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Nonequilibrium phonon dynamics beyond the quasiequilibrium approach
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The description of nonequilibrium states of solids in a simplified manner is a challenge in the field of ultrafast
dynamics. Here, the phonon thermalization in solids through the three-phonon scatterings is investigated by
solving the Boltzmann transport equation (BTE). The numerical solution of the BTE shows that the transverse
acoustic and longitudinal acoustic (LA) phonon temperatures are not well defined during the relaxation, indicating
the breakdown of the quasiequilibrium approximation. The development of hot and cold phonons and the
backward energy flow from low to high energy phonons are observed in the initial and final stage of the
relaxation, respectively. A minimal model is presented to relate the latter with the power-law decay of the LA
phonon energy.
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I. INTRODUCTION

Thermalization of quasiparticles and elementary excitations
in solids is a complex phenomenon because electron-electron
(e-e), electron-phonon (e-ph), and phonon-phonon (ph-ph)
dynamics are simultaneously involved. To develop a language
for describing the nonequilibrium states in a simplified manner
is highly desirable. Although the debate on this issue is still far
from settled, the two-temperature model (TTM) for electrons
and phonons [1,2] has served as a minimal model in the field
of ultrafast dynamics. For example, the TTM has been widely
used to study the energy relaxation of a variety of materials
such as metals [3–6], nanocarbons [7–9], Dirac semimetals
[10], and warm-dense matters [11].

The main assumption behind the TTM is that through
the e-e and ph-ph scatterings, the electrons and phonons
immediately reach an equilibrium state that is characterized
by the time-dependent electron and phonon temperatures,
respectively [2]. However, the breakdown of the TTM in
the relaxation dynamics has been addressed by several
authors [12–19]. This may be attributed to (i) the Pauli
exclusion principle, which reduces the scattering phase
space [12–14,16], (ii) the strong electron screening, which
slows the electron thermalization time [16], and (iii) the
strong e-ph coupling, which disturbs the electron and phonon
distributions significantly [15,17]. Recently, the breakdown of
the TTM due to the nonthermal phonon distribution has been
reported in a layered material [19] and even in aluminum [18].
This is because the occupation numbers of the longitudinal
acoustic (LA) and transverse acoustic (TA) phonons in those
solids are described by Bose-Einstein (BE) function with
different temperatures, while in the TTM these are described
by the same temperature.

Recent experiments have made it possible to investigate
the time-evolution of phonon distribution in solids [20,21].
Such achievements together with theoretical works [22,23]
have revealed novel phonon dynamics on a picosecond time
scale, such as the branch-dependent population dynamics [20]
and the phonon production by upconversion [22].
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With these nonequilibrium phonons emerging in solids, it
is time to study the quasiequilibrium treatments for phonons
in detail and consider whether some intriguing rules for the
phonon thermalization can be found. This is the aim of this
paper. Therefore, we first present a numerical solution of the
Boltzmann transport equation (BTE) for solids and discuss the
phonon thermalization through the three-phonon scatterings.
Then, we show that the TA and LA phonon temperatures
are not well defined during the relaxation since the phonon
distribution for each branch is not described by BE statistics. In
the initial stage of the relaxation, each phonon subset develops
into hot and cold phonons with time. In the final stage of
the relaxation, the backward energy transfer from low to high
energy regions occurs. This yields the power-law decay of the
LA phonon energy, which explains the recent experimental
observations [19]. The relaxation behavior for each stage is
illustrated by a simplified model derived from the BTE.

The rest of this paper is organized as follows. In Sec. II,
we formulate a theory of the phonon thermalization of solids
based on the BTE considering the three-phonon scatterings.
In Sec. III A, we examine the time-evolution of the phonon
occupations, and study the approach to equilibrium. We
demonstrate the breakdown of the quasiequilibrium approx-
imation during the relaxation, and propose a nonequilibrium
function that quantitatively describes the numerical results.
The relaxation dynamics in the initial and final stages are
investigated by constructing simple models in Secs. III B
and III C, respectively. In Sec. III D, some remarks including
an interpretation of the experiment [19] are presented. Finally,
we summarize our conclusion in Sec. IV. Technical detail
concerning the fitting procedure of the numerical data is given
in Appendix A. Numerical simulation results with the use of
the different matrix element for the three-phonon scatterings
are given in Appendix B.

