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The transmission properties of massive particles with pseudospin-one through homogeneous and heterogeneous
junctions are studied from an effective spin-orbit Hamiltonian. The addition of a mass term in the Hamiltonian
creates an energy band gap with a flat band inside the gap. There are three possible scenarios for the location of
the flat band: at the top of the valence band, at the bottom of the conduction band, and at the center of the energy
band gap. We have studied how the position of the flat band affects the transmission through a general type
of junction. We found that omnidirectional perfect transmission, called super-Klein tunneling, occurs even for
massive particles with specific symmetrical conditions in the junction. In all other cases, an angular independent
transmission is obtained, which can be considered as an attenuated super-Klein tunnelling. These effects emerge
when the junction operates as a Veselago lens under the generalized focusing condition. Furthermore, we found
that Klein tunneling is restored in the massless limit. The present findings may have important implications in
the development of electronic devices based on quantum optics with massive pseudospin-one particles.
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I. INTRODUCTION

The discovery of the extraordinary electronic and mechani-
cal properties of graphene motivated the comprehensive study
of two-dimensional Dirac materials [1–3]. One of the most
amazing transmission phenomena in graphene is the Klein
tunneling (KT), where perfect transmission through barrier
potentials occurs due to the linear dispersion relation and
pseudospin conservation of massless Dirac fermions [4–7].
KT and others pseudorelativistic phenomena are present in
graphene as a result of its two-dimensional hexagonal lattice
and the formation of Dirac cones in the electronic band
structure [1,2]. Thus the issue about whether other physical
systems presenting Dirac cones with higher dimensionality
and pseudospin value, leading to novel and distinctive physics
from those observed in two-dimensional pseudospin one-half
Dirac materials, has been recently explored [8–22].

In the context of solid state systems, there are several struc-
tures such as two-dimensional τ3 or Dice [15,16], Breathing
[17], and Lieb lattices [18] whose band structure present Dirac
cones. These systems have attracted a lot of attention because
they can be described by the use of an enlarged pseudospin
S = 1. In a similar way as in graphene, the dynamics can be
depicted by a Dirac-like Hamiltonian with the particularity
that, for certain energy conditions, they present an angular
independent Klein tunneling through rectangular electrostatic
barriers called super-Klein tunneling (SKT) [16,19,20]. When
the conditions for SKT are fulfilled, an extraordinary Snell
law allows all the refracted particle beams to be focused at one
point, such as occurs in a Veselago lens [23–25]. That focusing
particle flow could be useful for different applications and the
design of devices based on electron quantum optics.

Systems with pseudospin-one involve, further the Dirac
cones, a flat band in the middle of the dispersive bands. This
flat band has important and unusual effects on the electronic
properties due to its dispersionless nature. Particles from
the flat band are attached to have an infinity effective mass
being ideal for the realization of localized states [26–28].
Moreover, the flat band promises to be a key point for the

search of room-temperature superconductivity [29,30]. It is
important to mention that there are concrete examples of
physical implementations such as ultracold atoms in optical
lattice [14,20] and photonic crystals [19], where the physics
of pseudospin-one particles can be simulated. Recently, a
photonic Lieb lattice has served as a platform for the first
experimental realization of localized compact states [27,28].
In condensed matter systems, the Lieb lattice has also been
recently implemented [31,32]. A proposed material for the
realization of a pseudospin-one Hamiltonian was put forward
for strained blue phosphorene oxide [33].

Nevertheless, for the use of those physical systems in
practical applications like electronics, the creation of a band
gap is necessary. Furthermore, the presence of a band gap
can also help to create quantum dots useful for implementing
quantum information devices [34,35]. Therefore, the necessary
modification of the Dirac cones to induce a topological phase
transition can be represented by the addition of a mass term
in the Dirac-like Hamiltonian. Thus, in the present work we
theoretically study the effects of a flat band inside the band gap
generated by the addition of a mass term on the transmission
properties of the pseudospin-one particle. Here, the flat band
location plays a crucial role. We focus our attention on how
the SKT emerges and under what conditions this phenomena
is preserved.

