
PHYSICAL REVIEW B 96, 024404 (2017)

Composite spin crystal phase in antiferromagnetic chiral magnets
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We study the classical antiferromagnetic Heisenberg model on the triangular lattice with Dzyaloshinskii-Moriya
interactions in a magnetic field. We focus in particular on the emergence of a composite spin crystal phase, dubbed
an antiferromagnetic skyrmion lattice, that was recently observed for intermediate fields. This complex phase can
be made up from three interpenetrated skyrmion lattices, one for each sublattice of the original triangular one.
Following these recent numerical results, in this paper we explicitly construct the low-energy effective action
that reproduces the correct phenomenology and could serve as a starting point to study the coupling to charge
carriers, lattice vibrations, structural disorder, and transport phenomena.
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I. INTRODUCTION

Antiferromagnets have been the focus of an enormous
amount of work, mainly since the suggestion that they
could be at the origin of the pairing mechanism in high-Tc

superconductors [1]. On the other hand, in some chiral magnets
such as MnSi [2–8], Fe1−xCoxSi [9–11], FeGe [12–15], and
Mn1−xFexGe [16], a new kind of complex magnetic structure
has been observed. This new phase, known as skyrmion
crystal, observed in some range of temperatures and magnetic
fields, consists of a periodic arrangement of topologically
protected magnetic textures that resemble the one proposed
by Skyrme [17].

The existence of these topological nanosized spin structures
in condensed matter, called magnetic skyrmions, has been
well known for a long time. In the case of chiral magnets,
a rigorous analysis of isolated skyrmions was carried out in
Refs. [18–20] (see [21]). Skyrmions also appear in systems
like liquid crystals [22], quantum Hall ferromagnets [23], Bose
condensates [24], etc.

The potential technological applications of this phase
of chiral magnets are numerous. Among other things, the
possibility of driving the motion of the magnetic skyrmions
with ultralow current densities, an anomalous Hall effect,
and the observed multiferroic behavior makes these systems
particularly interesting for applications to processing devices
and information storage, in particular racetrack memory
devices [25,26]. On the other hand, the existence of high-
frequency periodic excitations of the skyrmion lattice phase
makes them promising candidates for nanoscale microwave
resonators [27].

The underlying mechanism responsible for this structure
seems to be an antisymmetric spin-orbit interaction, known
as the Dzyaloshinskii-Moriya (DM) interaction [28,29]. In
generic noncentrosymmetric magnetic crystals a DM inter-
action can stabilize a skyrmion crystal phase (SkX). The
existence of these topologically protected structures in chiral
magnets was theoretically predicted in [18,30–32]. Later,
Yi et al. [33] showed using Monte Carlo simulations that
a classical ferromagnetic spin system with DM interaction
supports, in a given region of the parameter space, skyrmion
lattice structures.

Han et al. [34] have proven that a nonlinear σ model plus
a continuous version of the DM interaction in a magnetic
field, proposed as the low-energy Hamiltonian of these chiral
magnets, reproduces the observed phenomenology. Bogdanov
and Yablonskii [35] have shown the stability of a skyrmion
lattice in a large group of easy-axis bipartite antiferromagnetic
systems. In a recent work [36], a detailed Monte Carlo
simulation has shown the existence of an exotic magnetic
phase on a triangular antiferromagnetic lattice in the presence
of a DM interaction and for a certain window in the external
magnetic field. This exotic phase, named AF-SkX, consists of a
periodic arrangement which, observed by sublattice, resembles
a ferromagnetic skyrmion phase (FM-SkX). The complete
picture then corresponds to the three FM-SkX intertwined (as
seen in Fig. 4 below). Such a phase arises in a frustrated
simple antiferromagnetic model which exhibits remarkable
new features, so one question that arises naturally is whether
this novel magnetic background could promote some kind
of pairing mechanism between electrons moving on top of
such a magnetic profile [37]. As a first step in this direction,
we identify and study in detail a simple low-energy effective
description that reproduces the correct spin phenomenology
and could serve as a first step to analyze the coupling
between localized spins and conduction-electron spin, which
could, in turn, give rise to interesting electron-transport
phenomena [38]. For this purpose, based on a combined
analysis using a variational approach and large-scale Monte
Carlo simulations, we get quantitative predictions for the
existence, the location, and the sizes of the AF-SkX phase
induced by an external magnetic field.

