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Magnetoelectric effect in doped magnetic ferroelectrics
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We propose a model of magnetoelectric effect in doped magnetic ferroelectrics. This magnetoelectric effect
does not involve the spin-orbit coupling and is based purely on the Coulomb interaction. We calculate magnetic
phase diagram of doped magnetic ferroelectrics. We show that magnetoelectric coupling is pronounced only
for ferroelectrics with low dielectric constant. We find that magnetoelectric coupling leads to modification
of magnetization temperature dependence in the vicinity of the ferroelectric phase transition. A peak of
magnetization appears. We find that magnetization of doped magnetic ferroelectrics strongly depends on the
applied electric field.
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I. INTRODUCTION

Multiferroic (MF) materials with strongly coupled ferro-
electricity and magnetism is an intriguing challenge nowadays
[1–6]. Among various MF materials the doped magnetic
ferroelectrics (DMFE) attract a lot of attention since these
materials demonstrate the existence of electric polarization
and magnetization at room temperatures [7–15]. DMFEs are
fabricated by doping of ferroelectrics (FE) with magnetic
impurities. Transition metal (TM)-doped BaTiO3 (BTO) is
the most studied material in this family. While both order
parameters are simultaneously nonzero in DMFE, the coupling
between them (magnetoelectric effect) is very weak and not
enough studied [16–18]. Mostly the magnetoelectric (ME)
effect in DMFE is related to spin-orbit interaction leading
to influence of electric polarization on the material magnetic
properties.

In the case of BTO the room temperature ferroelectricity is
the internal property of the material. Magnetization appears
due to artificially introduced magnetic impurities [7–15].
Several mechanisms of coupling between magnetic impurities
are known [19]. At high doping the adjacent magnetic
moments directly interact with each other due to electron wave
function overlap. This interaction is usually antiferromagnetic.
At low impurities concentration (<10%) the direct coupling
is not possible. However, the room temperature ferromagnetic
(FM) ordering is observed in this limit. The reason for FM
interaction between the impurities in this case is shallow
donor electrons which inevitably present due to defects such
as oxygen vacancies. Donor electrons have weakly localized
wave function spanning over several lattice periods. Donor
electrons interact with impurities forming a so-called bound
magnetic polaron (BMP) in which all magnetic moments
are codirected. The polaron size essentially exceeds the
interatomic distance. Interaction of the polarons leads to the
formation of long-range magnetic order in the system. Due
to the large BMP size the critical concentration of defects
and magnetic impurities at which FM ordering appears can be
rather low. BMPs and their interaction are well understood in
doped magnetic semiconductors [19–23].

In the present work we propose a model of magnetoelectric
(ME) coupling in DMFE. The idea behind this model is based
on the fact that shallow donor electrons interact not only with

magnetic impurities but also with phonons, forming not just
magnetic polarons but electromagnetic ones. Magnetic and
orbital degrees of freedom are strongly coupled in such a
polaron. In contrast to the most magnetoelectric effects based
on the spin-orbit interaction, we consider here the ME coupling
occurring purely due to the Coulomb interaction. Note that
Coulomb-based ME effects were considered recently in a
number of other systems [24–28].

The size of the magnetic polaron is defined by the wave
function of a donor electron. In its turn the size of the
donor electron wave function is defined by electron-phonon
interaction and depends on the dielectric properties of the FE
matrix [29–32]. It is well known that the dielectric constant
of FEs strongly depends on temperature and applied electric
field. This opens a way to control magnetic polarons with
electric field or temperature. Finally, the magnetization of the
whole sample becomes dependent on the external parameters.
In the present work we study this mechanism of ME coupling.
In particular, we study the magnetic phase diagram of DMFE
and show that one can control magnetization with the electric
field in such a system.

In DMFEs based on FEs with a high dielectric constant
this effect is negligible, which is consistent with the observed
weak ME effect in doped BTO. A good FE matrix would
be Hf0.5Zr0.5O2 [33–35], which has a low dielectric constant
(ε < 50) strongly dependent on applied electric field. Cur-
rently there are no data on Hf0.5Zr0.5O2 doped with magnetic
impurities. Another magnetic FE with low dielectric constant
is (Li,TM) codoped zinc oxide [36–39]. The ME effect in this
material can be also strong.

The paper is organized as follows. We present the model in
Sec. II. Properties of single magnetic and electric polarons are
discussed in Sec. III. Mechanisms of interaction of BMPs are
considered in Sec. IV. The magnetic phase diagram of DMFE
and ME effects in a number of systems are presented in Sec. V.

