix B).
Equation (20) is independent of the magnetic field. We also
note that the agility is practically independent of the current, as
can be seen in Fig. 5. These results indicate that the frequency
shift by the relaxation is solely determined by the difference
of the magnetic field, 
H = |H0 − H1|.
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FIG. 5. The current dependences of the relaxation time and the
agility in response to the magnetic field, given by Eqs. (19) and (20),
are shown by the solid and dashed lines, respectively. Note that these
quantities are defined for the current above Ic � 1.8 mA for Happl =
2.4 kOe. The inset shows the relaxation time for I 	 Ic.

E. Critical slowing down

The fixed point is called a critical point when a stable fixed
point comes close to an unstable one. This case happens when
a condition, I/Ic � 1, is satisfied. In this case, Eq. (4) is well
approximated by expanding it around mz = 1 as

d

dt̃
mz � −r ′(mz − 1) − u′(mz − 1)2, (21)

where r ′ and u′ are given by

r ′ = 2α(1 + h) − λhs, (22)

u′ = α(3 + h) − 3λ(1 − λ2)

2
hs. (23)

Figure 6(a) shows Eqs. (4), (11), and (21) by the black solid,
red dotted, and blue dashed lines, respectively, for the case of
I = 2.5 mA and Happl = 3.4 kOe. In this case, I/Ic � 1, and
the stable fixed point becomes close to the unstable one. As
shown, Eq. (21) well reproduces the exact equation (4), than
Eq. (11), indicating that Eq. (21) is useful for investigating the
relaxation time near the critical point. The fixed points obtained
from Eq. (21) are mz = 1 and m∗

z = 1 − (r ′/u′), where the
former corresponds to the unstable fixed point, and the latter
is the stable fixed point when 1 − (r ′/u′) < 1 is satisfied.

Let us investigate the relaxation time near the critical point.
The solution of Eq. (21) is given by

mz(t > 0) = 1 + δm′
z(0)r ′e−r ′ t̃

r ′ + δm′
z(0)u′(1 − e−r ′ t̃ )

, (24)

where δm′
z(0) = m∗

z (t � 0) − 1. The value of the magnetic
field in r ′ and u′ in Eq (24) should be regarded as that for
t > 0. We note that

lim
t→∞ mz(t) =

{
1 (r ′ > 0)

1 − (r ′/u′) (r ′ < 0)
, (25)

where the upper case (r ′ > 0) corresponds to the condition
necessary to excite self-oscillation, I/Ic > 1, is no longer sat-
isfied, and therefore, magnetization moves to an energetically
stable state. The lower case (r ′ < 0) in Eq. (25) corresponds to
the condition where I/Ic > 1 is satisfied, and magnetization
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FIG. 6. (a) The time derivative obtained from Eqs. (4), (11), and
(21) (blue dashed), respectively, for the case with I = 2.5 mA and
Happl = 3.4 kOe. (b) The blue line is the numerical solution of mz

obtained from Eq. (24), where H0 = 3.4 kOe and H1 = 3.5 kOe at
t = 0. The red line is the analytical solution Eq. (24). The inset shows
mz near t = 0.

moves to a stable fixed point m∗
z = 1 − (r ′/u′). In particular,

near the critical point where r ′ � 0, or equivalently I/Ic � 1,
Eq. (24) is approximated to

lim
r ′→0

mz(t > 0) = 1 + δm′
z(0)

1 + δm′
z(0)u′ t̃

, (26)

with u′ → 3αλ2(1 + h1) − 2αh1, which is negative when
the condition on the magnetic field necessary to excite
self-oscillation is satisfied [see Eq. (A5) in Appendix A].
Equation (26) shows that the magnetization relaxation near
the critical point is inversely proportional to the time, which
is much slower than the exponential relaxation seen far from
the critical point [Eq. (17)]. The phenomenon is similar to
the critical slowing down found near phase transitions, where
the relaxation is described by algebraic functions, rather than
exponentials [38].