The rest of this paper is organized as follows. In Sec. II
we present the microscopic Hamiltonian and construct the
continuous low-energy description. In Sec. III we propose
variational Ansätze for the different phases that we expect from
the numerical simulation results [36]. In Sec. IV we present
the phase diagram of the continuous model obtained with these
variational Ansätze. We find a rich low-temperature behavior
of the system as the magnetic field is varied, recovering all the
previously observed phases. The system goes from a helical
phase (HL) at low fields to an antiferromagnetic skyrmion
lattice phase (AF-SkX) for larger values of the field, and then,
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before the ferromagnetic saturated phase (FM), there seems to
be an intermediate phase, which we call the sublattice-uniform
(SU) phase, which is described below. All our analytical
predictions are supported by Monte Carlo (MC) simulations
of the microscopic Hamiltonian. We conclude in Sec. V with
a summary and discussion of our results.

II. MICROSCOPIC HAMILTONIAN AND
CONTINUOUS LIMIT

We begin with the classical spin Hamiltonian in the two-
dimensional triangular lattice (Fig. 1) given by

H =
∑
〈rr′〉

[J Sr · Sr′ + Drr′ · (Sr × Sr′)] − B ·
∑

r

Sr, (1)

where J > 0 is the antiferromagnetic exchange constant,
vectors Drr′ describe the antisymmetric (bulk) DM interaction
(Drr′ ≡ −Dr′r) that stabilizes the AF-SkX phase recently
described in Ref. [36] under an external magnetic field B =
B ẑ, and 〈rr′〉 indicates nearest neighbors (NN).

With the aim to obtain the continuous limit, it is more
convenient to rewrite the previous Hamiltonian as a sum of
plaquette Hamiltonians H = ∑

r Hr, where r is the plaquette
label. This procedure allows us to write the Hamiltonian
density Hr in a symmetric way in terms of two indices i,j

which denote the sublattices i and j (which from now on
will be called the flavor index) and an index k denoting
which neighbor of sublattice j we are considering [39] (see
Fig. 1). Indices i,j , and k run from 1 to 3. From now on the r
dependence of Hr (and the terms included in Hr) and in the spin
variables Sj is suppressed to simplify the notation, i.e., Hr →
H, Si(r) → Si . The plaquette Hamiltonian density H reads

H = HE + HDM + Hz,

HE = J

6

∑
i

∑
j �=i

∑
k

Si · S(k)
j ,

HDM = 1

6

∑
i

∑
j �=i

∑
k

D(k)
ij · (

Si × S(k)
j

)
,

HZ = −1

3

∑
i

B · Si . (2)

r

r’

r”

k

k’

k”

FIG. 1. Triangular lattice: r,r′,r′′ indicate the plaquettes involved
in a given term of the Hamiltonian density. As an example, the
sublattice, labeled 3 (inside the green circle), in the plaquette in r
has three first neighbors, denoted 1 (each one inside a red dashed
circle) and indicated by labels k, k′ and k′′. The bond director vectors
are shown in the top left.

Assuming that each spin flavor varies slowly, an approximation
that holds near both the ferromagnetic and antiferromagnetic
orders, we can describe the continuum limit of each spin flavor
by a smooth field configuration. Under such an assumption
we can expand the value of the spin field S(k)

j at site j around
the position of the spin Si as follows:

Sk
j = Sj + a

[
e(k)
ij · ∇]

Sj + a2

2

[
e(k)
ij · ∇]2

Sj + O(a3), (3)

where a is the nearest-neighbor distance and e(k)
ij =

−sgn[P (ij )]e(k), where P (ij ) is the permutation (123) →
(ij l), with e(1) = (1,0), e(2) = (− 1