II. THE MODEL

As we mentioned in the Introduction, the long-range
magnetic order in DMFE appears due to interaction of BMPs
formed by shallow donor electrons and magnetic impurities.
To understand the magnetic properties of DMFE we first study
the interaction of two BMPs.
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Consider FE with magnetic impurities localized at points
ri
i . Each impurity has a spin S0. The impurities concentration

is low (below 20% [19]) and there is no direct interaction
between them. There are also defects with positions rd

i in the
system. Their concentration is smaller than the concentration
of magnetic impurities. Ordinarily, oxygen vacancies serve
as such defects. A defect creates a point charge potential
(∼e2/|r − rd

i |). A charge carrier is bound to each of these
defects. The carrier spin is s0 = 1/2. The carriers (electrons)
interact with impurity spins, forming bound magnetic po-
larons. Consider two neighboring defects. They are described
by the Hamiltonian

Ĥ = Ĥe + Ĥph + Ĥe−ph + Ĥe−imp, (1)

where the carrier energy is given by

Ĥe = − h̄2

2m∗
∑

i

�i − e2

4π ε0 ε

⎛
⎝∑

i,j

1

|ri − rd
j |

− 1

|r1 − r2|

⎞
⎠.

(2)

Here m∗ is the effective mass of electrons in the conduction
band of the material in the model of rigid lattice, ε is the static
dielectric constant, ε0 is the vacuum dielectric constant, ri are
the carrier coordinates, and the indices i and j take values of
either 1 or 2.

The interaction between the carriers and impurities is given
by the Hamiltonian

Ĥe−imp = J0

∑
i=1,2

∑
j

(ŝi Ŝj )δ
(
ri
j − ri

)
, (3)

where ŝi and Ŝj are the electron and impurity spin operators,
respectively. The impurity spin S0 is usually much larger
than one-half. J0 is the interaction constant. Interaction with
magnetic impurities leads to formation of a magnetic polaron.

The terms Ĥph and Ĥe−ph in Eq. (1) are the Hamiltonians
of phonons and electron-phonon interaction, respectively [29].
We assume that the carrier interacts mostly with longitudinal
optical phonons. Generally, coupling to acoustical phonons
and piezoelectric interaction can be taken into account. We
neglect them for simplicity, since they are usually weaker
than interaction with optical phonons and do not lead to any
qualitative changes. The electron-phonon coupling leads to
formation of an electric polaron. We will use results of electric
polaron theory to describe the electron wave function [29]. The
whole system of electrons, magnetic impurities, and phonons
is an electromagnetic bound polaron.

Dielectric properties of FEs

Below we will show that dielectric properties of the FE
matrix play crucial role in formation of the magnetic state
of DMFE. Therefore, we need to introduce some model of
dielectric susceptibility for considered FEs. For simplicity
we assume that the dielectric properties of the FE matrix are
isotropic. We introduce the dependence of the dielectric per-
mittivity on applied electric field below the Curie temperature:

ε±(E) = εE
min + �εE

1 + (E ∓ Es)2
/
�E2

s

. (4)

The superscripts “+” and “−” correspond to the upper and
the lower hysteresis branch, respectively, Es is the electric
field at which the electrical polarization switching occurs,
and �Es is the width of the switching region. εE

min and
�εE define the minimum dielectric constant and its variation
with electric field. Equation (4) captures the basic features of
dielectric constant behavior. The permittivity has two branches
corresponding to two polarization states. In the vicinity of the
switching field, Es the dielectric permittivity, and ε has a peak.

Not much data are currently available on the voltage de-
pendencies of ε(E) for FEs with low dielectric constants. The
dielectric constant of Hf0.5Zr0.5O2 can be described using the
following parameters: εE

min = 30, �εE = 15, Es = 0.1 V/nm,
�Es = 0.1 V/nm.

We model the temperature dependence of the FE dielectric
constant using the following formula:

ε(T ) = εT
min + �εT√(

T − T FE
C

)2 + �T 2
. (5)

This function allows us to describe the finite height peak
at the FE phase transition temperature T = T FE

C as well as
the 1/(T − T FE

C ) dependence in the vicinity of T = T FE
C . For

simplicity we neglect different behaviors of the dielectric
constant above and below T FE

C . This does not lead to any
qualitative changes in the properties of the considered system.

III. SINGLE POLARON PROPERTIES

First, consider a single electron located at a defect and
interacting with impurities and phonons. In the models of
electric and magnetic polarons the electron wave function is
chosen in the form of a spherically symmetric wave function,

� = �0e
−r/ aB , (6)

where aB is the decay length, |�0|2 = 1/(π a3
B).