The paper is organized as follows. In the second section we
describe our model, including three different ways to express
a mass term in the systems. In the third section we analyze
the reflection and transmission rate when the particle crosses
through a general type of junction, which is modeled as a
step potential. Using a general developed formulation, first we
present results for the particle transmission when the mass term
is the same in both sides or through a homogeneous junction.
Then we analyze the cases when the mass term is different in
each side of the junction, building a heterogeneous junction.
In order to clarify the effect of the flat band in the transmission
rate through the junction, in the fourth section, we show
an analysis of the particle transmission from the flat band.
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Finally, in the fifth section we present our conclusions and
final remarks.

II. MODEL

To describe the band structure of pseudospin-one Dirac
systems near to the high symmetry K point of the first Brillouin
zone in a Dice lattice [15,16] or near to the � point in a Lieb
lattice [20], we employ an effective Dirac-like model which
is useful to study the dynamics of massive pseudospin-one
particles around those points. Such a model considers a spin-
orbit Hamiltonian written as

H = vF S · p + �M, (1)

where vF is the Fermi velocity, p = −ih̄∇ is the linear
momentum operator, S = Sxx̂ + Syŷ is the spin operator in
terms of the spin-one matrices

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = 1√

2

⎛
⎝0 −i 0

i 0 −i

0 i 0

⎞
⎠, (2)

and the product �M can be considered as a mass generation
term in the Hamiltonian, because it induces a gap opening
with an effective mass defined as m = �/v2

F . This effective
Hamiltonian (1) is frequently found expanding the tight-
binding (TB) Hamiltonian to nearest neighbors of a Dice lattice
around the K point of the first Brillouin zone [15,16], where the
mass term can be constructed using different on-site energies.
For instance, the U term is obtained from the on-site energies
for the A or B sublattice in the τ3 model and the Lieb lattice.
Otherwise, Hamiltonian (1) can also be derived expanding the
TB Hamiltonian of ultracold atoms in an optical Lieb lattice
around the � point of the first Brillouin zone and the mass
term appears tuning the laser intensities [20]. In this work, we
study three special cases for M having the form

M = Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, M = ±U = ±

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠.

(3)

The case where M = Sz has been used to describe the
effect of applied magnetic field on bosonic band structure in

SrCu2(BO3)2 [21]. This case can also be seen as an extension
of the usual mass term in graphene [36]. The solution of the
secular problem with M = Sz in (1) leads to the following
dispersion relations:

E0 = 0, Es = s

√
�2 + v2

F p2, (4)

where s = 1 (−1) corresponds to the conduction (valence)
band. We note that the dispersionless flat band is located at
zero energy, whereas the valence and conduction bands are
separated by a gap of magnitude 2�, as shown in Fig. 1(a).
The corresponding wave functions can be expressed as

|�0〉 = 1√
2

⎛
⎜⎝

β e−iφ

−√
2�

E

−β eiφ

⎞
⎟⎠, |�s〉 = 1

2

⎛
⎜⎝

α e−iφ

√
2sβ

γ eiφ

⎞
⎟⎠, (5)

where α = 1 + (s�/E), β =
√

1 − (�/E)2, γ =
1 − (s�/E), and E =

√
�2 + v2

F p2 is the particle energy.
The wave function’s phase φ is related with the propagation
direction as tan(φ) = py/px , with px and py the components
of the momentum vector p.

On the other hand, the cases with M = ±U were used
to describe the site energy on different sublattices in a Lieb
superlattice [37]. That case can also be found in photonic
crystals [38] and ultracold atoms in optical lattices [20]. Thus,
solving the secular problem with M = ±U in (1), it is found
that the energies have the form

E0 = ±�, Es = s

√
�2 + v2

F p2. (6)

In this case, the flat band is located at the bottom of the
conduction band for M = U and at the top of the valence band
for M = −U , as seen in Figs. 1(b) and 1(c). The respective
wave functions for M = U are given by

|�0〉 = 1√
2

⎛
⎝e−iφ

0
−eiφ

⎞
⎠, |�s〉 = 1

2

⎛
⎜⎝

√
αe−iφ

s
√

2γ√
αeiφ

⎞
⎟⎠. (7)

Wave functions for the case M = −U are obtained with the
substitutions α → γ and γ → α in (7). Although the three
expressions of M open a band gap of the same magnitude

FIG. 1. Graphical representation of the dispersion relations of the Hamiltonian (1). (a) For the case of mass generation term M = Sz, while
(b) and (c) correspond to the cases M = U and M = −U , respectively.
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(a)

(b)

FIG. 2. (a) Scheme of a junction depicted by a step potential V0

and the corresponding energy band structure. (b) Description of the
particle scattering through the junction; a particle beam is injected
from the left in region I, with an incidence angle φ. Then, a reflected
beam comes back in region I, while a refracted beam is transmitted
through region II with a refraction angle φ′.

