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diamond lattice antiferromagnet

Gang Chen*

State Key Laboratory of Surface Physics, Department of Physics, Center for Field Theory & Particle Physics,
Fudan University, Shanghai 200433, China

and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
(Received 24 January 2017; published 21 July 2017)

Motivated by the proposal of a topological quantum paramagnet in the diamond lattice antiferromagnet
NiRh2O4, we propose a minimal model to describe the magnetic interaction and properties of the diamond
material with spin-one local moments. Our model includes the first- and second-neighbor Heisenberg interactions
as well as a local single-ion spin anisotropy that is allowed by the spin-one nature of the local moment and the
tetragonal symmetry of the system. We point out that there exists a quantum phase transition from a trivial quantum
paramagnet when single-ion spin anisotropy is dominant to the magnetic ordered states when the exchange is
dominant. Due to the frustrated spin interaction, the magnetic excitation in the quantum paramagnetic state
supports extensively degenerate band minima in the spectra. As the system approaches the transition, extensively
degenerate bosonic modes become critical at the criticality, giving rise to unusual magnetic properties. Our phase
diagram and experimental predictions for different phases provide a guideline for the identification of the ground
state for NiRh2O4. Although our results are fundamentally different from the proposal for topological quantum
paramagnets, they represent interesting possibilities for spin-one diamond lattice antiferromagnets.
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Introduction. The recent theoretical proposal of symmetry
protected topological (SPT) ordered states has sparked wide
interest in the theoretical community [1–25]. The well-known
topological insulator, which was proposed and discovered
earlier, is a noninteracting fermion SPT protected by time
reversal symmetry [26,27]. In contrast, SPTs in bosonic
systems must be stabilized by the interactions [11]. The spin
degrees of freedom with exchange interactions seem to be a
natural candidate for realizing boson SPTs [10]. In fact, the
Haldane spin-one chain is a one-dimensional (1D) boson SPT
and is protected by SO(3) spin rotational symmetry [1,2,28].
The realization of boson SPTs in high dimensions is still
missing. It was suggested that a spin-one diamond lattice
antiferromagnet with frustrated spin interactions may host
a topological quantum paramagnet that is a spin analog of
topological insulators and is protected by time reversal sym-
metry [29]. Quite recently, a diamond lattice antiferromagnet
NiRh2O4 with Ni2+ spin-one local moments was proposed to
fit into the early suggestion [30].

NiRh2O4 is a tetragonal spinel and experiences a structural
phase transition from cubic to tetragonal at T = 380 K
[30,32,33]. As we show in Fig. 1, the magnetic ion Ni2+

has a 3d8 electron configuration, forming a spin S = 1 local
moment and occupying the tetrahedral diamond lattice site.
No signature of magnetic order was observed down to 0.1
K in the magnetic susceptibility and specific heat measure-
ments. Although this might fulfill the basic requirement for
the absence of magnetic order in a topological quantum
paramagnet, an alternative state that is distinct from topo-
logical quantum paramagnets may also provide a consistent
experimental prediction with the current experiments. In this
Rapid Communication, we propose a minimal spin model
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for a spin-one diamond lattice with tetragonal distortion and
study the full phase diagram and phase transition of our
model. We do not find the presence of a topological quantum
paramagnet in our phase diagram. Instead, due to strong spin
frustration, the ordered state in our phase diagram can be easily
destabilized and converted into a trivial quantum paramagnet
by moderate single-ion spin anisotropy. We predict that this
seemingly trivial quantum paramagnetic state in a large
parameter regime supports a gapped magnetic excitation that
develops extensively degenerate band minima in the spectrum.
As the quantum paramagnet approaches the phase transition
to a proximate ordered state, the extensively degenerate low-
energy modes become gapless and are responsible for unusual
magnetic properties, such as a linear-T heat capacity at low
temperatures in the vicinity of the transition. In the proximate