A. Bound magnetic polaron

First, consider the interaction of a bound electron with im-
purities leading to formation of a magnetic polaron. Properties
of a single magnetic polaron were investigated in the past
[19,20,22,40]. Let us calculate the average electron-impurities
interaction energy 〈Ĥ s

e−imp〉 (where the superscript s indicates
that we consider a single polaron) for a given aB. Following
Ref. [23], we average the magnetic energy over the spatial
coordinates

Ĥ s
e−imp = −

∑
i

J0(ŝŜi)|�
(
ri
i

)|2. (7)

The strongest interaction between electron and impurities
appears inside the sphere of radius rp

rp = aB

2
ln

(
J

kBT

)
, (8)

where J = S0J0|�0|2/2, kB is the Boltzmann constant, and
T is the temperature. We assume that rp > aB (J > 6kBT ),
only in this case magnetic percolation can appear prior to
electric percolation (insulator metal transition). The number
of impurities within the sphere is Np = 4πr3

p ni /3, where ni is
the impurities concentration.
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We assume that the number of impurities within the radius
rp is big enough. The total spin of impurities relaxes much
slower than the spin of the charge carrier. We can introduce
the “classical” exchange field (measured in units of energy)
acting on the electron magnetic moment:

B = J0

〈∑
i

∣∣�(
ri
i

)∣∣2
Ŝi

〉
≈ J0

〈∑
r i
i<rp

∣∣�(
ri
i

)∣∣2
Ŝi

〉

≈ 2J

〈∑
r i
i<rp

Ŝi

〉/
S0. (9)

The maximum value of the field is Bmax ≈ 2NpJ . Note than in
the absence of an electron the impurities spins are independent
and the average field value is zero. Field fluctuations are given
by

√
〈B2〉 ≈ Bmax/

√
Np.

Equation (7) can be rewritten as follows:

Ĥ s
e−imp = −(ŝB). (10)

This Hamiltonian has two nondegenerate eigenstates. For J >

kBT the average magnitude of the impurities field
√

〈B2〉 �
kBT , meaning that even in the case of independent impurities
the electron spin should be correlated with the instant meaning
of the average field B, and 〈ŝ〉 = (1/2)(B/B). For the energy
averaged over the electron spin states we find

H s
e−imp = 〈

Ĥ s
e−imp

〉 = −B/2. (11)

Now we determine the field B by taking into account the
interaction of electron and impurities. This interaction does not
lead to the appearance of average B. The average absolute value
(fluctuations) of B =

√
〈B2〉 is nonzero and is defined by the

competition of entropy and internal energy. To find the average
B, consider the states of the system close to the state with full
polarization of impurities (within sphere r < rp). The fully
polarized state means that all the impurity spins have the same
and maximum projection on a certain axis. There is only one
such state, but it has the lowest energy. If one reduces the total
impurities spin by 1, the energy increases by J/S0. At the same
time the number of states with reduced spin is Np. If ln(Np) �
J/(S0kBT ), the entropy is the stronger factor than internal
energy. In this case the donor electron cannot couple spins
of impurities and they are almost independent. In this limit
H s

e−imp ≈ −Bmax/(2
√

Np). This corresponds to the fluctuation
regime of BMP. In the opposite limit, ln(Np) < J/(S0kBT ), the
internal energy is dominant. In this case all impurities spins are
correlated due to interaction with the electron and H s

e−imp =
−Bmax/2. For J = 12kBT (which is in agreement with our
requirement J0 > 6kBT and corresponds to rp ≈ 1.25 aB) and
S0 = 5/2 we find ln(Np) < 4.8 and Np < 120. This estimate
is reasonable and the number of impurities in BMP is always
within this range [19]. In our work we consider the case of
well-correlated BMP, since only in this limit can one expect
strong magnetism.

Since Np ≈ a3
B and J ≈ (a3

B)−1 the magnetic energy of
BMP is independent of the characteristic size of the wave
function, aB. Therefore, in this regime the interaction with
impurities does not influence the electron spatial distribution.

B. Electric polaron

In the previous section we have shown that interaction
with impurities does not influence the Bohr radius of the
bound carrier wave function. Therefore, aB is defined by
the interaction of the electron with defect charge and with
phonons. The problem of the electric polaron was studied
in the past [29–32]. There are numerous approaches to this
problem. We will follow a variational approach of Ref. [41].
The Hamiltonian of a single electric polaron has the form

Ĥp = − h̄2

2m∗ � − e2

4π ε0 ε r
+ Ĥph + Ĥe−ph. (12)

The electron wave function is given in Eq. (6). The wave
function of phonons is given in Ref. [41]. The radius of the
electric polaron aB is defined by the minimization of average
energy 〈Ĥp〉 with respect to aB. In the case of strong coupling
between the carrier and phonons the Bohr radius is given
by [41]

(aB)−1 = m∗e2

16h̄2

(
11

ε
+ 5

ε∞

)
, (13)

where ε∞ is the optical dielectric constant.
In FE materials the static dielectric constant ε depends on

temperature T and external electric field E. Therefore one
can control the donor electron wave function size aB with an
external electric field or by varying temperature.

For materials with a large static dielectric constant ε ≈
1000 (as in BTO, for example) the Bohr radius becomes inde-
pendent of ε [aB = 16h̄2 ε∞ /(5m∗e2)]. In this case variation
of ε with temperature or electric field does not influence the
polaron size.