2�, the wave functions (5) and (7) display different forms.
Consequently, the specific location of the flat band must have
strong consequences on the transmission probability through
a junction.

III. TRANSMISSION THROUGH A JUNCTION

We analyze the particle transmission through a homoge-
neous and heterogeneous junction, which can be depicted
by a step potential of high V0, for the three cases of M

described above. A device, as shown in Fig. 2(a), can be
conformed by a material whose excitations are described
through the Dirac equation of pseudospin-one particles. Thus
triplons in SrCu2(BO3)2 in the presence of a weak magnetic
field represent a feasible option [21]. Usually, a homogenous
junction is obtained with two external gates at regions I and II,
and it is considered abrupt when the condition kF d < 1 is
satisfied, with kF being the magnitude of the Fermi wave
vector and d the split-gate length. Under this assumption, we
avoid the angular filter of particle beams beyond the normal
incidence [39–42]. It is important to note that the coherence
length and the mean free path of the particle are expected to
be larger than the device’s dimensions, allowing the system
to be within the ballistic transport regime. Other systems can
be proposed using electromagnetic waves in photonic crystals,
where the junction is simulated shrinking the distance among
dielectrics [19].

In the device shown in Fig. 2(b), a point source injects
the ballistic particles with a wide angular distribution. The
junction located at x = 0 scatters the incident particle flow
producing a reflected beam that comes back along the −φ

direction; meanwhile, a refracted beam crosses the interface,
where an extended drain collects the output beam in the region
II. In general, the dynamics of this system is depicted by the

effective Hamiltonian

H = vF S · p + Q(x), Q(x)

=
{
�M, if x < 0,

�′M ′ + V0, if x � 0,
(8)

where the effect of V0 on the band structure is to raise the Dirac
cone energy by V0 in the x � 0 region, as seen in Figs. 2(a),
3(a), 5(a), and 5(c). We consider the case when �M = �′M ′
as a homogeneous junction where the only difference in the
regions forming the sides of the junction is the potential.
In order to clarify the role of the flat band in the particle
transmission, we also analyze the case when �M �= �′M ′.
These kind of junctions can be considered as heterogeneous.
A more sophisticated device must be designed to implement a
heterogeneous junction because the regions I and II have to be
conformed by structures with different flat band position. For
instance, the region I can be constituted by a photonic Lieb
lattice having geometrical parameters different to the lattice in
the region II.

Because the flat band position depends on the election of
the mass term, we could locate the flat bands in a total of nine
possible configurations in a junction: three possible positions
for the flat band, at the top of the valence band, at the bottom
of the conduction band, or in the middle of the band gap, in
each region. Three of these nine configurations correspond
to homogeneous junctions and all others to heterogeneous
junctions, if � = �′. We denote each configuration with the
label (i,j ), where i,j = −1, 0, and 1. Thus the value of i (j )
indicates the location of the flat band in the region I (region
II). Hence, when the flat band is located at the bottom of the
conduction band in both regions correspond to i,j = 1, and
when the flat band is located at the top of the valence band in
both regions correspond to i,j = −1, while the system when
the flat band is located at the middle of the band gap in both
regions is labeled as i,j = 0. For the (i,j ) system, we express
the wave function for states at the conduction or valence band
in region I (x < 0) as

|�I 〉 = 1

2

⎛
⎝a e−iφ

sb

c eiφ

⎞
⎠eipxx/h̄ + 1

2
r

⎛
⎝ a eiφ

−sb

c e−iφ

⎞
⎠e−ipxx/h̄, (9)

where φ is the incident angle and px = |E| cos(φ)/vF is
the component of the linear momentum on the x direction.
The coefficients a, b, and c can be determined from the
wave functions (5) or (7). The coefficient r is the probability
amplitude for the reflected beam. In region II, the transmitted
wave function is given by

|�II 〉 = 1

2
t

⎛
⎝a′e−iφ′

s ′b′

c′eiφ′

⎞
⎠eip′

xx/h̄. (10)