II. FORMULATION

We study the phonon thermalization on a face-centered
cubic monatomic lattice. We expand the lattice potential
energy in powers of the displacement of atoms from the
equilibrium position, as V = ∑

p Vp, with p = 0,2, and 3.
V0, V2, and V3 are the rigid lattice, harmonic, and anharmonic
potentials, respectively. The use of V2 enables to compute the
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phonon band structure with two adjustable parameters [24],
if we assume that V2 depends on the distance between
nearest-neighbor atoms only. By defining the force constants
A and B as

A = 2

d

dV(r)

dr

∣∣∣∣
r=d

,

B = 2

[
d2V(r)

dr2

∣∣∣∣
r=d

− 1

d

dV(r)

dr

∣∣∣∣
r=d

]
, (1)

where d is the equilibrium nearest-neighbor distance, the
phonon energies are calculated by diagonalizing the dynamical
matrix given by

D =
∑

R

sin2

(
q · R

2

)
[A1 + BR̂R̂], (2)

where 1 is the 3 × 3 unit matrix and R̂R̂ is the dyadic formed
from the unit vectors R̂ = R/|R| with R being the nearest
neighbor point vector. Given three eigenvalues λ, the phonon
frequencies are given by ω = √

λ/Mi with the ion mass Mi .
The phonon energy is denoted by h̄ωq,μ, where h̄ is the Planck
constant, q is the wave vector, and μ is the branch index, i.e.,
TA1, TA2, and LA. Note that the phonon frequency at X point
is explicitly given by

ωX,LA =
√

8A + 4B

Mi

, ωX,TA =
√

8A + 2B

Mi

. (3)

By setting h̄ωX,LA = 40 meV and h̄ωX,TA = 30 meV, which
are close to the values of phonons in aluminum, the force
constants A and B in Eq. (1) are, through Eq. (3), determined
uniquely. Then, we obtain the phonon band structure through
Eq. (2), shown in Fig. 1.

The thermalization occurs through multiphonon scatter-
ings. The three-phonon processes are governed by the cubic
term V3 = 1

6

∑
A

ijk

l,l1,l2
ui

lu
j

l1
uk

l2
, where the summation is taken

over the Cartesian coordinates i,j , and k, and the lattice
vectors l,l1, and l2. ui

l is the ith Cartesian component of the
atom displacement at the equilibrium position l and A

ijk

l,l1,l2
is

the expansion coefficient. By introducing the phonon creation
(destruction) operator b

†
q,μ (bq,μ) for the phonon mode (q,μ),

one obtains

V3 = 1

6

∑
q,q1,q2

∑
μ,μ1,μ2

Mμ,μ1,μ2
q,q1,q2

Xq,μXq1,μ1Xq2,μ2 (4)
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FIG. 1. Calculated phonon dispersion relations along the symme-
try points. At X point, h̄ωX,LA and h̄ωX,TA are set to 40 and 30 meV,
respectively.

with Xq,μ = bq,μ + b
†
−q,μ and the three-phonon matrix ele-

ments M
μ,μ1,μ2
q,q1,q2 . We apply the Fermi’s golden rule for describ-

ing the probability of a transition between three-phonon states.
Given no contribution from the diffusion and external field
terms, the time (t) evolution of the occupation number nq,μ at
the phonon energy h̄ωq,μ is described by the BTE [25,26]

∂nq,μ

∂t
= 2π

h̄2N2

∑
q1μ1

∑
q2μ2

∣∣Mμ,μ1,μ2
q,q1,q2

∣∣2
(

1

2
Sa + Si

)
(5)

with the number of unit cell N and

Sa = [
n(+)

q,μnq1,μ1nq2,μ2 − nq,μn(+)
q1,μ1

n(+)
q2,μ2

]
× δ

(
ωq,μ − ωq1,μ1 − ωq2,μ2

)
, (6)

Si = [
n(+)

q,μn(+)
q1,μ1

nq2,μ2 − nq,μnq1,μ1n
(+)
q2,μ2

]
× δ

(
ωq,μ + ωq1,μ1 − ωq2,μ2

)
(7)

with n
(+)
q,μ = nq,μ + 1. Sa and Si denote the phonon

anharmonic decay [(qμ) ↔ (q1μ1) + (q2μ2)] and inelas-
tic scatterings [(qμ) + (q1μ1) ↔ (q2μ2)], respectively. The
square of the matrix element is given by |Mμ,μ1,μ2

q,q1,q2 |2 =
δ�q,Gf ( Q, Q1, Q2) where Q = aq/(2π ) with the lattice
constant a. δ�q,G with �q = q ± q1 − q2 and the recip-
rocal lattice vector G indicates the crystal momentum
conservation law, where − for the anharmonic decay and
+ for the inelastic scattering. The function f is pro-
portional to |Ãijk

q,q ′,q ′′ |2(εi
q,με

j
q1,μ1ε

k
q2,μ2

)2(ωq,μωq1,μ1ωq2,μ2 )−1,

where Ã
ijk

q,q ′,q ′′ is the Fourier transformation of A
ijk

l,l1,l2
and

εi
q,μ is the ith component of the polarization vector cor-

responding to the mode (q,μ). Since the (qμ) dependence
of f is quite complex, we simply employ the result of
the continuum elasticity theory [25,26]. The cubic term is
alternatively expressed as V3 = 1