The critical slowing down is confirmed from the numerical
simulation of Eq. (1). Figure 6(b) shows the time evolution of
mz obtained from the numerical simulation of Eq. (1) by the
blue line, where the applied magnetic field is changed from
H0 = 3.4 kOe to H1 = 3.5 kOe at t = 0. Magnetization for
these magnetic fields occurs near the critical point, because
the value of the field satisfying I = Ic with I = 2.5 mA is
Happl = 3.45 kOe. The analytical solution, Eq. (24), is also
shown by the red line. Both the numerical and analytical results
indicate that the relaxation occurs over a time period longer
than 100 ns, which is much slower than that shown in Fig. 4.

The good agreement between the numerical and analytical
results in Fig. 6(b) also indicates that the critical slowing down
occurs in the spin-torque oscillator.

A large current is necessary to excite a self-oscillation at
a stable fixed point far away from the unstable one, whereas
the current stabilizing the oscillation near the critical point is
small. The excitation of self-oscillation near the critical point
is therefore preferable to reduce both the current magnitude
and power consumption. The above results, however, suggest
that use of self-oscillation near the critical point should be
avoided for rapid operation of the spin-torque oscillator.

III. GENERALIZATION OF THEORY

The theory developed above focuses on a spin-torque
oscillator consisting of a perpendicularly magnetized free layer
and an in-plane magnetized pinned layer. In this section, we
generalize the description of the relaxation and show that the
critical slowing down appears in general cases.

A. LLG equation

We start from the LLG equation of Eq. (1). Now, however,
the magnetic field H, the spin-torque strength Hs, and the
pinned layer magnetization p are assumed to be arbitrary. A
self-oscillation is excited when the energy supplied by the
spin torque balances the dissipation due to the damping, and
therefore, the magnetic energy is almost constant during a
precession. Let us denote the energy density as E, which
is related to the magnetic field via E = −M

∫
dm · H [40].

Using Eq. (1), the energy change is described by dE/dt =
−MH · (dm/dt). Since the energy E changes slowly in the
self-oscillation state, it is a good approximation to average the
equation dE/dt over a constant energy curve of E. We then
obtain

1

τ (E)

∮
dt

dE

dt
= 1

τ (E)
[Ws(E) + Wα(E)], (27)

where the integral is over a precession period of a constant
energy curve of E. The work done by the spin torque and
dissipation due to the damping torque during a precession are
denoted as Ws(E) and Wα(E), respectively, and are defined as

Ws(E) =
∮

dtγMHs[p · H − (m · p)(m · H)], (28)

Wα(E) = −
∮

dtαγM[H2 − (m · H)2], (29)

where we neglect higher-order terms of α and Hs. The
precession period is

τ =
∮

dt, (30)

which relates to the frequency of the self-oscillation via
f = 1/τ . Note that Ws, Wα , and τ are functions of energy
density E corresponding to a self-oscillation state. In other
words, the self-oscillation state is identified by E. In the
following, we denote the left hand side of Eq. (27) as dE/dt ,
for simplicity. The condition for sustaining self-oscillation is
now generalized to dE/dt = 0. We note that the averaging
technique of the LLG equation on a constant energy curve
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might show a different behavior with the numerical result for
particular limits, as discussed in Sec. II B.

The averaging technique of the slow variable was intro-
duced in previous research [23,41] to study the magnetization
dynamics in nanostructured ferromagnets. The steady state so-
lution of Eq. (27) was shown to be useful for building the phase
portrait of the magnetization dynamics at zero temperature
[23]. It was also shown that the Fokker-Planck equation based
on Eq. (27) can be used to evaluate the thermally activated
magnetization reversal rate at finite temperature [41]. On the
other hand, in this study, Eq. (27) is used to investigate the
relaxation phenomenon in the spin-torque oscillator. Equation
(27) describes the energy change by the competition between
the spin and damping torques when its time scale is slower
than the oscillation period.