2 ,
√

3
2 ), e(3) = (− 1

2 ,−
√

3
2 )

being the bond directors (see Fig. 1).
Performing a gradient expansion, the exchange Hamilto-

nian density up to second order in a reads

HE = J
∑

i

∑
j �=i

(
a2

8
Si∇2Sj − 1

2
Si · Sj

)
+ const. (4)

The next term in Eq. (2) corresponds to the DM Hamiltonian
density HDM. Let us define a cyclic DM vector D(k)

ij = D e(k)
ij

as in Ref. [36]. Using the gradient expansion (3), HDM, up to
second order in a, becomes

HDM = 1

6

∑
i

∑
j �=i

∑
k

{
D(k)

ij · (Si × Sj )

+ a D(k)
ij · [

Si × (
e(k)
ij .∇)

Sj

]
+ a2

2
D(k)

ij · [
Si × (

e(k)
ij · ∇)2

Sj

]}
. (5)

The first term on the right side in (5) vanishes because∑
k e(k)

ij = 0. Using the definitions of D(k)
ij and e(k)

ij , the second
term reads

a

6

∑
i

∑
j �=i

∑
k

D(k)
ij · [

Si × (
e(k)
ij · ∇)

Sj

]

= −aD

4

∑
i

∑
j �=i

Si · (∇ × Sj ).

Finally, the last term in (5) vanishes due to the antisymmetry
of the DM coupling (Drr′ ≡ −Dr′r). Hence, the complete DM
Hamiltonian density reads

HDM = −aD

4

∑
i

∑
j �=i

Si · (∇ × Sj ). (6)

Putting all the pieces together, we can write the complete
Hamiltonian density H for an antiferromagnetic triangular
chiral magnet in the continuous limit as

H = J
∑
i,j �=i

1

2
Si · Sj + a2

8
Si∇2Sj − aD

4J
Si · (∇ × Sj )

− 1

3

∑
i

B · Si . (7)

The equations of motion of the previous Hamiltonian are
nonlinear and fairly difficult to solve analytically. Instead, we
study the Hamiltonian density proposing different families
of Ansätze. In order to gain some intuition on the possible
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expressions we rewrite (7) by introducing a nonindependent
variable M = ∑

i Si , the plaquette magnetization. After some
trivial algebraic manipulations Eq. (7) can be recast in the
following form:

H = HM +
3∑

i=1

Hi,

HM = J

2
(M2 − 3) + a2 J

8
M · ∇2M − aD

4
M · (∇ × M), (8)

Hi = −a2 J

8
Si∇2Si + aD

4
Si · (∇ × Si) − 1

3
B · Si .

Some remarks are in order. We notice that the Hamiltonian
density has been separated into four pieces. The first piece
corresponds to a Hamiltonian density HM for the plaquette
magnetization, while the rest correspond to three copies
of the same Hamiltonian density Hi , one for each flavor. Each
of these Hi has exactly the form of the ferromagnetic nonlinear
σ model studied by Han et al. [34] for chiral magnets. This
is a crucial observation that, together with the knowledge of
the finite-temperature phases of the system [36], motivates the
Ansätze that we propose in the following section. We also call
attention to the derivative term in the magnetization density
that, at first sight, seems to lead to an energy unbounded
from below. This is just an artifact of the introduction of
the nonindependent variable M. The Laplacian term in the
magnetization density has its origin in the exchange interaction
term

J
∑

i

∑
j �=i

Si · Sj

= J

2
(M2 − 3) + a2 J

8
M · ∇2M − a2 J

8

∑
i

Si∇2Si , (9)

and since the left-hand side of Eq. (9) is bounded from below,
the right-hand side should be as well. This means that the even-
tual large contribution that could arise from the term a2 J

8 M ·
∇2M will be compensated by the term −a2 J

8

∑
i Si∇2Si .