6

∑ ∫
Blmn

ijk ηi
l η

j
mηk

nd r with
r = (x1,x2,x3). The summation is taken over the Cartesian
coordinates i,j,k,l,m, and n. Blmn

ijk is the six rank tensor, while
ηi

l = ∂ui(r)/∂xl serves as the second rank strain tensor, where
ui(r) is the slowly varying displacement vector at r . The
Fourier transformation together with the use of the phonon
creation and destruction operators yields the three-phonon
Hamiltonian in a reciprocal space. The square of the matrix
element is linearly proportional to |q||q1||q2| [25,26]. By using
this expression, we define the three-phonon matrix element in
Eq. (5) as ∣∣Mμ,μ1,μ2

q,q1,q2

∣∣2 = δ�q,Gw2
0| Q|| Q1|| Q2|, (8)

where w0 is a parameter that determines the magnitude of the
matrix elements. The larger value of w0 leads to the faster
relaxation. Since the relaxation time in solids is usually an
order of ps [18,20,21], we set w0 = 6 meV. While the use of a
realistic potential [27,28] would reveal the themalization of a
specific system, such a work is beyond the scope of the present
study.

The differential equation given by Eq. (5) is solved numer-
ically with the time step of �t = 0.02 ps. The Dirac delta
function is approximated by the Gaussian function with the
broadening of 0.2 meV. The Brillouin zone is integrated with a
Gamma-centered Monkhorst-Pack mesh [29] of 14 × 14 × 14
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at each time. For the present choice of parameters, the relative
error of the total energy is found to be 0.12% at t = 5000�t .

When a solid is excited by a pump pulse, the absorbed
photon energy is transferred to the lattice via the e-ph coupling.
Since the electron-LA phonon coupling is usually stronger
than the electron-TA phonon coupling [18], we considered the
following initial condition

nq,μ = [eh̄ωq,μ/(kBTini) − 1]−1, (9)

where kB is the Boltzmann constant, and Tini = Tlow for
μ = TA1 and TA2 and Tini = Thigh for μ = LA. Since
h̄ωX,LA = 40 meV and h̄ωX,TA = 30 meV, we studied several
initial conditions: the low temperature limit kBTlow,kBThigh <

h̄ωX,TA, the high temperature limit h̄ωX,LA < kBTlow,kBThigh,
and the intermediate case such as kBTlow < h̄ωX,TA,h̄ωX,TA <

kBThigh < h̄ωX,LA. We also considered the Gaussian-type
excitation of phonons nq,μ = n(0)(ωq,μ,T ) + n(1)e−(h̄ωq,μ−ε)2

where n(0)(ωq,μ,T ) is the BE function with finite T , ε is the
excited phonon energy that gives a peak of the distribution
function, and n(1) is the amplitude. For example, we set
ε = 40 meV, and n(1) = 10, assuming that the phonons with
the Debye frequency are coherently excited at room T . Nev-
ertheless, these initial conditions do not change the relaxation
behavior qualitatively. Below, we thus set kBTlow = 1 meV and
kBThigh = 35 meV in Eq. (9).

III. RESULTS AND DISCUSSION

A. Nonequilibrium dynamics

Figure 2 shows the distribution of TA1, TA2, and LA
phonon modes for t = 0.1,1,10, and 100 ps. The occupation
number of TA1 and TA2 phonon modes increases with time,
while that of LA modes decreases. This clearly indicates that
the energy is transferred from the LA to TA phonons. At t =
100 ps, the phonon system is in equilibrium at kBT = 17 meV.
This is the simplest interpretation of the relaxation dynamics.

Figure 3 shows the phonon occupation numbers at t = 1 ps
and the BE statistics with a few lattice temperatures (dashed
and dot-dashed curves). It is shown that the phonon distribution
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FIG. 2. The phonon distribution function as a function of TA1
(square), TA2 (triangle), and LA (filled circle) phonon energies for
several ts. For comparison, the distribution function of μ = LA at
t = 0 ps (open circle) is also shown.
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FIG. 3. Snapshot of the phonon distribution function at t = 1 ps.
The distribution function can be fit by Eq. (10). The deviation from
the fit is due to both the suppressed value of f for h̄ω � 10 meV and
the finite mesh size.

cannot be described by BE statistics, in particular in the
high energy tail. This shows that the TA and LA phonon
temperatures are never well-defined during the relaxation,
showing the breakdown of the quasiequilibrium treatment.