In the previous section, we used mz, instead of E, because
these are directly related as E = −MHapplmz − [M(HK −
4πM)/2]m2

z . The explicit forms of Ws and Wα for the system
considered in the previous section are

Ws

τ
= γ h̄ηI

2eλV

⎡
⎣ 1√

1 − λ2
(
1 − m2

z

) − 1

⎤
⎦

× [Happl + (HK − 4πM)mz]mz, (31)

Wα

τ
= −αγM[Happl + (HK − 4πM)mz]

2
(
1 − m2

z

)
, (32)

where τ = 2π/{γ [Happl + (HK − 4πM)mz]}. Using the rela-
tion dE/dt = (dE/dmz)(dmz/dt) and Eqs. (31) and (32), it
can be confirmed that Eq. (27) reproduces Eq. (4).

In general, the values of Ws and Wα depend on the magnetic
anisotropy, the magnitude and direction of the external field,
the relative angle of the magnetizations, and so on. The
analytical formulas of Ws and Wα have been derived exactly
or approximately in several cases [42–52]. However, unless
the system has some symmetry such as an axial symmetry
of the magnetic anisotropy, it is usually difficult to derive
the analytical formulas. The numerical evaluations of the
integrals in Eqs. (28) and (29) are useful in such cases,
where the constant energy curve is calculated by solving the
Landau-Lifshitz equation, dm/dt = −γ m × H.

The critical current Ic to excite a self-oscillation is defined
as a current satisfying Ws(Emin) + Wα(Emin) = 0, where Emin

is the energy density corresponding to the minimum energy
state. We note that both Ws(Emin) and Wα(Emin) are zero when
the minimum energy state is a point, as in the case of the
perpendicular ferromagnet described in the previous section.
This is because the constant energy curve is just a point, and
therefore, even though the period τ is finite, the integrals of
Eqs. (28) and (29) become zero. This can also be confirmed
from Eqs. (31) and (32), where the minimum energy state
corresponds to |mz| = 1. When both Ws and Wα are zero at
E = Emin, the minimum energy state is always a fixed point.
However, the ratio limE→Emin Ws(E)/Wα(E) is finite, and the
critical current Ic is well defined. The critical current Ic is
given by

lim
E→Emin

Ws(E)

Wα(E)
= dWs/dE

dWα/dE

∣∣∣∣
E=Emin

= − I

Ic
, (33)

dE
/d
t [

10
15

er
g/

(s
 c

m
3 )

]
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FIG. 7. Dependences of dE/dt = (Ws + Wα)/τ on the several
values of current I . The energy density E in the horizontal axis
is normalized as (E − Emin)/(EK − Emin), where EK = E(mz = 0).
The black circles correspond to the stable fixed points, whereas the
white circle is the unstable one. The magnetic field is Happl = 2.0 kOe,
corresponding to Ic � 1.6 mA.

where we use Hs ∝ I . The minimum energy state is stable
when I/Ic < 1. On the other hand, self-oscillation is excited
when I/Ic > 1. In this case, a stable fixed point appears
at a higher energy state, whereas the minimum energy
state becomes the unstable one. Therefore, the minimum
energy state in spin-torque oscillators can be classified into
a transcritical bifurcation [38].

The discussion in this section is applicable to any type of
spin-torque oscillator when the above assumptions hold. It is,
however, useful to show an example of dE/dt = (Ws + Wα)/τ
to get hold of the overall picture. Therefore, we show dE/dt

with Eqs. (31) and (32) in Fig. 7, where Happl = 2.0 kOe,
corresponding to Ic � 1.6 mA. The figure shows that dE/dt

has two fixed points, indicated by the black and white circles,
when I/Ic > 1. The black circle corresponds to the stable fixed
point and the white to the unstable.