Hence, the full Hamiltonian remains bounded from below, as
the original Hamiltonian. In fact, as will be explicitly described
in the next section, the derivative terms of the magnetization
in the solutions are orders of magnitude smaller than the rest
of the terms that appear in the Hamiltonian density [Eq. (8)]

III. ANSÄTZE AND EFFECTIVE LOW-ENERGY
HAMILTONIAN

The possibility to rewrite the continuum Hamiltonian as
a sum of flavor Hamiltonian densities Hi plus a plaque-
tte magnetization contribution HM allows for an intuitive
analysis. We mentioned in Sec. II that each flavor Hamil-
tonian is exactly the continuum model introduced by Han
et al. [34] for two-dimensional ferromagnetic chiral magnets.
Bogdanov et al. [18,30] and Han et al. [34] have shown
that ferromagnetic chiral magnets admit nontrivial periodic
magnetic textures known as skyrmion lattices (SkX). Hence,
the presence of three almost independent Hi Hamiltonians
in the continuum limit strongly suggests the possibility of a
similar kind of nontrivial SkX solution on each sublattice.

These three independent equivalent SkX solutions need to
be arranged in such a way that their sum, M, minimizes the
corresponding magnetization Hamiltonian.

A. Skyrmion crystal Ansatz

The proposed approximate solution to one spin flavor
Hamiltonian can be constructed as a superposition of three
helical solutions with wave vectors kμ satisfying

∑
μ kμ = 0

(μ = 1,2,3) in the plane of the sample with relative angles
of 2π/3 [40]. The approximate skyrmion lattice solution then
reads

nSkX(r) = 1

n

{
Ixy

∑
μ

sin

(
2π

T
kμ · r + θμ

)
exy,μ

+
[
mz + Iz

∑
μ

cos

(
2π

T
kμ · r + θμ

)]
ez

}
, (10)

where T is the period of each helix; n fixes the appropriate
normalization |nSkX| = 1, which restricts the values of the
amplitudes Ixy (in plane) and Iz (perpendicular to the xy plane)
and the homogeneous contribution to the magnetization in the
z direction mz. Here exy,μ are arbitrary unit vectors lying on the
xy plane satisfying

∑
μ exy,μ = 0, while the phases θμ satisfy

cos(θ1 + θ2 + θ3) = −1 [40].
The helix period T can be determined as a function of

Ixy,Iz, and mz by energy-scale analysis (see the Appendix) and
is related to the skyrmion lattice parameter RSkX (the distance
between skyrmion centers) through the equation RSkX = 2T√

3
.

Now, the proposed Ansatz for the full solution reads

S1(r) = nSkX(r), S2(r) = nSkX(r + T1),

S3(r) = nSkX(r + T2), (11)

where T1,T2 are arbitrary translations in the xy plane.

B. Helical Ansatz

In the helical phase, the spin structure is a special case of
the Ansatz (10) and consists of three interpenetrating spirals
on each sublattice, as in Eq. (11), but with a single-kμ0 mode,

nH (r) = 1

n

{
Ixy sin

(
2π

T
kμ0 · r + θ

)
exy

+
[
mz + Iz cos

(
2π

T
kμ0 · r + θ

)]
ez

}
, (12)

where again the constant n fixes the normalization |nH | = 1.

C. Uniform sublattice Ansatz

The magnetic phase diagram for the model defined by
Eq. (1) with D = 0 has been discussed in [41,42]. At zero
temperature and zero magnetic field the ground state is a
planar configuration with spins arranged in a 120◦ structure
described by the wave vector k = (4π/3,0). In a magnetic
field the energy is minimized when the constraint

S1 + S2 + S3 = B/(3J ) (13)

is fulfilled on each plaquette. This constraint persists up to the
saturation field B = 9J , where the spins are fully polarized.
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For D �= 0 the previous discussion breaks down since the
DM term stabilizes new configurations. However, it is worth
noting that even for D �= 0 there exist spin configurations
in which the DM contribution cancels out. This is the case
when the spin field on each sublattice is uniform. This is
easily seen from our effective model since the DM term
contains derivatives of the spin fields. If one goes back to
the microscopic model, one can show that the sum of the
interactions (through DM) of a specific spin with its six
neighbors is zero for the present choice of the D vectors.
Thus, for this kind of configuration, which we denote SU for
“sublattice uniform” from now on, the constraint given by
Eq. (13) is still valid, and this is an equilibrium state to be
considered in the following discussion of the phase diagram.