The quantities with prime correspond to the region II
and the a′, b′, and c′ coefficients are defined in terms
of α′ = 1 + s ′�′/|E − V0|, β ′ =

√
1 − �′2/(E − V0)2, γ ′ =

1 − s ′�′/|E − V0|, and s ′ = sgn(E − V0), where they can
be obtained from (5) or (7) by replacing the unprimed
quantities a, b, and c by the quantities a′, b′, and c′. t is
the amplitude for the transmitted beam, φ′ is the refraction
angle, and px = |E − V0| cos(φ′)/vF is the x component of
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FIG. 3. System (0,0) with M = Sz in both regions of the junction: (a) scheme of the band structure and (b) transmission probability as
a function of the energy E and the incidence angle φ, using the set of values � = �′ = 40 meV, V0 = 200 meV, and the Fermi velocity
vF = 0.83×106 ms−1.

the momentum vector. We allow the use of different values of
the half-gap energy in both sides of the step potential, � for
the region I and �′ for the region II. Thus, for a state defined
as |�〉 = (ψ1(x),ψ2(x),ψ3(x)) where ψi(x) (i = 1,2,3) are
the components of the wave function |�〉, the determination
of the probability amplitudes r and t is performed using the
boundary conditions at x = 0 from the wave functions (9)
and (10). The boundary conditions are obtained integrating
the Dirac equation from −ε to ε and then taking the limit
ε → 0. Assuming that M(x), V (x), and ψi(x) are all finite,
we found that ψ2(0−) = ψ ′

2(0+) and ψ1(0−) + ψ3(0−) =
ψ ′

1(0+) + ψ ′
3(0+) must be continuous. Solving the 2×2 linear

equation system for r and t with these boundary conditions,
the reflection probability R = |r|2 has the form

Rij

= (sξij cos φ−s ′ξ ′
ij cos φ′)2 + (sχij sin φ−s ′χ ′

ij sin φ′)2

(sξij cos φ + s ′ξ ′
ij cos φ′)2 + (sχij sin φ−s ′χ ′

ij sin φ′)2
,

(11)

TABLE I. Parameters defining the reflection probability accord-
ing to Eq. (11), for each system configuration (i,j ).

(i,j ) system j = −1 j = 0 j = 1

i = −1

ξ−1−1 = √
α′γ

ξ ′
−1−1 = √

αγ ′

χ−1−1 = 0
χ ′

−1−1 = 0

ξ−10 = β ′√γ

ξ ′
−10 = √

α

χ−10 = 0,

χ ′
−10 = s ′ �′

|E−V0|
√

α

ξ−11 = √
γ γ ′

ξ ′
−11 = √

αα′

χ−11 = 0
χ ′

−11 = 0

i = 0

ξ0−1 = √
α′

ξ ′
0−1 = β

√
γ ′

χ0−1 = s �

E

√
α′

χ ′
0−1 = 0

ξ00 = β ′

ξ ′
00 = β,

χ00 = sβ ′ �

E

χ ′
00 = sβ �

E

ξ01 = √
γ ′

ξ ′
01 = β

√
α′

χ01 = s �

E

√
γ ′,

χ ′
01 = 0

i = 1

ξ1−1 = √
αα′

ξ ′
1−1 = √

γ γ ′

χ1−1 = 0,

χ ′
1−1 = 0

ξ10 = β ′√α

ξ ′
10 = √

γ

χ10 = 0
χ ′

10 = s ′ �′
|E−V0|

√
γ

ξ11 = √
αγ ′

ξ ′
11 = √

α′γ
χ11 = 0
χ ′

11 = 0

where the quantities ξij , ξ ′
ij , χij , and χ ′

ij depend on α, α′,
β, β ′, γ , and γ ′ according to the chosen configuration for
the system among the nine options. The nine groups of
coefficients for each case are specified in Table I.