Let us assume that the spin-torque oscillator shows a
self-oscillation on a constant energy curve of E = E0 for
t < 0 and that from t > 0, it relaxes to a stable fixed point
at E = E1 due to the change of the current and/or field.
The necessary condition to stabilize the self-oscillation for
t > 0 is Ws(E1) + Wα(E1) = 0. Then, the time evolution of
δE = E − E1 is described by

d

dt
δE � −RδE − U δE2, (34)

where R and U are defined as

R = − 1

τ

d

dE
(Ws + Wα)

∣∣∣∣
E=E1

, (35)

U = −1

2

d2

dE2

1

τ
(Ws + Wα)

∣∣∣∣
E=E1

. (36)

The quantity R at the stable fixed point is positive when the
condition to excite a self-oscillation, I/Ic > 1, is satisfied,
and therefore, the constant energy curve of E1(>Emin) is an
attractor. The positive sign of R can also be understood from
Fig. 7, where R corresponds to the gradient of dE/dt at the
black circles multiplied by a negative sign. The solution of
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Eq. (34) in this case is

δE(t) = δE(0)Re−Rt

R + δE(0)U (1 − e−Rt )
, (37)

where δE(0) = E0 − E1. Thus, the magnetization relaxes
exponentially versus the time to the self-oscillation state within
the time scale 1/R.

B. Critical slowing down in general cases

In the section above, we investigated the time evolution of
δE near the stable fixed point E1. Here, let us consider the
case near the minimum energy state. As already mentioned,
the minimum energy state is the stable (unstable) fixed point
when I/Ic < (>)1. We note that δE near the minimum energy
state obeys an equation similar to Eq. (34), but that R and U
are replaced by

R ′ = − 1

τ

d

dE
(Ws + Wα)

∣∣∣∣
E=Emin

= 1

τ

(
−dWα

dE

)∣∣∣∣
E=Emin

(
1 − I

Ic

)
, (38)

U ′ = −1

2

d2

dE2

1

τ
(Ws + Wα)

∣∣∣∣
E=Emin

, (39)

respectively, where we use Eq. (33). We note that R ′ is positive
(negative) when I/Ic < (>)1. This can be understood from the
fact that −dWα/dE is positive near the minimum energy state,
according to the definition of Wα , i.e., Wα = 0 at the minimum
energy state and Wα < 0 for higher energy states because Wα

is the dissipation. The sign of R ′ can also be understood from
Fig. 7, where R ′ corresponds to the gradient of dE/dt at the
minimum energy state (white circle) multiplied by a negative
sign. When I/Ic > 1, the gradient is positive, i.e., R ′ < 0,
whereas the gradient is negative for I/Ic < 1, corresponding
to R ′ > 0.

The solution of δE near the minimum energy state is also
given by Eq. (37) with R ′ and U ′. The fact that R ′ < 0 for
I/Ic > 1 means that the minimum energy state is unstable due
to the energy supplied by the spin torque and that δE moves
exponentially versus time to the stable fixed point showing
self-oscillation.

On the other hand, when I/Ic � 1, the stable and unstable
fixed points approach each other. In this case, R → R ′, but
since R and R ′ have different energy dependences, R → 0.
It can be seen from Eq. (38) that R ′ � 0 in this case, and the
solution of δE is given by

δE = δE(0)

1 + δE(0)U ′t
. (40)

Equation (40) indicates that the relaxation of δE near the
critical point is slow. This is the derivation of the critical
slowing down for arbitrary types of spin-torque oscillators.

In the derivation of Eq. (40), we assume that U ′ �= 0 at the
critical point. This assumption is identical to that of d2(Ws +
Wα)/E2 �= 0, where we use Ws + Wα = 0 and R ∝ d(Ws +
Wα)/dE = 0 at the critical point. One might consider a general
case in which both R and U are zero at the critical point. Let

us assume that δE obeys the following equation

d

dt
δE = −GnδE

n, (41)

where n is a positive integer (n ∈ N), while Gn is the nth order
expansion coefficient of Eq. (27),

Gn = − 1

n!

dn

dEn

1

τ
(Ws + Wα). (42)