In a number of FEs the static dielectric constant is of the
same order as the optical one. For example, in Hf0.5Zr0.5O2

the static dielectric constant is about 30 while the optical
one is about 4.5. (There is no experimental data on ε∞
in Hf0.5Zr0.5O2; therefore we use data on HfO2 and ZrO2

for estimates.) The static dielectric constant of this material
depends on the applied electric field [35]. According to Eq. (4),
the FE dielectric constant has a peak in the vicinity of the
switching field. The polaron radius grows with ε. Thus, aB(E)
has also a peak in the vicinity of the switching field Es.
Variation of ε with the field in Hf0.5Zr0.5O2 is about 50%
(εE

min = 30, �εE = 15). This leads to 10% changes in the
polaron radius.

In Li-doped ZnO oxide the static dielectric constant
strongly depends on temperature and is not very large. FE
properties strongly depend on Li concentration. The FE phase
transition in these materials is usually above room temperature
[42–45]. In the vicinity of the FE Curie temperature the static
dielectric constant varies from 5 to 60. Such a strong growth of
the dielectric constant can increase the polaron radius twice.

IV. INTERACTION OF TWO ELECTROMAGNETIC
POLARONS

In this section we consider the magnetic interaction of two
electromagnetic polarons in DMFE. We introduce here mag-
netic moments of these polarons. They have directions m1,2.
Since there is a large number of impurities in each polaron
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we can treat these quantities as classical vectors. The distance
R = |rd

1 − rd
2| between these two polarons exceeds 2aB and

2rp. In this case the interpolaron magnetic interaction is weak
compared to the magnetic energy of a single polaron. There
are three mechanisms of magnetic coupling between polarons:
(1) exchange due to the Coulomb interaction in the Hamil-
tonian Eq. (2) (Heitler-London interaction); (2) magnetic
coupling due to the kinetic energy term in the Hamiltonian
Eq. (2) (superexchange); and (3) magnetic coupling mediated
by impurities, Eq. (3).

A. Heitler-London interaction between polarons

Consider the Hamiltonian in Eq. (2). If two defects are
far away from each other the Hamiltonian can be split into a
zero-order Hamiltonian of two noninteracting carriers:

Ĥ (0)
e = − h̄2

2m∗
∑

i

�i − e2

4π ε0 ε

∑
i

1∣∣ri − rd
i

∣∣ (14)

and the perturbation term

Ĥ (1)
e = − e2

4π ε0 ε

(
1∣∣r1 − rd

2

∣∣ + 1∣∣r2 − rd
1

∣∣ − 1

|r1 − r2|
)
. (15)

The wave functions of noninteracting electrons are denoted
as �1,2. In the first-order perturbation theory the Hamiltonian
in Eq. (15) produces the spin-dependent interaction between
carriers:

Ĥ HL = 4H HL(ŝ1ŝ2) = H HL cos(θ ). (16)

Here we introduce the angle θ between magnetic moments
of polarons. Since the polaron magnetic moment is large we
can treat it as a classical value. As was shown in the previous
section, the average spin of the electron is codirected with a
corresponding polaron magnetic moment. The exact formula
for the exchange constant H HL is given elsewhere [46]. The
only important thing for us is that it exponentially decays with
the distance between the donor centers R as exp(−2R/ aB)
and is inversely proportional to ε. Thus, we can write

H HL = H HL
0

e−2R/ aB

ε
. (17)

Generally, the constant H HL
0 can be found numerically for

wave functions given by Eq. (6).

B. Superexchange

Magnetic interaction between two electrons appears also
due to virtual hopping of electrons between defect sites,
so-called superexchange. The coupling appears in the second-
order perturbation theory with respect to the hopping ma-
trix elements, t = 〈�1�1|Ĥe|�1�2〉. Effective Hamiltonian
describing the superexchange is given by [46]

Ĥ se = 4t2

U

(
ŝ1ŝ2

)
. (18)

Here U is the on-site repulsion of electrons calculating as
U = 〈�1�1|Ĥe|�1�1〉. We assume that U is mostly deter-
mined by the Coulomb interaction between two electrons
situated at the same site. U is inversely proportional to the
size of the Bohr radius and the system dielectric constant,

FIG. 1. Two electromagnetic polarons in DMFE separated by
a distance R. The red arrows show the direction of the electrons’
average magnetic moments. The angle between magnetic moments
of two such electrons is θ . The electron wave function characteristic
size is aB. Black arrows show magnetic moments of impurities in
DMFE. Within the magnetic polaron radius rp they are codirected
with average impurity magnetic moment. In the central area between
the polarons there is a lens-shaped interaction region �i. Impurities
spins in this region are not fully polarized by donor electrons but
correlated with them, leading to interaction between the carriers. The
width of the interaction region is about aB. The lateral size of the
region is about 2

√
R aB.