The relation between φ and φ′ is established from the corre-
sponding Snell’s law, which is obtained from the conservation
of the momentum in the y direction (py) and E, leading to the
following expression:

sin φ′ = |E|β
|E − V0|β ′ sin φ, (12)

where negative refraction of massive pseudospin-one particles
in interband transmissions is obtained in a similar way as
in massless pseudospin-1/2 case. This is possible due to
the inversion of p when the particle is transmitted from the
conduction (valence) in region I, to the valence (conduction)
band in region II. Thus one can design a device, such as the
Veselago lens in graphene [25], which focuses the particle
beams towards a point. This phenomena occurs for the specific
energy Ec = V0/2 with |V0| � 2� where the transversal
sections of the Dirac cones have the same radius. In a system
with different masses � �= �′ is possible to prove that a general
focusing condition is given by

Ec = V0/2 + (�2 − �′2)/2V0, (13)

where V0 � � + �′. Then, the Snell’s law (12) evaluated at
this energy can be reduced to φ′ = π − φ, which indicates the
presence of a focused particle beam at the refraction region.

IV. TRANSMISSION THROUGH
A HOMOGENEOUS JUNCTION

We start analyzing particle transmission for the case (i)
M = Sz which corresponds to the system (0,0), and later the
cases (ii) M = ±U corresponding to the systems (±1,±1).

(i) M = Sz: system (0,0).
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Thereby, with the help of the general equation (11) and
Table I, the reflection probability for the case (0,0)

R =
(
s cos φ − β

β ′ s
′ cos φ′)2 + (

�
|E| sin φ − β�

β ′|E′| sin φ′)2

(
s cos φ + β

β ′ s ′ cos φ′)2 + (
�
|E| sin φ − β�

β ′|E′| sin φ′)2

(14)

is obtained. In order to evaluate the transmission probability
of massive pseudospin-one particles with M = Sz, we use the
expressions (12) and (14) where the transmission probability is
T = 1 − R. Thus Fig. 3(b) shows the transmission probability
T as a function of the incidence angle φ and energy E.
The set of values used for the parameters involved in this
calculation are � = �′ = 40 meV, V0 = 200 meV, and the
Fermi velocity vF = 0.83×106 ms−1 was taken as in pristine
graphene [2]. We note that there are two transmission gaps with
a threshold of 2� = 80 meV, which induces three regimes in
the transmission spectra. One of the main consequences of
the band gap structure in the system is the separation between
the intraband and interband transmissions. The first regime
shows the transmission probability from the valence band in
the region I to the valence band in the region II (s = −1,
s ′ = −1). In this regime, the massive pseudospin-one particles
behave as those massless pseudospin-1/2 and Klein tunneling
for normal incidence is observed for |E| � �. This result
is well understood when we identify the resemblance with
ultrarelativistic particles because the rest mass energy becomes
negligible compared with the kinetic energy. In contrast, for
|E| ≈ � the Klein tunneling is completely lost. The second
regime corresponds to the transmissions from the conduction
band in region I to the valence band in region II (s = 1,
s ′ = −1) and occurs when V0 > 2�. Here, as can be observed
in Fig. 4(a), we found the formation of SKT at the energy
E = V0/2 = 100 meV, which is the same value predicted for
massless pseudospin-one systems [16,19,20]. For this energy,
the Snell’s law (12) is simplified to φ′ = π − φ indicating that
the refracted beam is met again in a symmetric spot within the
region II. Further, in this regime we can see that there is a wide
incidence region and energies where a high transmission rate
is observed. This result contrasts with massive pseudospin-
1/2 Dirac fermions in graphene, where perfect nonresonant
tunneling never occurs for interband transmission [36]. Finally,
the third regime consists of transmissions from the conduction
band in region I to the conduction band in region II (s = 1 to
s ′ = 1). Likewise that for the first regime, Klein tunneling is
observed for high energies due to the massless limit.

(ii) M = ±U : systems (±1,±1).
Now we consider the case M = U or system (1,1), whose

results can be generalized with the substitutions α → γ and
γ → α for the M = −U case or system (−1,−1). Using the
general equation (11) and Table I, the reflection probability for
the case (1,1) is given by

R =
⎛
⎝ s cos φ − s ′

√
α′γ
αγ ′ cos φ′

s cos φ + s ′
√

α′γ
αγ ′ cos φ′

⎞
⎠

2

. (15)

The transmission probability for the cases M = U and
M = −U as a function of the incidence angle φ and the energy
E is plotted in Figs. 5(b) and 5(d), respectively. The values