Here, we assume that G� = 0 for � < n. The solution of δE is

δE = [δE1−n(0) + (n − 1)Gnt]
−1/(n−1). (43)

The solution of δE becomes the exponential δE = δE(0)e−G1t

when n = 1 corresponding to the case R �= 0 in Eq. (34). On
the other hand, when R = 0 (G1 = 0), the solution of δE

behaves as

δE ∼ t−1/(n−1). (44)

This solution indicates that the relaxation near the critical point
is described by algebraic functions, rather than exponentials,
for general cases. Therefore, the critical slowing down appears
even if U ′ = 0 at the critical point. For the critical slowing
down, δE(0) > 0 because energy E moves to the minimum
energy state. Then, the least nonzero coefficient Gn (n � 2)
near the critical point is positive to guarantee a monotonic
relaxation of δE [53].

C. Discussion

Equations (37), (40), and (43) provide general descriptions
of the relaxation phenomena in spin-torque oscillators. Equa-
tion (37) guarantees a fast relaxation to the self-oscillation
state obeying the exponential law. Equation (35) implies that
a large current results in a fast relaxation because, roughly
speaking, the relaxation rate R is proportional to the current I

through Ws ∝ I . On the other hand, Eqs. (40) and (43) indicate
the existence of the critical slowing down in general cases,
where the relaxation is slow. The critical slowing down has
not been investigated in the spin-torque oscillators but is often
found in the phase transition, where the relaxation time to an
equilibrium becomes infinite. In fact, the equation of motion,
for example Eq. (34), can be found in the other nonlinear
systems such as the laser threshold and chemical reactions [38].

The relaxation near the phase relaxation is characterized
by the dynamical critical exponent z, which is defined as
R ′ ∝ (Ic − I )z. Equation (38) indicates that the dynamical
critical exponent z is one. In fact, Eq. (22) can be expressed
as r ′ = 2α(1 + h)(1 − I/Ic)z=1. We note that z = 1 is valid
near the critical point only. On the other hand, the current
dependence of the rate R at the stable fixed point cannot
be described by such a simple form. For example, Eq. (15)
is proportional to 1 − [(−2α + λhc)/(−2α + λhs)]2, with
hc/hs = Ic/I , which is clearly different from the current
dependence of (I/Ic − 1)z=1. We also note that a different type
of critical exponent for spin torque was discussed in a previous
study of the thermally activated magnetization switching [45].
The differences between the present and previous works are
summarized in Appendix C.

The above theory is valid when the period of self-oscillation
τ is shorter than the relaxation time 1/R. This means that
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−d(Ws + Wα)/dE � 1 at the fixed points. As mentioned,
this condition is satisfied in the previous section, where the
values of the parameters are derived from the experiment
[13]. The recent experiments on the relaxation of the in-
plane magnetized free layer under magnetic pulses where
the oscillation frequency, 1/τ , is about 3 GHz whereas
the relaxation occurs in nanoseconds, also implies that this
condition is satisfied [29,30]. Therefore, the theory developed
here can presumably be applied widely in this field. An
exception is the perpendicularly magnetized spin-Hall system
without a magnetic field, where a high symmetry results in
Ws = 0, and thus the averaging technique of the LLG equation
is no longer applicable [49].

The critical slowing down found in this paper is related not
only to the self-oscillation but also to magnetization switching.
The analytical theory of the switching time was developed in
Ref. [54] by focusing on the instability near the unstable fixed
point. This work uses a linear approximation, corresponding
to the limits of E → Emin, G1 �= 0, and neglecting the higher
order terms of δE in Eq. (41). Thus, critical slowing down
was not found. An exactly solvable problem [55] on switching
time, as well as the approximated solution at finite temperature
[56], have also been reported, where again the critical slowing
down was not found (details regarding the definition of the
switching time in Ref. [55] are summarized in Appendix D).
It is preferable to switch magnetization by low current to
reduce power consumption. It has been shown, however, that
the switching time becomes longer when the current applied
to the free layer is close to the critical current [49]. This result
can be explained in terms of the critical slowing down, where
R ′ ∼ 0 for I/Ic � 1, and therefore, the relaxation becomes
slow.