The energy per plaquette of the states satisfying the
constraint (13) is field dependent, independent of D, and is
given by

ESU = − B2

18J
− J

3

2
. (14)

Finally, at the saturation the energy per plaquette of the
ferromagnetic state (for B > 9J ) is

EFM = 3J − B. (15)

Now that we have described the Ansätze under which we
will study the Hamiltonian, we are in the position to compare
the values of the terms that include derivatives of M to the
rest of the terms included in the Hamiltonian density (8). First,
let us analyze these terms in the helix phase. In this case,
the plaquette magnetization corresponds to a superposition of
three helical waves, each one given by Eq. (12), separated (in
space) by a translation in the direction of propagation. In the
case where the distance between peaks is uniform (i.e., the
phase difference of each cosine is 2π/3) it is straightforward
to see from the Ansatz (12) that M will show small spatial
variations: M(r) ≈ M = const. For the SkX phase, a similar
analysis drives us to the same conclusion. These statements are
confirmed by our numerical calculations performed for both
Ansätze for different values of the coupling D and as a function
of B. Our results show that the plaquette magnetization is
almost constant, leading to the conclusion that the contribution
of the Laplacian and curl terms in HM are two orders of
magnitude smaller than the rest of the terms present in the
Hamiltonian density (8) (see Fig. 2). For this purpose we
compare the four contributions (with spatial derivatives) of the
total energy, namely, Enlsm, Edm, EMnlsm, and EMdm, where

Enlsm = −a2 J

8

∑
r

∑
i

Si∇2Si , (16)

Edm = aD

4

∑
r

∑
i

Si · (∇ × Si), (17)

EMnlsm = a2 J

8

∑
r

M · ∇2M, (18)

EMdm = −aD

4

∑
r

M · (∇ × M). (19)

In Fig. 2 we plot the ratios between the four terms (16)–
(19), setting Edm as the scale, for the case D/J = 1/2. We
observe that in the HL and AF-SkX phases both EMnlsm/Edm

1.0

0.8
0.6
0.4

0.2
0

-0.2

-0.4

-0.6

-0.8
0 1 2 3 4 5 6 7 8 9

E
a
/E

d
m

B/J

HL AF-SkX SU FM

EMnlsm/Edm

EMdm/Edm

Enlsm/Edm

Edm/Edm

FIG. 2. Comparison between different contributions from the
density Hamiltonian (8) for the case D/J = 1/2. We compare the
four terms Ea = {Enlsm,Edm,EMnlsm,EMdm} [see Eqs. (16)–(19)] using
Edm as a scale. In the HL and AF-SkX phases, the dominant terms
are those coming from

∑
i Hi in Eq. (8). All these terms are zero in

the SU and FM (homogeneous) phases.

and EMdm/Edm are negligible in almost all the field range,
except for two narrow windows around the transition fields
where the value of these ratios are smaller than 5 × 10−2. In the
homogeneous SU and FM phases all the terms with derivatives
are zero. This behavior is repeated in the whole range that we
have explored, D/J < 1, leading to the conclusion that the
contributions of the Laplacian and curl terms in HM are at
least two orders of magnitude smaller than the rest of the
terms present in the Hamiltonian.

Monte Carlo simulations show that the spatial variation
of the magnetization is small compared to the variation of
the spin on each sublattice, confirming the observation made
by the variational approach. Based on the previous analysis,
we end up this section by proposing a simplified low-energy
effective Hamiltonian that captures the low-energy physics of
the antiferromagnetic chiral magnet given by Eq. (1).

D. Effective low-energy theory

From the previous discussion the effective Hamiltonian is
given by

H eff =
3∑

i=1

Hi + H eff
M ,

Hi = −a2 J

8
Si∇2Si + aD

4
Si · (∇ × Si) − 1

3
B · Si , (20)

H eff
M = J

2
(M2 − 3),

where H eff
M corresponds to the simplified version of HM in (8),

which we have shown captures all the essential details of the
phase diagram.