U ≈ [1/(ε aB)]. The hopping matrix element decreases with
increasing distance between the defects, t2 ≈ exp(−2R/ aB).
Finally, we arrive at the following expression for the interaction
energy

Ĥ se = 4H se
0 aB ε e−2R/ aB (ŝ1ŝ2)

= H se
0 aB ε e−2R/ aB cos(θ ) = H se cos(θ ). (19)

C. Impurities-mediated interaction

Consider the situation where the distance between polarons
R exceeds the single polaron size rp (see Fig. 1). Beyond
the polaron radius rp the interaction between the electron
and impurities is much weaker than inside the polaron. In
the central region between two polarons impurities interact
with both electrons, leading to magnetic interaction between
carriers (see Fig. 1). We will follow the simplified approach
of Ref. [23] to calculate this coupling. According to Ref. [23]
the main contribution to the interpolaron interaction is given
by lens-shaped region with lateral size

√
R aB and width aB.

We assume that interaction of the electron with impurities in
this region is independent of impurity position. The magnetic
energy of this region is given by

Ĥ
p−p
e−imp = 2Je−R/aB (ŝ1 + ŝ2)

∑
j∈�i

Ŝj /S0, (20)

where summation is over the region of interaction �i. The
number of impurities inside the interaction region can be
estimated as Ni = πa2

BRni. By treating the total polaron spins
as classical magnetic moments we obtain

Ĥ
p−p
e−imp = 2Je−R/aB cos(θ/2)

∑
j∈�i

Ŝ(z)
j

/
S0, (21)
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where θ is the angle between the average magnetic moments
of polarons. We assume that both polarons are similar and
have the same magnetic moment. Ŝ(z)

j is the projection of the
impurity spin on the direction m1 + m2. The interaction of
donor electron and impurities in the region �i is weak. There-
fore, the average magnetic moment created by this interaction
is defined as 〈∑j∈�i

Ŝ(z)
j 〉 ≈ 2NiS0Je−R/aB cos(θ/2)/(3kBT ).

Introducing this result into Eq. (21), we get the average
interaction energy of two polarons

H
p−p
e−imp = 4NiJ

2e−2R/aB cos2(θ/2)

3kBT
= H p−p[cos(θ ) + 1].

(22)

V. MAGNETIC PHASE DIAGRAM OF DMFE

The distance at which two polarons can be considered as
coupled (rc) is defined by the condition

|H HL + H se + H p−p| = kBT . (23)

Note that the Heitler-London coupling, H HL > 0, and the
superexchange, H se > 0, produce antiferromagnetic (AFM)
coupling while impurity-mediated coupling is FM, H p−p < 0.
On one hand the first two interactions decay faster with
distance (e−2R/ aB ) than the third one (e−R/ aB ). But on the
other hand the impurity-mediated interaction depends on
concentration ni and temperature. It decreases with increase
of temperature and reduction of ni. Experimental results on
DMFE show that in most cases FM order appears at low
magnetic impurities concentration [9,11,13,16,17,47], mean-
ing that impurity-mediated coupling dominates. However,
AFM order is also reported in DMFEs with low impurities
concentration [7].

In the case of H HL
0 = H se

0 = 0, Eq. (23) for the interaction
distance rc at given temperature T turns into

kBT = S0J0
√

nirce
−rc/ aB

√
3πa2

B

. (24)

Approximately one can write

rc≈ aB

{
ln

[
S0J0

2π a3
B kBT

]
+ 1

2
ln

[
a3

B niln

(
S0J0

2π a3
B kBT

)]}
.

(25)

According to percolation theory [48], the long-range
magnetic order in the system of randomly situated polarons
appears approximately at rcn

1/3
d = 0.86, where nd is the defect

concentration. Introducing rc from this relation into Eq. (23)
one can find the ordering temperature. Depending on the sign
of the total interaction, the ordering can be either FM or AFM
(or superspin-glass state).

First, consider the case when the polaron-polaron interac-
tion is the dominant one and we can neglect the Heitler-London
and superexchange contributions. In this case there is only
FM-type interaction between the impurities and only the
FM/paramagnetic (PM) transition is possible. The transition
temperature is given by the equation

kBT = S0J0
√

0.86ni exp
[ − 0.86

/(
aB n

1/3
d

)]
√

3πn
1/6
d a2

B

. (26)

FIG. 2. Approximate magnetic phase transition temperature
Eq. (26) as a function of impurities concentration ni. The system
parameters, which correspond to BTO doped with Fe, are in the text.
The inset is the magnetic moment per Fe impurity as a function of
temperature for ni = 0.78 1/nm3 (5% doping).

Note than according to Eqs. (5), (4), and (13) the Bohr
radius, aB(T ,E), depends on temperature and external electric
field. This makes the PM/FM transition temperature a more
complicated function of ni and nd and makes it dependent on
electric field.