FIG. 1. A diamond lattice with J1 and J2 interactions. Due to
the tetragonal symmetry of the lattice, the a and b directions are
not equivalent to the c direction. The Ni2+ ion is in a tetrahedral
environment, so the eg orbitals are lower in energy than the t2g levels.
Tetragonal distortion further splits the two eg orbitals and the three t2g

orbitals, but the degeneracy of the xz and yz orbitals remains intact
under tetragonal distortion. To avoid the orbital degree of freedom,
we here place the xz and yz orbitals above the xy orbitals [31].
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ordered phases, we further show that the spin spiral orders are
actually induced by quantum fluctuations via quantum order
by disorder.

The microscopic spin model. We here propose the following
microscopic spin model that describes the interaction between
the spin-1 local moments with the tetragonal symmetry,

H = J1

∑
〈r r ′〉

Sr · Sr ′ + J2

∑
〈〈r r ′〉〉

Sr · Sr ′ + Dz

∑
r

(
Sz

r

)2
, (1)

where J1 and J2 are the first-neighbor and second-neighbor
Heisenberg exchange interactions, respectively. Although the
tetragonal lattice symmetry allows inequivalent bonds [33], in
this minimal model we assume all bonds are equivalent. Since
the diamond lattice is a bipartite lattice, the first-neighbor J1

interaction alone is unfrustrated, and would favor a simple
Néel state if J1 is antiferromagnetic. The second-neighbor
interaction J2 is an interaction within each fcc sublattice of the
diamond lattice. Due to the large numbers of second-neighbor
bonds, the J2 interaction would cause a spin frustration even
when it is small compared to J1. Moreover, additional single-
ion spin anisotropy is further introduced on top of the spin
exchange interactions, and is not included in the model in
Ref. [33]. Spin anisotropy is naturally allowed by tetragonal
lattice symmetry and is the only term occurring for a spin-
one local moment such as the Ni2+ ion. Previous classical
treatments of the J1-J2 spin model on a diamond lattice and
the analysis of thermal fluctuation have led to the interesting
discovery of a spiral spin liquid [34–37]. A quantum treatment
of the J1-J2 model used an exotic SP(N ) parton construction
for the spins [38] and again worked in the ordered regime.
In our context, we will largely treat spins and interactions
quantum mechanically by a more conventional means that is
appropriate for the J1-J2-Dz model.

Due to this single-ion spin anisotropy, the magnetic sus-
ceptibilities along different directions should reveal such spin
anisotropy. In particular, we carry out a high-temperature series
expansion and find that the Curie-Weiss temperatures for the
magnetic field parallel and normal to the z direction are given
as [31]

�z
CW = −Dz

3
− S(S + 1)

3
(z1J1 + z2J2), (2)

�⊥
CW = +Dz

6
− S(S + 1)

3
(z1J1 + z2J2), (3)

where z1 = 4 and z2 = 12 are the numbers of first-neighbor
and second-neighbor bonds, respectively. The above pre-
diction can be used to extract single-ion spin anisotropy.
Note for a powder sample, the Curie-Weiss temperature is
�

powder
CW = − S(S+1)

3 (z1J1 + z2J2) and is thus independent of
spin anisotropy.

Quantum paramagnet and phase diagram. To obtain a
full phase diagram of the J1-J2-Dz model, we start from
the parameter regime where single-ion spin anisotropy is
dominant. We consider an easy-plane anisotropy with Dz > 0,
since easy-axis spin anisotropy would stabilize the Néel state
and enlarge its parameter regime. In the large and positive
Dz limit, the ground state is a trivial quantum paramagnet
with Sz = 0 on every site, |�〉 = ∏

r |Sz
r = 0〉. For this simple

FIG. 2. The phase diagram of the J1-J2-Dz model. Because the
powder sample Curie-Weiss temperature �

powder
CW = −8(J1 + 3J2)/3,

we set the energy unit of the spin anisotropy Dz to J1 + 3J2 in the plot.
The transition from a quantum paramagnet to the ordered regions is
continuous in mean-field theory. On the left of the (red) dashed line,
the band minimum of the magnetic exciton is unique and appears at
the � point. On the right side, the band minima form a degenerate
surface in reciprocal space. Please refer to the main text for details.