There are two reasons why the BE function fails to
describe the LA and TA phonon populations. First, in Fig. 2,
the population of LA phonons with h̄ωq,LA � 20 meV and
h̄ωq,LA > 20 meV, respectively, increases and decreases too
much, compared to the initial distribution function, at the
initial stage of relaxation. Second, the population increase of
the TA phonons with h̄ωq,TA � 20 meV is much larger than
that of the TA phonons with h̄ωq,TA > 20 meV. To describe
such a strong population variation with ωq,μ, we consider the
following function:

nq,μ(t) =
[

exp

(
h̄ωq,μ

kBT
(0)
μ (t) + rμ(t)h̄ωq,μ

)
− 1

]−1

, (10)

where T (0)
μ (t) and rμ(t) are a quasitemperature and a di-

mensionless parameter that characterizes the degree of the
nonequilibrium of the branch μ, respectively. The deviation
from rμ = 0 measures how each subset is far from equilibrium.
A fit to the distribution function given by Eq. (10) was per-
formed at each time by using minpack [30] (see Appendix A
for the numerical implementation). As shown in Fig. 3, the
agreement is good, indicating the validity of the form of
Eq. (10) to describe the nonequilibrium distribution. Note that
the suppression of the population observed at h̄ωq,μ � 10 meV
in the TA phonons is due to the small |Mμ,μ1,μ2

q,q1,q2 |2 for smaller
|q| because it was not observed when f = w2

0 is used (see also
Appendix B).

B. Initial stage of the relaxation

1. Development of hot and cold phonons

To understand the initial population dynamics, we show the
t dependence of T (0)

μ and rμ in Figs. 4(a) and 4(b), respectively.
For comparison, the time evolution of T (0)

μ with rμ fixed to
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FIG. 4. The time evolution of (a) T (0)
μ and (b) rμ (μ = TA1, TA2,

and LA) given in Eq. (10). Inset: The t dependence of T (0)
μ with rμ

fixed to zero.

zero (i.e., within the quasiequilibrium approximation) is also
shown in the inset of Fig. 4(a). In the latter case, T (0)

μ (t) shows a
monotonic increase and decrease for μ = TA1(TA2) and LA,
respectively, simply indicating that the LA phonon energy is
transferred to TA phonons. In the case of rμ(t) �= 0 shown
in Fig. 4(a), kBT

(0)
LA (t) initially increases with time and takes

the maximum value of 75 meV, quite higher than the initial
energy, at t � 0.6 ps. Then, kBT

(0)
LA (t) decreases slowly and

approaches 17 meV at t = 100 ps. Conversely, rLA(t) becomes
negative and takes the minimum value of −1.5 at t = 0.6 ps,
after which rLA(t) starts to approach zero shown in Fig. 4(b).
Similar behavior is observed for μ = TA1 and TA2, while the
variation of the two parameters as a function of t is not so
large, compared to the case of the LA phonon. The nonzero
value of rμ(t) indicates that each phonon subset starts to be
divided into hot and cold parts until a critical t (�0.6 ps), after
which they thermalize. Since rμ < 0, this can be interpreted as
the development of the hot low energy phonon (LEP) and cold
high energy phonon (HEP) in the initial stage of the relaxation.
It would yield the backward energy flow from LEP to HEP in
the final stage of the relaxation.

2. Relevant scattering processes and the upper value of the hot
LEP energy

It is possible to determine the scattering processes relevant
to the hot LEP and cold HEP creation in the LA phonon
branch at t � 0 ps. Simultaneously, the maximum of the hot
LEP energy or the minimum of the cold HEP energy is also
determined. To show this, we focus on the ω dependence of
the LA phonon distribution function nLA(ω,t) and evaluate the
collision term for the ph-ph scatterings at t = 0 ps only. We
then start from the BTE for nLA(ω,t)

∂nLA(ω,t)

∂t
= γ 2

LA-TA

h̄2N2

×
[∫ �LA

0
dω′DLA(ω′) +

∫ �TA

0
dω′DTA(ω′)

]

×
[∫ �LA

0
dω′′DLA(ω′′) +

∫ �TA

0
dω′′DTA(ω′′)

]