The dimensionless magnetization of the DMFE is given by
the following equation [23,48]:

M(T ) = S0niVinf[(rc(T ))3nd], (27)

where Vinf is the relative volume of infinite cluster (or
probability that an impurity belongs to an infinite cluster) in
the site percolation problem. We found the function using the
Monte Carlo simulations approach developed in Ref. [49].

A. BaTiO3-based DMFE

Figure 2 shows the magnetic phase diagram of DMFE with
the following parameters: The impurities magnetic moment is
S0 = 5/2. The high-frequency dielectric constant is ε∞ = 5.8
and the static one is ε = 1000. We chose such a value of m∗
that aB = 0.45 nm. This corresponds to the BTO crystal with
Fe impurities. Concentration of defects (oxygen vacancies) is
about 0.043 nm−3 (0.27%, lattice period in BTO is about 0.4
nm), and the parameter S0J0 = 6×104 K nm3. At impurities
concentration of about 5% this gives spin splitting of the carrier
of about 2.4 eV. This splitting occurs due to interaction with all
impurities within the polaron. We neglect the Heitler-London
and superexchange contributions.

The figure shows the magnetic state of the system as a func-
tion of impurities concentration and temperature. The system
is FM at low temperatures and high impurities concentration
and is PM at high temperatures and low concentration of
magnetic impurities. The curve in Fig. 2 shows approximate
boundary between these two magnetic states. For such a high
dielectric constant the Bohr radius aB is independent of ε and
the temperature dependence of the dielectric constant does not
play any role in magnetic properties of the material.

024204-5



O. G. UDALOV AND I. S. BELOBORODOV PHYSICAL REVIEW B 96, 024204 (2017)

FIG. 3. Magnetic phase diagram of (Li,TM) codoped ZnO. The
system parameters are provided in the text. The inset is the magnetic
moment per TM impurity as a function of temperature for ni =
1.7 nm−3 (solid blue line), 1 nm−3 (dashed green line), and 0.7 nm−3

(dotted black line).

The inset shows magnetization as a function of temperature
for impurities concentration ni = 0.78 1/nm3 (5% for BTO
crystal). The magnetic phase transition appears at T ≈ 650 K.
This is in agreement with experiment in Ref. [9]. The
ferroelectric phase transition in BTO appears at around T FE

C =
360 K. In this region the dielectric constant has a strong peak.
However, because of very large ε the ME effect is weak and
no peculiarities appear in the vicinity of T FE

C .

B. ZnO-based DMFE

(Li,TM) codoped zinc oxide is one of the most studied
doped magnetic ferroelectrics [50–52]. Ordinarily, both fer-
roelectricity and magnetism in these materials appear due to
doping. In contrast to “classical” FEs such as BTO, the ZnO-
based multiferroics have relatively low dielectric constant. The
inevitable defects in doped ZnO materials also provide shallow
donor states. Due to the low dielectric constant of the material,
the Bohr radius of these states can be temperature dependent.

Magnetism in TM-doped ZnO was theoretically and exper-
imentally studied in numerous works [36–39]. Two distinct
cases were recognized when the material is either diluted
magnetic semiconductor (DMS) or diluted magnetic insulator
(DMI) [38]. In the first case carriers are delocalized on the
scale of the whole sample and magnetic ordering appears due
to Ruderman-Kittel-Kasuya-Yosida interaction. In the second
case carriers are strongly localized and the coupling is due to
magnetic polarons. We will assume the small concentration of
defects and BMP-based coupling.

Dielectric and magnetic properties in ZnO-based materials
strongly depend on the dopant type, concentration, and fabri-
cation procedure. Figure 3 shows the magnetic phase diagram
of the DMFE with parameters close to (TM, Li) codoped
ZnO. The impurities magnetic moment is S0 = 5/2 and
S0J0 = 3.3×104 K nm3, giving a spin splitting of the electron
of about 1.7 eV for impurities concentration ni = 1 nm−3.
The high-frequency dielectric constant is ε∞ = 4 [19]. The
static dielectric constant strongly depends on temperature with

FIG. 4. The Bohr radius aB, BMP radius rp, and BMP interaction
distance rc as a function of temperature for DMFE with ε described
by Eq. (4) with εmin = 25, � ε = 45, T FE

C = 370 K, and ε∞ = 4. The
ffective mass is chosen such that the Bohr radius at zero temperature
is aB = 0.75 nm.

εT
min = 25, �εT = 45, and the ferroelectric Curie temperature

T FE
C = 370 K [53]. We chose m∗ such that aB = 0.75 nm

at zero temperature [19]. Concentration of defects (oxygen
vacancies) is about 0.02 nm−3 (∼0.1%). We neglect Heitler-
London and superexchange contributions.