It is remarkable that this continuum effective Hamiltonian
can be thought of as the sum of three Ginzburg-Landau
effective actions (one for each flavor/sublattice) plus a term
H eff

M that couples them. From the first term of the sum one could
expect, separately on each sublattice, the three well-known
phases, HL, SkX and FM.
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0.1
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−

E
g
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/N
s

B/J

HL

AF-SkX

SU
FM

Bc3

Bc1

Bc2

Bc4

D/J=1/2

FIG. 3. Top: Phase diagram; dotted lines correspond to the
boundaries between different phases labeled by the fields Bc1, . . . ,Bc4

(functions of D). Bottom: The energies (Ephase − Egs) of the three
states of a triangular antiferromagnetic chiral magnet with D/J =
1/2 as a function of the external magnetic field B. This example
corresponds to the path indicated by the dashed black line in the
phase diagram.

IV. RESULTS AND PHASE DIAGRAM

In this section we construct the full phase diagram of the
Hamiltonian (20), paying particular attention to the appearance
of the topological AF-SkX phase.

In the study of the phase diagram we consider four phases,
namely, the HL and SkX phases with energies EHL and ESkX,
respectively, together with the SU and FM phases presented
in Sec. III. To find the minimum-energy configuration we fix
the variational parameters in a self-consistent way by using
the Nelder-Mead simplex method, which is one of the most
used for direct optimization [43]. The procedure consists of
introducing an initial guess for Ixy and mz and determining
variationally the values of T1 and T2 self-consistently. It turns
out that T1 and T2 are related to the parameter T . We find
that T2 = −T1 = 2T

3 x̂ for the skyrmion lattice, while for the
helical phase T2 = −T1 = T

3 x̂.
The minimization of the variational energies for the

different phases leads to the phase diagram shown in the
top panel of Fig. 3, where the boundaries of the phases
result from level crossings as shown in the bottom panel of
Fig. 3. As an example, in Fig. 4 we show a representative
spin texture obtained by the variational Ansatz in the AF-SkX
phase (D/J = 1/2 and B/J = 3). The colored circles in Fig. 4
indicate the cores of the skyrmion on each sublattice.

The main feature of this diagram is the presence of the four
phases, namely, HL, AF-SkX, SU, and FM, in a wide region of
D − B (D > 0) space. However, there exists a critical value
Dc ≈ 0.2 for the skyrmion lattice to be stable. Below this

+1

-1

FIG. 4. Representative magnetic texture obtained by low-energy
effective theory [Eq. (20)] and the variational Ansatz for D/J = 1/2
and B/J = 3. Arrows indicate the xy component of the spins, while
the colored dots (from blue to red) indicate their z component. The
circles (green, blue, and purple) indicate the positions of the skyrmion
cores on each sublattice.

value, the skyrmion lattice phase is excluded irrespective of the
magnitude of the external field. The phase diagram for small
fields is dominated by a helical phase with a wave vector lying
in the plane. This phase starts at zero magnetic field B = 0 and
extends to Bc3 for D < Dc and to Bc1 for D > Dc (see Fig. 3).

The phase diagram presents a wide region with a complex
magnetic texture that is described by the superposition of
three skyrmion lattices, one for each flavor. The region of
the parameter space where this phase is stable is delimited by
the curves Bc1 and Bc2. From Bc2 and Bc3 up to the saturation
field Bc4 the SU phase is realized.

For the HL and AF-SkX phases, the optimized value
of the period T shows a small linear dependence in the
external field (the same for both phases as obtained by MC
simulations [36]). In Fig. 5 we see that the mean period takes
the same values for the HL state and for the AF-SkX state as
T (J/D) � 6.57J

D
− 1.95.