FIG. 4. (a) Transmission probability as a function of φ for the
(0,0) system: SKT behavior (red curve) is obtained with the set
of values V0 = 200 meV, E = V0/2 = 100 meV, and � = �′ = 40
meV for equal masses in both sides of the junction. Orange (yellow)
curve shows how SKT is lost when the value of energy is changed
to E = 95 (E = 90) meV. Such an effect also is affected setting
the masses to be different in both regions with � = 0 (� = 90)
and �′ = 40 meV, as shown in blue (green) curve, where E = 96
(E = 116) meV is calculated from the general focusing condition
(13). (b) Transmission probability as a function of φ for the (1,1)
system using the same set of values as in (a): red, blue, and green
curves show ASKT (see text).

of the parameters used in these plots are the same as those
used in Fig. 3(b). As we can see from Figs. 3(b) and 5(b),
the transmission probability show some similarities with the
case M = Sz. First, the two transmission gaps are located
at the same energy values because they only depend on the
band gap energy. Likewise, the massless limit is obtained for
high energy values and the Klein tunneling for normal inci-
dence is restored for intraband transmission regimes (s = −1,
s ′ = −1 and s = 1, s ′ = 1). However, in the interband trans-
mission regime (s = −1, s ′ = 1) the SKT is absent. If we
focus at the energy value of E = V0/2, we found that the
transmission probability is not perfect but it is omnidirectional
as can be seen in Fig. 4(b). This reminiscence of the SKT can
be considered as an attenuated super-Klein tunneling (ASKT).
Furthermore, there are also some clear differences between
transmission probabilities corresponding to U and −U that
become more evident near to the transmission gaps. Whereas
in the U case, the transmission probability is higher for
angles of incidence far from the normal incidence within the
interband transmission, the −U case shows a similar behavior
within the intraband transmission regime for energies near to
E = −�. This is an unusual effect in massive pseudospin-one
particles transmission because in the nonrelativistic regime the
transmission probability is always less than one. Such distinc-
tive features for the transmission of massive pseudospin-one
particles make evident the drastic effect caused by the flat
band location. Therefore, a natural issue to analyze emerges
about whether the transmission probability presents important
changes when the two regions forming the junction have
different flat band location and masses.
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FIG. 5. Scheme of the band structure for the systems (a) (1,1) and (c) (−1,−1). Transmission probability as a function of the incidence
angle φ and the energy E for the systems (b) (1,1) and (d) (−1,−1), using the set of values � = �′ = 40 meV, V0 = 200 meV, and the Fermi
velocity value vF = 0.83×106 ms−1.

V. TRANSMISSION THROUGH
A HETEROGENEOUS JUNCTION

For the configurations (i,j ) with i �= j a heterogeneous
junction is created. The transmission probabilities for these
cases can be obtained using the general equation (11), the

parameter values shown in Table I, and the relation T = 1 − R.
Figure 6 shows the transmission probabilities as a function
of energy E and incidence angle φ for the systems (1,−1)
and (−1,1). We set � = �′ = 40 meV, V0 = 200 meV as
in the previously discussed cases (0,0), (1,1), and (−1,−1),

FIG. 6. Transmission probability as a function of the energy E and the incidence angle φ, for the systems (a) (1,−1) and (b) (−1,1), with
the same set of parameter values as in Fig. 5.
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FIG. 7. Transmission probability as a function of the energy E and the incidence angle φ, for the systems (a) (0,1), (b) (1,0), (c) (0,−1),
and (d) (−1,0).

and the Fermi velocity value of vF = 0.83×106 ms−1 is used.
Then, we can note that SKT appears again at the focusing
energy condition E = V0/2. This result indicates that the
asymmetrical location of the flat bands produces the same
effect as that in the (0,0) system. From the reflection coefficient
(11) and evaluating for φ′ = π − φ, we can prove that
R−11 = R1−1 = R00 = 0, which is independent of φ. Hence
the predicted SKT for massless pseudospin-one particles
[16,19,20] is also achieved with the mass generation term
and depends on the flat band location. Furthermore, we note
that the intraband transmission regime of (−1,1) for E < −�

has a similar behavior than for the (−1, − 1) configuration, as
shown in Fig. 5(d). This feature of the transmission probability
presenting high values when |φ| is increased within the
intraband transmission s = s ′ = −1 are typical in the (−1,j )
systems. In general for a (i,j ) system with V0 � � + �′,
the intraband transmission s = s ′ = −1 (s = s ′ = 1) is mainly
governed by the i (j ) index, because the flat band in region II
(I) is located far away from the energy range of the regime of
interest.