The magnetic phase transition curve has a peculiarity in the
vicinity of the FE phase transition temperature T FE

C = 370 K.
The peculiarity is related to nonmonotonic behavior of the
BMP coupling radius rc in the vicinity of T FE

C (see Fig. 4).
Since the static dielectric constant is comparable to the optical
one and it has a peak as a function of temperature at T = T FE

C ,
the Bohr radius also has a peak in this region. Increasing
aB leads to the increase of BMP interaction distance rc and
enhancement of magnetic properties. Note that while the Bohr
radius aB and interaction distance rc have a peak in the vicinity
of the FE phase transition, the BMP radius rp has a minimum
value (at least for given parameters).

The inset in Fig. 3 shows magnetization of DMFE as
a function of temperature for several concentrations of TM
impurities. Magnetization also has a peak at T = T FE

C . Such
a peak is the consequence of coupling between electric and
magnetic subsystems in this material and can be considered as
a magnetoelectric effect.

In Refs. [51] and [53] the temperature dependence of
(Li,TM) co-doped ZnO magnetization was studied in the
vicinity of the FE phase transition. No peculiarities in
magnetization in the vicinity of the FE transition point
were observed. Two possible reasons for the absence of
magnetoelectric coupling in these particular samples exist. The
first one is that samples studied in Ref. [51] are nanorods of
(Li,Co) codoped ZnO with very large surface/volume ratio.
The origin of magnetism in such structures is also under
question. On one hand the conductivity of these samples is
small, meaning that the material is DMI with possible BMP-
based magnetism. On the other hand, the magnetism can be
related to surface effects, as often happens in nanoscale metal
oxides [54,55]. The second possible reason is that the model
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FIG. 5. Dimensionless magnetic moment per magnetic impurity
(maximum moment is S0 = 5/2) as a function of applied electric
field E for ni = 0.8 nm−3 (solid lines), 0.6 nm−3 (dashed lines), and
0.4 nm−3 (dotted lines). Arrows show the hysteresis bypass direction.

of the electric polaron described in Sec. III B is not applicable
to this particular material. Ferroelectricity in this material
is related to Li doping and oxygen vacancies [51]. Electric
dipoles in this material are inhomogeneously spread across
the sample. Therefore, the low-frequency dielectric constant
related to these dipoles should be also rather inhomogeneous.
Inhomogeneity of the dielectric constant probably appears
at the same spatial scale as the distance between magnetic
polarons in the system. Therefore, electric dipoles responsible
for ferroelectricity and the static dielectric constant do not
influence the polaron size.

C. HfxZr1−xO2-based DMFE

Another FE family with low dielectric constant is ma-
terials based on HfO2. Doping of Hf oxide with various
elements leads to the appearance of FE properties (spontaneous
electric polarization, hysteresis loop, electric-field-dependent
dielectric constant) [33–35]. In the present work we discuss
Hf0.5Zr0.5O2 FE [35]. This material is homogeneous, in
contrast to FEs based on weakly doped zinc oxide. This allows
us to expect that variation of dielectric constant in this material
leads to variation of polaron size. The source of carriers in this
material is also oxygen vacancies. No data is available on
magnetic doping of this material.

The dielectric constant of Hf0.5Zr0.5O2 depends on the
external electric field. Therefore, one can control the magnetic
properties of Hf0.5Zr0.5O2 doped with magnetic impurities
using an electric field. Figure 5 shows the dependence of
magnetization of DMFE on external electric field at room
temperature and for different impurity concentrations. Other
parameters are chosen as follows: The Bohr radius at zero
electric field is 0.5 nm. The impurities magnetic moment is
S0 = 5/2 and S0J0 = 3.3×104 K nm3, giving the spin splitting
of the electron of about 1.1 eV for impurities concentration
ni = 1 nm−3. The defects concentration is nd = 0.05 nm−3

(∼0.6% in the case of Hf0.5Zr0.5O2, which has a lattice constant
of 0.5 nm). The optical dielectric constant ε∞ = 4.5. The static
dielectric constant as a function of electric field is given by

Eq. (4) with εE
min = 30, �εE = 15, Es = 100 MV/m, and a

switching region width �Es = Es [35]. The Heitler-London
and superexchange contributions are neglected.

The static dielectric constant depends on the electric field,
leading to electric field dependence of magnetization in the
system (ME effect). ε demonstrates hysteresis behavior caus-
ing hysteresis of magnetization as a function of electric field E.
The dielectric constant reaches its maximum at the switching
field ±Es. According to Eq. (25), the BMP interaction distance
grows with ε. Therefore, the magnetization has peaks at
E = ±Es. While interaction distance variation is not large
(about 10%) the magnetization variation is significant.