For D/J = 1/2, we get T ≈ 10.8 ± 0.6 (this value should
be compared with the wavelength T ≈ 11.4 of the HL and
AF-SkX phases found in Ref. [36] obtained by numerical
simulations of finite-size systems). We can define the radius
of a skyrmion (in one sublattice) as the radius of the
circumference of the contour defined by nz = 0. In the inset
in the top panel of Fig. 5 we show the skyrmion size as a
function of the magnetic field. We observe that the behavior
of the optimal skyrmion spacing as a function of the magnetic
field varies very slowly in the region of the AF-SkX phase due
to its topological stability. This behavior translates precisely
in a wide range of stability of the AF-SkX phase in which the
skyrmion number is fixed.

It is important here to review some of the basic facts
concerning the behavior of skyrmion lattices in chiral fer-
romagnets and to compare them with the present results for
antiferromagnetic systems. In chiral ferromagnetic systems
two parameters are relevant in the characterization of the
skyrmion structure. The first is the skyrmion core, which
tends to decrease as the magnetic field grows [44], in order to
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FIG. 5. Top: Variation of the period with J/D for SkX (green
squares) and HL (purple stars). We used J/D instead of D/J to obtain
a linear fit. Inset: The skyrmion radius as a function of the external
magnetic field for several values of D/J . Bottom: Topological charge
Qtop and magnetization mT

z as a function of the magnetic field for
D = 0.5J and magnetization vs magnetic field B calculated by the
variational Ansatz and by MC simulations.

increase the field polarized (FM) background. As shown in the
top panel of Fig. 5, this behavior is present for the skyrmions
in the antiferromagnetic system too. The second parameter
is the skyrmion lattice period, which takes into account the
distance between two adjacent skyrmions. In the ferromagnetic
case the system goes from the SkX to the FM state, where a
divergence of the skyrmion lattice period is observed [44].
This divergence takes place precisely at the boundary of the
SkX-FM coexistence region (where the energy of the FM
phase equals the energy of the SkX phase). In contrast, in the
antiferromagnetic system, the transition occurs in a different
way: the system goes from AF-SkX to the SU state and then
to the FM phase as the magnetic field is increased. Then the
system undergoes a phase transition to the SU phase before
the skyrmion lattice period starts to grow.

In order to capture the topological character of the field
configuration for each spin flavor we introduce the topological
index Qtop and define the total (normalized) magnetization
(z component):

Qtop = 1

4π

∫
u.c.

n · (∂xn × ∂yn) d2r, (21)

mT
z = 1

Au.c.

∫
u.c.

nz d2r, (22)

 0

2%

4%

 1  2  3  4  5  6  7  8  9

|(EAnsatz-EMC)/EAnsatz|

B/J

D/J=0.2
D/J=0.6

FIG. 6. Comparison of the results from the variational Ansatz and
MC simulations for D/J = 0.2 and 0.6. We plot the relative error
|(EAnsatz − EMC)/EAnsatz| vs magnetic field (B/J ) as an indicator of
the good agreement between both approaches. The specific values of
D/J were chosen as being representative of two possible paths as a
function of the external field B: one that goes directly from the HL
phase to the SU phase (0.2 case) and another in which the path goes
through the AF-SkX phase (0.6).

where the integration is performed in a unit cell of the magnetic
texture with area Au.c. (see the Appendix).

In the bottom panel of Fig. 5 we show the behavior of the
magnetization and the topological charge as a function of the
magnetic field. We see that the helical phase corresponds to a
trivial configuration with Qtop = 0, whereas in the SkX phase
(triple-helix state) Qtop = 1 because each unit cell contains
only one skyrmion. The magnetization curve reveals an almost
linear growth up to the saturation field. However, we see two
discontinuities, suggesting a first-order phase transition from
HL to the AF-SkX phase and from AF-SkX to the SU phase.