IV. CONCLUSION

In conclusion, we studied relaxation time to the self-
oscillation state in a spin-torque oscillator theoretically. The
analytical formula for relaxation time, characterizing the
exponential relaxation to the self-oscillation state, was derived
by solving the LLG equation. The validity of the derived
formula was confirmed by comparison with a numerical
simulation. Both the analytical and numerical calculations
showed that the relaxation time is on the order of nanoseconds
when the oscillator is far away from the critical point. On
the other hand, a critical slowing down appeared near the
critical point, where the relaxation was inversely proportional
to the time and was on the order of hundreds of nanoseconds.
Here, it was shown that the linear approximation to the LLG
equation is no longer applicable, and a nonlinear analysis based
on the theory of phase transition is necessary to clarify the
relaxation phenomena. The theoretical formulas were derived
for a spin-torque oscillator consisting of a perpendicularly
magnetized free layer and an in-plane magnetized pinned layer,
and then were further developed so that they could be applied
in arbitrary types of spin-torque oscillators. The dynamical
critical exponent of the phase transition between the critical
point and the self-oscillation state was found to be one. These
results provide a comprehensive description of the relaxation
and critical phenomena in spin-torque oscillators.
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APPENDIX A: THE UPPER LIMIT OF THE CURRENT
TO STABILIZE SELF-OSCILLATION

Equation (10) represents the critical current to destabilize
the magnetization in equilibrium. Self-oscillation is excited
when the condition I/Ic > 1 is satisfied. In this sense, Ic de-
termines the lower limit of the current to excite self-oscillation.
On the other hand, when current I becomes sufficiently large,
the large spin torque forces the magnetization direction to be
fixed in the film plane, and the self-oscillation is no longer
excited. This fact indicates that there is an upper limit of the
current to excite self-oscillation.

The upper limit of the current to excite the self-oscillation
can be approximately determined as follows. When the current
is large, the magnetization direction is fixed to the xy plane,
and thus, m can be expressed as m = (cos φ, sin φ,0). Also,
dm/dt in Eq. (1) is zero when m is fixed. Then, we find that

Happl + Hs sin φ = 0. (A1)

The solution of φ is

φ � sin−1

[
Happl

H
(0)
s

]
, (A2)

where we neglect the small parameter λ and introduce

H (0)
s = h̄ηI

2eMV
. (A3)

The solution of φ exists when |Happl/H
(0)
s | � 1. In this case,

the magnetization direction is fixed to the film plane. In
other words, when |Happl/H

(0)
s | > 1, the magnetization locates

above the film plane, showing self-oscillation. Therefore, the
self-oscillation is excited when current I satisfies,

I � 2eMV

h̄η
Happl, (A4)

where we use the symbol �, because the approximation of
λ → 0 is used to derive Eq. (A4). Equation (A4) determines
the saddle-node bifurcation of the spin-torque oscillator. We
remind the reader that the applied field Happl should satisfy

Happl >
3λ2

2 − 3λ2
(HK − 4πM), (A5)

to excite self-oscillation, as derived in Ref. [35].

APPENDIX B: AGILITY TO CURRENT

The agility is defined as the frequency shift in response
to an external force [57]. In the main text, we focused on
the response of the spin-torque oscillator to the magnetic
pulse because our work is focused on such experiments
[29,30]. Another interesting research target is the response
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to the current. For the spin-torque oscillator consisting of
a perpendicularly magnetized free layer and an in-plane
magnetized pinned layer, agility in response to the current is

∂f

∂I
� − γ

2π

2αh

(−2α + λhs)2

h̄ηλ

2eMV
, (B1)

where we use Eqs. (9) and (12). In the experiments based
on magnetic tunnel junctions, the agility in response to
the voltage, rather than the current, might be useful [57].
Contrary to the agility in response to the magnetic field given
by Eq. (20), which is almost constant as γ /(2π ), Eq. (B1)
varies for a wide range. For example, Eq. (B1) becomes
−[γ /(2π )] × [h̄ηλ/(4αheMV )] for the current I/Ic � 1,
whereas it becomes zero for a large current limit I → ∞.