×
(

1

2
Fa + Fi

)
, (11)

with the phonon density-of-states (DOS) Dμ(ω) (μ = LA or
TA), the averaged three-phonon Hamiltonian matrix elements
γLA-TA between the LA and TA phonons, and

Fa = [n+
LA(ω)nμ′(ω′)nμ′′(ω′′)

− nLA(ω)n+
μ′(ω′)n+

μ′′(ω′′)]δ(ω − ω′ − ω′′),

Fi = [n+
LA(ω)n+

μ′(ω′)nμ′′(ω′′)

− nLA(ω)nμ′(ω′)n+
μ′′(ω′′)]δ(ω + ω′ − ω′′) (12)

with n+
μ (ω) = nμ(ω) + 1. μ′ and μ′′ in Eq. (12) are the

mode index corresponding to ω′ and ω′′, respectively: For
example, when the phonon mode with the frequency ω′ is
the TA mode, μ′ = TA. Since we focus on the relaxation
at t = 0 ps, nLA(ω),nμ′(ω′), and nμ′′ (ω′′) in the right hand
side (r.h.s.) in Eq. (12) can be approximated by the initial
distribution function, i.e., the Bose distribution function with
the temperature Tini = Tlow for TA modes and Tini = Thigh for
LA modes [see Eq. (9)]. If μ′ = μ′′ = LA, no scatterings
contribute to the collision term in Eq. (11). This is because
all the distribution functions nLA(ω),nμ′(ω′), and nμ′′(ω′′)
are associated with the same temperature. Then, the r.h.s.
in Eq. (11) are decomposed into six terms P (i) with i =
1,2,3,4,5, and 6. Table I lists the scattering processes that
contributes to the r.h.s. in Eq. (11). They are explicitly
given as

P (1) =
∫ �LA

0
dω′DLA(ω′)

∫ �TA

0
dω′′DTA(ω′′)

Fa

2
,

P (2) =
∫ �LA

0
dω′DLA(ω′)

∫ �TA

0
dω′′DTA(ω′′)Fi ,

P (3) = P (1),

P (4) =
∫ �TA

0
dω′DTA(ω′)

∫ �LA

0
dω′′DLA(ω′′)Fi ,

P (5) =
∫ �TA

0
dω′DTA(ω′)

∫ �TA

0
dω′′DTA(ω′′)

Fa

2
,

P (6) =
∫ �TA

0
dω′DTA(ω′)

∫ �TA

0
dω′′DTA(ω′′)Fi .

(13)

TABLE I. Three-phonon scattering processes between LA and
TA phonons.

i = 1 ω′
LA + ω′′

TA � ωLA

i = 2 ω′′
TA � ωLA + ω′

LA

i = 3 ω′
TA + ω′′

LA � ωLA

i = 4 ω′′
LA � ωLA + ω′

TA

i = 5 ω′
TA + ω′′

TA � ωLA

i = 6 ω′′
TA � ωLA + ω′

TA
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FIG. 5. (a) The ω dependence of Ptot and P (i) for i = 1,2,3,4,
and 5. (b) The magnified view of (a) for small Ptot and P (i). t0 is set
to 1 ps.

Here P (i) with odd and even i indicates the anharmonic
decay and the inelastic scattering of the phonon mode with
ω, respectively. We apply the Debye model for the LA and TA
phonons, where the phonon DOS for the LA and TA phonons
are given by

DLA(ω) = 3Nω2

�3
LA

θH (�LA − ω),

(14)

DTA(ω) = 6Nω2

�3
TA

θH (�TA − ω),

respectively, with the Heaviside step function θH (ω). As shown
in Fig. 1, h̄�LA and h̄�TA are set to be 40 and 30 meV,
respectively.

Figure 5(a) shows the ω dependence of P (i) with i = 1,

2, 3, 4, 5, and the sum of the contribution Ptot[=
∑6

i=1 P (i)].
P (1) is exactly the same as P (3). P (6) is not shown because
it is negligibly small. For smaller ω, P (2) and P (4), related
to the inelastic scattering processes, are negative and positive,
respectively, so that they are canceled out partly. This yields
the positive value of Ptot for smaller ω, indicating the creation
of the hot LEP for t > 0. A magnified view [Fig. 5(b)] shows
that ω-Ptot curve crosses zero at h̄ω = h̄�LA � 23 meV (black
arrow) because of the negative values of P (1), P (3), and P (5)
that originate from the anharmonic decay processes. This, in
turn, indicates the creation of the cold HEP above ω = �LA.
Notice that the value of h̄�LA is almost the same as the upper
value of the hot LEP energy, shown in Figs. 2 and 3.