state, there is no magnetic order and all the spin excitations are
fully gapped. Since the global U(1) spin rotational symmetry
around the z direction is preserved, the magnetic susceptibility
at zero temperature for the field along the z direction is zero
with χz(T = 0) = 0. However, if the field is applied in the xy

plane, spin rotational symmetry is broken by the in-plane field
and the magnetic susceptibility is a constant with

χ⊥(T = 0) = 2μ0(gμB)2

Dz + 2(z1J1 + z2J2)
, (4)

where g is the Landé factor. Again, this result is a consequence
of single-ion anisotropy and can be used to detect the quantum
paramagnetic state.

As we turn on the exchange interaction, the spin excita-
tion would develop dispersion in momentum space. With a
sufficient exchange interaction, we expect the minimum of the
dispersion to touch the zero energy that would lead to magnetic
orderings. To describe the magnetic ordering transition out
of the quantum paramagnetic phase, we substitute the spin
operators with rotor variables such that [39]

Sz
r = nr , S±

r =
√

2e±iφr , (5)

where φr is a 2π -periodic phase variable and nr is integer
valued. This substitution has enlarged the physical Hilbert
space by allowing Sz or n to take values beyond 0 and ±1. We,
however, do not expect this approximation to cause significant
effects since the nonphysical values of nr have been energeti-
cally suppressed by large single-ion spin anisotropy. Moreover,
the substitution preserves global U(1) spin rotational symmetry
around the z direction of the original spin model. Finally,
to preserve the spin commutation relation, we impose the
commutation for φr and nr with [φr ,nr ′ ] = iδr r ′ .
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With the rotor variables, the J1-J2-Dz spin model takes the
form

H =
∑
〈r r ′〉

J1[2 cos(φr − φr ′) + nrnr ′]

+
∑

〈〈r r ′〉〉
J2[2 cos(φr − φr ′) + nrnr ′]

+
∑

r

Dzn
2
r . (6)

From the symmetry point of view, the above model has the
same symmetry as a standard boson Hubbard model, except it
has an extra intersite boson interaction. To make this analogy
a bit further, the quantum paramagnetic state is analogous
to a boson Mott insulator with nr = 0 at every site, and the
proximate magnetic order is as a superfluid of bosons. Despite
the seeming similarity, we show below the intrinsic spin
frustration brings a rather interesting dispersion of magnetic
excitation in the quantum paramagnet and thus leads to unusual
properties at the analogous “superfluid-Mott” transition [40].

The primary operators that are responsible for the magnetic
transition out of the quantum paramagnet are the S±

r spin
operators that create the gapped spin excitations in the quantum
paramagnet but take finite values in the ordered states. We here
carry out a coherent state path integral and integrate out the
number operator nr . The resulting partition function is

Z =
∫

D	rDλr exp

[
−S − i

∑
r

λr (|	r |2 − 1)

]
, (7)

where the effective action for the rotor variable is

S =
∫

dτ
∑
k∈BZ

(2Dz12×2 + Jk)−1
ij ∂τ	

†
i,k∂τ	j,k

+
∑
〈r r ′〉

J1	
†
r	r ′ +

∑
〈〈r r ′〉〉

J2	
†
r	r ′ , (8)

where we have introduced the variable 	r ≡ eiφr . To impose
the unimodular condition for 	r , we have introduced a
Lagrange multiplier λr on each site to impose the unimodular
condition |	r | = 1 in Eq. (7). To solve for the dispersion of the
excitation, we take a saddle-point approximation and choose
a uniform mean-field ansatz such that iλr ≡ β�(T ), where
β = (kBT )−1. We integrate out the 	r field and obtain the
saddle-point equation for �(T ) in the quantum paramagnetic
phase, ∑

i=1,2

∑
k∈BZ

2Dz + ξi,k

ωi,k
coth

(
βωi,k

2

)
= 2, (9)

where ω1,k and ω2,k are the two modes of the magnetic
excitations in the paramagnetic phase and are given by