Systems with the (0,1), (1,0), (0,−1), and (−1,0) con-
figurations do not present SKT or ASKT, as seen in Fig. 7.
In all the cases, when E � � or �′, the transmission of
massive particles is very similar to massless cases. Moreover,
the Klein tunneling for normal incidence is still observed.

The perfect transmission appears for a wide range of φ

which is a distinctive feature of pseudospin-one particles.
For energies near to the band gap energy, the mass and the
location of the flat band begin to be relevant. It is important
to note that for energies satisfying |Ec| < E < |V0| − �′ and
E > |V0| + �′, transmission modes occur for the incidence
range −φc � φ � φc, where φc = arcsin(|E − V0|β ′/Eβ) is
the critical angle.

Comparing the present results with the corresponding ones
for electrons in gapped graphene [36], we found that the perfect
interband transmission of massive pseudospin-one particles
still persists in most of the cases except for the (−1,0)
and (0,1) configurations. These results contrast with the
complete absence of perfect interband transmission of massive
pseudospin-1/2 particles [36]. Under the general focusing
condition (13), the nondependence of Rij on φ is maintained
for the (−1,1), (1,−1), (1,1), and (−1,−1) systems, and its
value is given by the relation Rij = (i� + j�′)2/V 2

0 .
One can attempt to search other SKT conditions by tuning

the parameters � and �′. Nevertheless, the appearance of SKT
requires that the mass terms remain the same in both regions
of the step potential, Fig. 4(a). Furthermore, a small variation
of energy, namely E = V0/2 + δE, has an effect on SKT. As
we show before, strong differences in the transmission as a
function of φ are evidenced with the tuning of �, �′, and
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FIG. 8. Transmission probability for massive particles as a func-
tion of E for normal incidence (φ = 0), for the case of pseudospin-1/2
in green, and for the case of pseudospin-one in the configurations:
(1,−1) and (−1,1) in red and (0,0) in yellow.

E for the (0,0) system; see Fig. 4(a). In this way, ASKT also
turns out to be susceptible to small variations of E, as shown in
Fig. 4(b) for the (1,1) configuration. Although small variations
in a possible experimental setup could generate observable
effects in the transmission for high values of φ, perfect
and attenuated transmission are robust for a wide angular
range.

In Fig. 8, we compare the transmission of massive
pseudospin-one particles with the pseudospin-1/2 case, under
normal incidence as a function of E. With massless particles,
perfect transmission always occurs independent of the energy
due to the pseudospin conservation in φ = 0. However, the
mass generation term changes drastically the transmission
behavior within the nonrelativistic regime. The transmission
probability is the same for the cases of pseudospin-1/2 and
-one in the configurations (−1,−1) and (1,1). This indicates
that the flat band location does not affect the transmission
under normal incidence in these configurations. However, the
flat band location modifies the transmission for other incidence
angles. Thus the systems (−1,1), (0,0), and (1,−1) responsible
of the SKT are very different in the cases of pseudospin-one
and 1/2.

Finally, we analyze the intriguing issue of the particle trans-
mission from the flat band to the conduction or valence band
and vice versa. Such a problem can be discussed following a
similar line of thinking as for massless particles [16]. Thus the
determination of reflection or transmission coefficient needs
to consider the superposition of all the possible states with the
same energy in regions I or II. We found that for all the limit
cases involving flat bands, where the transmission of massive
pseudospin-one particles is determined, a perfect reflection
emerges, as shown in the Appendix. The usual perfect
transmission for normal incidence in massless pseudospin-one
particles involving the flat band is destroyed by the mass

generation term giving rise to the perfect reflection. This effect
explains the increase of the transmission probability as |φ|
is increased in the interband of transmission region near to
the gaps.