C. Final stage of the relaxation

1. Power-law decay and backward energy flow

Figure 6(a) shows the time evolution of the total LA phonon
energy per a unit cell ELA(t) = ∑

q h̄ωq,LAnq,LA(t)/N . The
magnitude of ELA decreases with time and converges to the
value of 5.4 meV at t = 100 ps. Interestingly, the power-law
behavior is observed from t = 2 to 45 ps; ELA(t) ∝ t−p with
p = 0.12. Below, we show a model to relate the power-law
relaxation with the backward energy flow from the hot LEPs
to cold HEPs just before reaching the equilibrium. Note that
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FIG. 6. (a) The time evolution of the LA phonon energy ELA(t)
and the LEP energy ELEP(t) calculated by using Eqs. (5) and (22),
respectively. The curves proportional to t−α with α = 0.12 is
also shown. The t dependence of ELEP for various (b) kBTbath

and (c) h̄�LA.

the phonon dynamics in lattices with a basis would also be
described by the present model because most of the optical
phonons must have decayed into acoustic phonons in the final
relaxation.

We assume that the nonequilibrium distribution function
for the LA phonons is expressed as [31]

nq,LA = [eh̄ωq,LA/(kBT ∗) − 1]−1, (15)

with the effective temperature T ∗ = θLA(t) for ωq,LA � �LA

(i.e., LEP) and T ∗ = Tbath for ωq,LA > �LA (i.e., HEP). Tbath

is time independent satisfying θLA(t) > Tbath, that is, the HEPs
serve as a thermal bath.

The time evolution of the total energy of the LEP is given
by

∂ELEP(t)

∂t
= 1

N

∑
q

′
h̄ωq,LA

∂nq,LA

∂t
, (16)

where the summation is taken over all the wave vectors sat-
isfying h̄ωq,LA � h̄�LA. By substituting Eq. (5) into Eq. (16)
and transforming the summation into the integrals with respect
to ω, one find

∂ELEP(t)

∂t
= γ 2

LEP-HEP

h̄2N3

∫ �LA

0
dωDLA(ω)h̄ω

×
[(∫ �LA

0
+

∫ �LA

�LA

)
dω′DLA(ω′)

]

×
[(∫ �LA

0
+

∫ �LA

�LA

)
dω′′DLA(ω′′)

]

×
(

1

2
Sa + Si

)
, (17)

with the phonon DOS DLA(ω) given by Eq. (14). γLEP-HEP is
the three-phonon matrix element between the LEP and HEP,
and is approximated to a constant value because the presence
of the LEP is restricted to a relatively small region of the
first Brillouin zone. Sa and Si are the collision terms for the
anharmonic decay and the inelastic scattering, respectively,
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FIG. 7. Schematic illustration of the inelastic scattering process
expressed by Si in Eq. (18). These contribute to the collision integral
given by the r.h.s. of Eq. (17).

and are explicitly given as

Sa = [n+
LA(ω)nLA(ω′)nLA(ω′′)

− nLA(ω)n+
LA(ω′)n+

LA(ω′′)]δ(ω − ω′ − ω′′),

Si = [n+
LA(ω)n+

LA(ω′)nLA(ω′′)

− nLA(ω)nLA(ω′)n+
LA(ω′′)]δ(ω + ω′ − ω′′).

(18)

Due to the energy conservation law, we may consider the
inelastic scattering term Si in Eq. (18) only. Furthermore, the
three-phonon scattering process contributes to the collision
term Si only when one of the phonon states is different
from the others: LEP + LEP � HEP and LEP + HEP �
HEP (see Fig. 7). As we will show below, only the former
process is relevant to the appearance of the power-law decay.
Thus we discarded the latter process to construct a minimal
model.

To derive the rate equation for θLA(t) by considering
the process of LEP + LEP � HEP, we use the approx-
imation nLA(ω) � kBθLA/(h̄ω) and kBTbath/(h̄ω) depend-
ing on the magnitude of ω. Then, the collision term is
given by

31G

66
(kBTbath)(h̄�LA) + G(kBTbath)(kBθLA)

−G(kBθLA)2 (19)

with

G = 297γ 2
LEP-HEP�

7
LA

40h̄3�9
LA

. (20)

Using Eq. (19) and the expression of the LEP energy

ELEP = (kBθLA)

(
�LA

�LA

)3

, (21)

one obtains the rate equation for θ (τ ) = θLA(t)/θ0 with the
dimensionless time τ = t/t0

∂θ (τ )