APPENDIX C: CRITICAL EXPONENT FOR THERMALLY
ACTIVATED SWITCHING

In Sec. III C, we discuss the dynamical critical exponent
of the phase transition between the critical point and the
self-oscillation state of the spin-torque oscillator. A different
type of critical exponent for the spin torque is discussed
in a theoretical work considering the spin-torque switching
of the magnetization in the thermally activated region [45].
Here, let us briefly discuss the relation between this past
work and the current study. The spin-torque switching in the
thermally activated region is described by the Fokker-Planck
equation [41]

∂P
∂t

+ ∂J

∂E
= 0, (C1)

where P is the probability density of the magnetization
distribution, whereas J is the probability current density in
the energy space given by

J = Wα

dE

dE

P
τ

+ D
M

αγ
Wα

∂

∂E

P
τ

. (C2)

Here, the effective energy density is defined as

E (E) =
∫ E

dE′
[

1 + Ws(E′)
Wα(E′)

]
. (C3)

On the other hand, the second term in Eq. (C2) with the
diffusion coefficient D = αγ kBT/(MV ) represents the effect
of the thermal fluctuation, where kB is the Boltzmann constant
and V and T are the volume and temperature of the free
layer, respectively. The distribution function in a steady state

is determined from Eq. (C2) as P/τ ∝ exp[−E V/(kBT )].
The critical exponent b of the spin-torque switching in the
thermally activated region is defined as [45]

∫ Esaddle

Emin

dE

[
1 + Ws(E)

Wα(E)

]
= 
0

(
1 − I

I ∗
c

)b

, (C4)

where Esaddle is the saddle or maximum energy density of
E, and 
0 = (Esaddle − Emin)V/(kBT ) is the energy bar-
rier separating the stable states of the free layer in the
absence of the current. The scaling current I ∗

c is defined
as limE→Esaddle Ws/Wα = −I/I ∗

c . In general, Ic �= I ∗
c , and

I ∗/Ic > 1 is a sufficient, but not a necessary, condition.
The dynamical critical exponent z in Eq. (38) is solely

determined by the energy density corresponding to the critical
point, whereas the exponent b in Eq. (C4) is determined by the
energy densities in the region of [Emin,Esaddle]. For example,
it is shown that the exponent b in the in-plane magnetized
system depends on the current magnitude, whereas that in the
perpendicularly magnetized system is 2 [45].

APPENDIX D: A DIFFERENT DEFINITION
OF RELAXATION TIME

One might consider from Eq. (27) that the relaxation time
can be defined as∫

dt =
∫ E1

E0

dE

Ws(E) + Wα(E)
, (D1)

where E0 and E1 are energy densities corresponding to
the constant energy curves at the initial and final states,
respectively. However, Eq. (D1) is not suitable for defining
the relaxation time. This is because Ws(E1) + Wα(E1) = 0;
therefore, the integrand diverges at the integral boundary,
which would lead to the relaxation time derived from Eq. (D1)
becoming infinite. This result can also be understood from
Eq. (37) that δE decreases to zero with increasing time
but never becomes exactly zero. To avoid such divergence,
Ref. [55] for example replaces the integral boundary E1

with a different value E′
1 satisfying E0 < E′

1 < E1 or E1 <

E′
1 < E0, and Ws(E′

1) + Wα(E′
1) �= 0. The value of E′

1 in
Ref. [55] is determined from an assumption that the final state
of the magnetization shifts from E1 because of the thermal
fluctuation, i.e., |E1 − E′

1|V � kBT . Then, a finite switching
time can be obtained as in Ref. [55].
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