VI. CONCLUSIONS AND FINAL REMARKS

In summary, we have discussed the role of the flat
band location in the transmission of massive pseudospin-one
particles at homogeneous and heterogeneous junctions. We
found that if the flat band is located in the middle of the
conduction and valence band in both regions [(0,0) system],
or located at the maximum valence band in region I and
the minimum conduction band in region II [(1,−1) system]
and vice versa [(−1,1) system], SKT is preserved when the
mass terms are equal. In contrast, a flat band located at the
minimum (maximum) of the conduction (valence) band [(1,1)
and (−1,−1)] leads to an omnidirectional transmission, which
we called attenuated SKT (ASKT) and it can occur even with
different masses. For those systems, the transmission under
normal incidence is unaffected and matched with the transmis-
sion of massive pseudospin-1/2 particles. Furthermore, Klein
tunneling is restored in the massless limit. These findings are
useful to understand the role that the flat band plays in the
particle transmission, as well as its effects on the optics of
massive pseudospin-one particles.
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APPENDIX: TRANSMISSION OF PSEUDOSPIN-ONE
PARTICLES FROM THE FLAT BAND

In this appendix, we discuss the cases involving directly the
flat band: (i) E = 0 for (0,j ), (ii) E = ±� for (±1,j ), (iii)
E = V0 ± �′ for (i,±1), and (iv) E = V0 for (i,0).

(i) In this case, transmission probability from the flat band
seems to be undetermined because the group velocity for
topological states of the flat band is zero. The boundary con-
ditions are insufficient for determining the r(px) amplitudes
which are involved in the superposition of all the topological
states.

(ii) For normal incidence φ = 0, wave function in region
I is obtained by the superposition of a constant prop-
agation mode and the linear combination of topological
states

|�I 〉 = 1

2
(1 + r)

⎛
⎜⎝

√
α

s
√

2γ√
α

⎞
⎟⎠

+ 1√
2

⎛
⎝ 1

0
−1

⎞
⎠ ∫

(eixp/h̄ + rpe−ixp/h̄)dp, (A1)
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where rp (r) is the reflection amplitude for a topological
state (propagation mode) with a linear momentum p (0). In
(A1), we have used the wave functions (7). In region II,
the wave function has the form (10), where φ′ = 0 due to
Snell’s law (12). Equation (A1) shows that the topological
states contributions do not participate in the scattering problem
because ψ2 and ψ1 + ψ3 are zero. Then, the reflection
probability can be determined from (11) obtaining R±1j = 1.
For φ �= 0, in the same way as in case (i), the boundary
conditions are insufficient to determining all the possible rp

amplitudes.
(iii) For normal incidence, the wave function in region I

is given by (9) evaluating at φ = 0, whereas in region II the
wave function consists of a superposition of topological states
and one propagation mode,

|�II 〉 = 1√
2

⎛
⎝ 1

0
−1

⎞
⎠ ∫

tpeixp/h̄dp + t

2

⎛
⎜⎝

√
α′

√
2γ ′

√
α′

⎞
⎟⎠, (A2)

where tp are the parameters of the linear combination. Again,
the topological states in (A2) do not contribute to the scattering
problem. Hence the reflection probability is given by (11),
where Ri±1 = 1 for φ = 0 and E = V0 ± �′. This result for
massive pseudospin-one particles with perfect reflection at

normal incidence contrasts with the massless case, where
perfect transmission is always obtained [16]. For φ �= 0, the
wave function in region II is written as

|�II 〉 = 1√
2

∫
tp

⎛
⎜⎝

e−iφ′(p)

0

−eiφ′(p)

⎞
⎟⎠eixp/h̄dp. (A3)

Applying again the boundary conditions, the vanishing ψ2(x)
component in (A3) necessarily leads to a perfect reflection
because r = 1.

(iv) The wave function in region I is the same as (9),
whereas in region II it is conformed by the linear combination
of topological states

|�II 〉 = 1√
2

∫
tp

⎛
⎜⎝

β ′e−iφ′
p

−√
2 �′

|E−V0|
−β ′eiφ′

p

⎞
⎟⎠eixp/h̄dp. (A4)

Since we have φ′
p = 0 for normal incidence, the wave

function (A4) meets the condition ψ1(x) + ψ3(x) = 0.
This indicates that r = −1 and hence perfect reflection
is again obtained. For φ �= 0, the nonzero ψ2(x) com-
ponent in (A4) makes the reflection probability become
undetermined.
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