∂τ
= a + bθ (τ ) − c[θ (τ )]2, (22)

where

a

d
= 31

66

(
Tbath

θ0

)(
h̄�LA

kBθ0

)
,

b

d
= Tbath

θ0
,

c

d
= 1,

d = 297γ 2
LEP-HEP(kBθ0)

40(h̄�LA)3

(
�LA

�LA

)3

(�LAt0). (23)

Negative sign of the third term in Eq. (22) leads to the
decrease in the LEP temperature due to the process of
LEP + LEP � HEP. The analytical solution of Eq. (22) is
expressed as

θ (τ ) = θ∞

[
1 + ge(b−2cθ∞)τ

1 − gθ∞
θ∞−b/c

e(b−2cθ∞)τ

]
(24)

with

θ∞ = b + √
b2 + 4ac

2c
(25)

and

g = θ (0) − θ∞
θ∞

[
1 + θ(0)

θ∞−b/c

] . (26)

Since b − 2cθ∞ < 0 in Eq. (24), θ (τ ) → θ∞ in the limit
of τ → ∞.

Before showing the comparison between the analytical and
numerical results, we show that the process of LEP + HEP �
HEP does not cause the power-law decay. By performing
a similar calculation above, the collision term is given
by

31G

66
(kBTbath)(h̄�LA) + 2G

3
(kBTbath)2

− 13G

33
(kBTbath)(kBθLA). (27)

If there is a contribution from LEP + HEP � HEP only, the
rate equation for �(τ ) = θLA(t)/θ0 is written as

∂�(τ )

∂τ
= α − β�(τ ), (28)

where α and β are positive values that depend on Tbath and
�LA. The analytical solution is simply given by

�(τ ) = �∞(1 − e−βτ ) + �(0)e−βτ (29)

with �∞ = α/β. No choices of α and β yield the power-law
decay observed in Figs. 6 and 12 (below).

2. Comparison to numerical simulations

We set t0 = 1 ps, h̄�LA = 40, γLEP-HEP = 1.5, kBTbath =
40, h̄�LA = 20, and the initial temperature kBθ (0) = 70 in
units of kBθ0 = 1 meV. Then, the time evolution of ELEP(t)
calculated from Eq. (22) is in agreement with that of ELA(t)
calculated from Eq. (5), as shown in Fig. 6(a). This clearly
indicates that the power-law decay can be understood as the
backward energy transfer from hot LEPs to cold HEPs. The
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value of the exponent p is determined by kBTbath. In fact, p

decreases from 0.3 to 0.05 when kBTbath is increased from 30
to 50 in units of kBθ0, as shown in Fig. 6(b). This is because
the ratio of ELEP(t = 1 ps)/ELEP(t = 100 ps) is smaller for
larger Tbath. The onset of the power-law decay (arrows) is
delayed with decreasing h̄�LA because the energy exchange
rate between the LEP and HEP is suppressed, as shown in
Fig. 6(c).

D. Some remarks

As demonstrated in Sec. III C, the total LA phonon energy
shows a power-law decay in the final stage of the relaxation.
This would give an interpretation of the recent experiment by
Ishida et al. [19]. They have studied the electron relaxation
dynamics of SrMnBi2 by using the time-resolved angle-
resolved photoemission spectroscopy. A power-law decay of
the electron energy has been observed in the final stage
of the relaxation, while the TTM-like behavior has been
observed in the initial stage of the relaxation. By assuming the
presence of the phonon-bottleneck effect [32,34], where the
electron relaxation is regarded as the LA phonon relaxation,
the power-law decay observed in the experiment can be
interpreted as a backward energy flow from the hot LEP
to the cold HEP. We hope that the exponent variation,
as shown in Figs. 6(b) and 6(c), is observed in future
experiments.

We can visualize the phonon relaxation for each branch,
if we consider T (0)

μ (t) + rμ(t)h̄ωq,μ/kB in Eq. (10) as an
effective temperature. The combined use of Eq. (10) and
Fig. 4 reveals the phonon development into hot LEP and cold
HEP, followed by the thermalization involving the backward
energy transfer from the former to the latter, as shown in
Fig. 8. On the other hand, a monotonic evolution is only
revealed with the use of rμ(t) = 0, as shown in the inset of
Fig. 4(a).

Based on the TTM, Brorson et al. determined the e-
ph coupling of several superconductors except aluminum
from femtosecond time-resolved experiments [3]. Recently,
Waldecker et al. proposed a nonthermal lattice model (NLM)
to study the energy flow in photoexcited aluminum beyond
the TTM [18]. In the model, the phonon distribution is still
expressed as a sum of thermal distributions of the three acoustic
phonon branches, equivalent to the quasiequilibrium approach.