ωi,k = [(4Dz + 2ξi,k)(�(T ) + ξi,k)]
1
2 , (10)

and ξ1,k and ξ2,k are the two eigenvalues of the exchange
matrix Jk [31]. As one decreases single-ion spin anisotropy,
the gap of the magnetic excitation decreases steadily. At the
transition, the gap is closed and induces a magnetic order, and
this phase transition is continuous within this treatment. In the
phase diagram that is depicted in Fig. 2, the phase boundary

FIG. 3. The magnetic excitation ω2,k in the kx-ky plane of the
quantum paramagnet. We have chosen the following parameters: (a)
J2 = 0.05J1, Dz = 3J1; (b) J2 = 0.18J1, Dz = 1.5J1; (c) J2 = 0.4J1,
Dz = 1.5J1; (d) J2 = 0.8J1, Dz = 2J1. In the figure, we set kz = 0,
and an extended zone with kx ∈ [−4π,4π ],ky ∈ [−4π,4π ] is used.
Degenerate minima are marked with contours. One can observe the
evolution of the band minima.

between the quantum paramagnet and the magnetic order is
then determined by examining the gap of the excitations in
Eq. (10). In Fig. 2, the ordered region of the phase diagram
is further split into several subregions with distinct magnetic
orders from the quantum order by the disorder effect. This will
be explained later.

Frustrated quantum criticality. Here, we point out nontrivial
magnetic excitation in the quantum paramagnetic state and the
resulting frustrated quantum criticality. When J2 < J1/8, the
band minimum of the lower excitation ω2,k is at the � point.
As we increase J2 beyond J1/8, the dispersion minima are
obtained by minimizing ξ2,k. We find that the minima of ω2,k

are extensively degenerate [41,42] and form a two-dimensional
surface in three-dimensional reciprocal space that is defined
by

cos
kx

2
cos

ky

2
+ cos

kx

2
cos

kz

2
+ cos

ky

2
cos

kz

2
= J 2

1

16J 2
2

− 1,

(11)

where we have set the lattice constant to unity. This relation
coincides with the degenerate spiral surface that was obtained
in the classical treatment of the J1-J2 model [34,43]. In Fig. 3,
we depict the band ω2,k in the kx-ky plane with kz = 0.

Now we explain how the behaviors of the heat capacity
in the vicinity of the magnetic critical point are modified by
the large density of the low-energy excitations near the band
minima. For J2 < J1/8, only a single bosonic mode becomes
critical [see Fig. 3(a)] and leads to the usual Cv ∝ T 3 up
to a logarithmic correction from the quantum fluctuation at
the criticality. For J2 > J1/8, however, a degenerate surface
of bosonic modes becomes critical at the transition [see
Figs. 3(b)–3(d)]. To understand the consequence of this
unusual phenomena, we return to the saddle-point equation
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FIG. 4. The degenerate surface of the band minima at (a)
J2 = 0.18J1 and (b) J2 = J1/3. The (kt1 ,kt2 ) are the two tangential
momenta and k⊥ is the component normal to the degenerate surface.

in Eq. (9) that reduces to

A

∫ �

0
dk⊥

∫
�

d2kt

coth
[

β

2 (m2 + v2k2
⊥)

1
2
]

(m2 + v2k2
⊥)