In order to confirm the results from the variational analysis,
we numerically examine the ground state of the model (1)
using Monte Carlo simulations based on the standard heat-
bath method combined with the overrelaxation method. We
have implemented periodic boundary conditions for N =
3600 sites. A run at each magnetic field or temperature
contains typically 0.1–1 × 106 Monte Carlo steps (MCSs)
for the initial relaxation and twice as many MCSs during the
calculation of mean values. In the bottom panel of Fig. 5 we
compare magnetization vs magnetic field for the minimized
variational solution and using MC simulations for D/J = 1/2.
We observe qualitative agreement between both methods.
However, the behavior of the magnetization differs when the
system switches from one phase to another. This may be due
to finite-size effects of the MC simulations and the fact that in
the transition region, the variational solution does not include
higher-order modes in k. In Fig. 6 we compare the ground-state
energy as a function of the magnetic field obtained from
the minimization of the variational energies for the different
phases and using MC simulations for two values of D/J . The
excellent agreement between both results further supports the
variational analysis of the continuous limit of the microscopic
Hamiltonian given by Eq. (20).
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V. DISCUSSION AND CONCLUSION

To summarize, we have constructed a low-energy theory
describing the behavior of the Heisenberg model in the tri-
angular lattice including Dzyaloshinskii-Moriya interactions
and the magnetic field. Our low-energy effective theory
given in Eq. (20), notwithstanding its simplicity, displays a
plethora of phenomena of current interest in the context of
topological magnetic phases. The effective theory obtained
surprisingly consists of three independent Hamiltonian densi-
ties Hi similar to those found by Bogdanov et al. [18,30] and
Han et al. [34] in the context of ferromagnetic systems. Each
one of these admits nontrivial magnetic structures known as
skyrmion lattices (SkX). In addition to these terms, there is
a plaquette magnetization contribution HM which couples
the previous Hi . The low-energy theory predicts an AF-SkX
crystal phase which consists of three interpenetrating SkX
states as observed in numerical Monte Carlo simulations [36].
The low-energy effective Hamiltonian reproduces the correct
spin phenomenology and could serve as a first step to analyze
the coupling to charge degrees of freedom. In addition
we numerically examined the low-temperature properties
of the microscopic model using Monte Carlo simulations,
showing very good agreement between both methods. This
effective Hamiltonian could serve as a starting point to study
the coupling to charge carriers, lattice vibrations, structural
disorder, and transport phenomena. Once the effective action
is obtained, one can envisage the inclusion of charge carriers,
which would interact via Hund coupling to the magnetic
background, and this could serve as a starting point to study
transport phenomena. The coupling to lattice vibrations and
structural disorder would enter through the standard deviation
of the exchange couplings Jij . Finally, the remarkable stability
that presents the AF-SkX phase for a wide range of magnetic
fields can have interesting consequences in the context of the
anomalous Hall effect.
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APPENDIX: ENERGY-SCALE ANALYSIS

The magnetic textures considered in Sec. III, namely, helix
and AF-SkX, are periodic configurations in the x and y

directions with periods α T and β T , respectively, with α,β

fixed by the symmetry of the texture (for the helix α = β = 1,
and for AF-SkX α = 1 and β = 2/

√
3). This allows us to

calculate the total energy as the energy of a cell (of area
Au.c. = αβT 2) times the number of cells, L2/(αβT 2), in the
sample. In addition, we separate different contributions in the
energy density according to the order of spatial derivatives.
With all this, the total energy can be written as

E(T ,Ixy,Iz,mz) = L2

αβT 2

2∑
i=0

Ei(T ,Ixy,Iz,mz), (A1)

with

Ei(T ,Ixy,Iz,mz) =
∫ αT

0
dx

∫ βT

0
dy Ei(T ,Ixy,Iz,mz), (A2)

where Ei(T ,Ixy,Iz,mz) denotes the energy density containing
ith-order derivatives. We can rewrite the different terms using
their properties under scale transformations (r → r′ = r/T ).
We can separate the dependence in T as

Ei(T ,Ixy,Iz,mz) =
∫ αT

0
dx

∫ βT

0
dy Ei(T ,Ixy,Iz,mz)

= T 2−i

∫ α

0
dx ′

∫ β

0
dy ′ Ei(1,Ixy,Iz,mz)

= T 2−iEi(1,Ixy,Iz,mz)

and write the energy of the sample as

E(T ,Ixy,Iz,mz) = L2

αβ

[
E2

T 2
+ E1

T
+ E0

]
.

This shows that all the dependence on the variable T can be
cast as power-law prefactors.
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