FIG. 8. Schematic illustration of the phonon thermalization. The
direction of the energy flow is reversed in the long-t limit, which
leads to the power-law decay shown in Fig. 6.
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FIG. 9. Same as Fig. 2 but for the case of f = w2
0.

They demonstrated that the determination of the e-ph coupling
from time-resolved experiments by means of the NLM leads
to sufficiently correct values. However, the numerical solution
presented in this paper clearly shows that each phonon subset
is not in thermal equilibrium during the relaxation. In this
way, our results pose a fundamental question why the TTM
and the NLM could serve as a good model for quantitatively
determining the e-ph coupling of metals [3,18]. This would be
an open question.

IV. CONCLUSION

In conclusion, through numerical simulations, we demon-
strate the breakdown of the quasiequilibrium approach during
the phonon thermalization. The analyses reveal the phonon
development into two subgroups and the backward energy flow
between them in the initial and the final stage of the relaxation,
respectively. The latter yields the power-law decay of the LA
phonon energy, which explains the recent experimental obser-
vations [19]. The present study could be a crucial ingredient to
construct a model beyond TTM. Our model can be generalized
to incorporate the several effects; the e-e and e-ph scatterings
and more realistic situations such as the presence of the optical
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FIG. 10. Same as Fig. 3 but for the case of f = w2
0.
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0.

phonon modes and the optical excitations. This will be a future
work.
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APPENDIX A: NONLINEAR LEAST-SQUARES PROBLEM

The numerical solution of the BTE in Eq. (5) gives the
phonon occupation numbers nq,μ(t) at the phonon energy
h̄ωq,μ. At each t , we minimize the following function with
respect to T (0)

μ and rμ,

G
(
T (0)

μ ,rμ,t
) =

∑
q

[
ln

nq,μ(t)

n(0)
(
ωq,μ,T

(0)
μ + rμ

h̄ωq,μ

kB

)
]2

, (A1)

where n(0)(ω,T ) = [exp(h̄ω/kBT ) − 1]−1 is the Bose-
Einstein distribution function. n(0)(ωq,μ,T (0)

μ + rμ
h̄ωq,μ

kB
) in

Eq. (A1) is equivalent to Eq. (10). This minimization problem
is equivalent to the nonlinear least square problem and can be
solved by using minpack [30]. The logarithm in bracket in
Eq. (A1) should be taken to lower the magnitude of errors at
each h̄ωq,μ. The solid curves in Figs. 3 and 10 (below) and the
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FIG. 12. The time evolution of the LA phonon energy ELA(t)
for the initial conditions; (kBTlow,kBThigh) = (1,35) meV for (a) and
(60,80) meV for (b). The curves proportional to t−α with α = 0.10,
0.15, and 0.20 for (a) and 0.01, 0.02, and 0.03 for (b) are also shown.
f = w2

0 is used.

all curves drawn in Figs. 4 and 11 (below) were obtained by
employing this method.

APPENDIX B: NUMERICAL RESULTS FOR THE
BOLTZMANN TRANSPORT EQUATION: A CASE OF

f = w2
0

By assuming the constant coupling function f = w2
0, that

is, using |Mμ,μ1,μ2
q,q1,q2 |2 = δ�q,Gw2

0 with w0 = 2 meV, the BTE
of Eq. (5) is solved numerically. All the other parameters are
the same in the main text. Corresponding to the main text,
Fig. 9 shows the distribution of TA1, TA2, and LA modes for
t = 0.1,1,10, and 100 ps; Fig. 10 shows the phonon occupation
numbers at t = 1 ps; Fig. 11 shows the t dependence of
T (0)

μ and rμ; Figs. 12(a) and 12(b) show the time evolution
of the total LA phonon energy per a unit cell for the initial
conditions (kBTlow,kBThigh) = (1,35) meV and (60,80) meV,
respectively. The small value of the exponent p = 0.02 is
observed for the latter case because the ratio of ELA(t =
0.1 ps)/ELA(t = 100 ps) is relatively small, compared to the
former case. Contrary to the case of f = w2

0| Q|| Q1|| Q2|, that
is, Eq. (8), the suppression of the population of the low-energy
TA phonons is not observed, as shown in Figs. 9 and 10. Apart
from this, overall features in Figs. 9–12 are almost the same as
Figs. 2–4, and 6, respectively, irrespective to the different form
of the matrix elements. This may imply that the details of the
matrix elements (i.e., q dependence) do not play a major role in
the phonon thermalization, while the systematic investigations
with the use of more realistic f are desired.
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