D. Influence of Heitler-London and
superexchange contributions

Since the Heitler-London and superexchange interactions
are antiferromagnetic ones, they compete with the BMP-based
coupling. These interactions decay faster with distance be-
tween defects than the impurities-mediated magnetic coupling,
but they do not depend on concentration ni and temperature.
Therefore, at low impurities concentration and high tempera-
ture, antiferromagnetic interactions can dominate, leading to
antiferromagnetic (or spin-glass) ordering. At a temperature-
independent dielectric constant the AFM ordering temperature
can be found as follows:

T AFM = H HL + H se ±
√

(H HL + H se)2 + 4H̃ p−p

2
, (28)

where H̃ p−p = −H p−pkBT . Solutions exist only if H HL +
H se > 2

√
H p−pkBT . This condition is always satisfied at low

enough impurities concentration. Competition between AFM
and FM interactions in DMS was considered in Ref. [22].

Figure 6 shows a magnetic phase diagram of DMFE with
significant contribution of the Heitler-London and superex-
change interactions. The following parameters are used: S0 =
5/2, S0J0 = 4×104 K/nm3, nd = 0.02 nm−3, m∗ is chosen
such that the Bohr radius away from T FE

C is about 0.75 nm,
ε∞ = 4, εT

min = 25, �εT = 35, �T = 20 K, T FE
C = 370 K,

H HL
0 = 3.5×107 K (main graph), H se

0 = 5×103 K/nm (red
curves), 10×103 K/nm (green curves), and 15×103 K/nm
(blue curves). In the inset we use H HL

0 = 5×106 K, H se
0 =

3×103 K/nm.
In contrast to the previously considered cases, the region of

AFM ordering appears at finite H HL and/or H se; the FM/PM
boundary also changes. The region of AFM ordering exists
only at low impurity concentrations, since only in this case
do AFM interactions overcome the strong impurity-mediated
FM coupling. The main figure shows the case where direct
interactions (H HL and H se) are strong and induce AFM
ordering at high temperatures close to the FE phase transition.
Note that Heitler-London interaction decreases with increase
of dielectric constant while the superexchange interaction
behaves oppositely. Therefore, the behavior of the phase
boundaries strongly depends on the ratio between these two
contributions. Superexchange mostly influences the region in
the vicinity of the FE phase transition. The AFM region grows
and the FM region decreases with increasing H se

0 in the vicinity
of T FE

C . The Heitler-London interaction influences the phase
diagram aside of T FE

C , but this influence is mostly quantitative.
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FIG. 6. Magnetic phase diagram of DMFE with strong Heitler-
London and superexchange interactions. Solid lines show boundary
between PM and AFM states; dashed lines demonstrate PM/FM tran-
sition. All curves are plotted for the same H HL

0 . Red lines correspond
to the system with the smallest superexchange contribution, green
lines show magnetic phase diagram for a system with intermediate
H se

0 , and blue curves are for the highest H se
0 . All system parameters

are provided in the text. The main figure shows the situation of strong
direct coupling leading to AFM ordering in the vicinity of the FE
phase transition. The inset shows the case when direct coupling (H HL

and H se) is weak and induces AFM states only at low temperatures.

The inset shows the case when H HL and/or H se are
relatively small and do not lead to magnetic ordering in the
vicinity of the FE phase transition. In this case modifications
of the FM/PM boundary are weak. The AFM region exists at
low temperatures and low impurities concentration.

VI. CONCLUSION

In the present work we proposed a coupling mechanism of
magnetic and electric degrees of freedom in doped magnetic

ferroelectrics. Magnetic order in DMFE appears due to
formation and interaction of BMPs. There are three different
contributions to interaction between the magnetic polarons.
All these contributions depend on the dielectric constant of
the FE matrix. The most significant is the impurities-mediated
interaction between polarons. It depends on the radius of the
polaron wave function. Due to interaction with phonons, this
radius linearly depends on the dielectric constant of the FE
matrix. Since the dielectric constant of FEs can be controlled
with applied field or varying temperature, one can control
the interpolaron interaction and magnetic state of the whole
system. The peculiarity of this magnetoelectric effect is that it
does not involve the relativistic spin-orbit coupling and relies
only on the Coulomb interaction.

We calculated magnetic phase transition temperatures as a
function of impurities concentration and showed that strong
temperature dependence of dielectric permittivity in the vicin-
ity of the FE phase transition leads to essential modification
of the magnetic phase diagram. We found magnetization as a
function of temperature and showed that it has a peak in the
vicinity of the FE phase transition. This peak is a consequence
of the ME effect appearing in DMFE.

We calculated the magnetization as a function of electric
field in DMFE and demonstrated that the magnetic moment
of the system can be effectively controlled with applied bias.
The magnetization shows hysteresis behavior as a function of
electric field. It has two peaks associated with FE polarization
switching.

Strong magnetoelectric coupling can appear only in DMFE
with low dielectric constant, such as (Li,TM) codoped ZnO
or Hf0.5Zr0.5O2. TM-doped BaTiO3 is not a very promising
candidate to observe our effect due to a much larger dielectric
constant.
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