1
2

+ c = 2, (12)

where we have singled out the contribution from the critical
modes as the first term in Eq. (12), A is an unimportant
prefactor of the integration, and c is an approximately T -
independent contribution from the remaining part of the
excitations. In Eq. (12), we have chosen the coordinate basis
(kt ,k⊥) such that kt (k⊥) refer to the components of the
momentum tangential to (normal to) the degenerate surface
� (see Fig. 4), and � is the momentum cutoff. Here, the

critical mode behaves as ω2,k 
 (m2 + v2k2
⊥)

1
2 in which m

is the thermally generated mass term and v is the velocity
normal to the degenerate surface. At low temperatures (T �
�), the temperature-dependent part of the integral becomes
independent of the cutoff �, and only depends on T via the
dimensionless parameter m2/T 2. In order for the equality in
Eq. (12) to hold, we expect m ∝ T .

From the scaling form of m, we obtain a remarkable result
for the low-temperature heat capacity that behaves as Cv ∝ T

at the criticality. This linear-T heat capacity is similar to the
one in a Fermi-liquid metal, except that this is a pure bosonic
system. This unusual behavior simply arises from the frustrated
spin interaction.

Quantum order by disorder. When extensively degenerate
modes are condensed at the critical point for J2 > J1/8,
extensively degenerate candidate ordered states are available,
and it is the quantum fluctuation of the spins that selects the
particular orders in the phase diagram of Fig. 2.

To explain this phenomenon, we first realize that easy-plane
spin anisotropy favors the magnetic order in the xy plane with

r ∈ A, Sr = S Re[(x̂ − iŷ)eiq·r ], (13)

r ∈ B, Sr = S Re[(x̂ − iŷ)eiq·r+iθq ], (14)

where q is the propagating wave vector of the spin spiral,
and θq is the phase shift between the A and B sublattices
of the diamond lattice. Both q and θq can be obtained by a
Weiss mean-field theory that is similar to the early classical
treatment [34]. The quantum fluctuation with respect to the

candidate spin spiral state is analyzed by a linear spin-wave
theory and is discussed in detail in the Supplemental Material
[31]. As we plot in Fig. 2, quantum fluctuation favors the spiral
wave vector to be either along the [001] or [111] direction.
For J2 > J1/4, the degenerate surface has expanded to the
Brillouin zone boundary, and the [111] direction no longer
intersects with the degenerate surface [see Fig. 4(b) as an
example], the six points around the [111] direction are selected,
and the resulting ordering states are labeled by [111∗] in
Fig. 2.

Discussion. Contrary to the proposal of a topological quan-
tum paramagnet in NiRh2O4 [30], our theoretical prediction
does not support a topological quantum paramagnet in our min-
imal J1-J2-Dz spin model. Instead, due to the strong frustrated
spin interaction, a large region of the trivial quantum para-
magnet state is stabilized in the phase diagram. Although the
trivial quantum paramagnet does not represent any new state of
matter, the magnetic excitation is rather unusual and supports
a degenerate surface of band minima in the spectrum. As the
system is driven into a magnetic ordered state, extensively
degenerate critical modes from the degenerate surface are
condensed, leading to unconventional critical properties at the
transition.

To differentiate the proposal of a topological quantum
paramagnet from our proposal, we propose the following
experiments. In a topological quantum paramagnet, the bulk
is fully gapped and the surface may show various anomalous
behaviors [7,11,23,29]. If the system develops gapless surface
states, it should be detectable by surface thermal transport.
If the system realizes intrinsic topological order [7,23], one
would observe fractionalized excitations on the surface. If the
system breaks time reversal symmetry on the surface, then
one would observe a surface magnetic order. In contrast,
our prediction of the thermodynamic properties and the
excitation spectrum for a trivial quantum paramagnet can be
directly measured by bulk measurements, such as magnetic
susceptibility and inelastic neutron scattering. Moreover, since
the model is applicable broadly to spin-one tetragonal diamond
materials, it is of interest to find similar materials in the spinel
families.

Finally, we address the role of other interactions. It has
been shown classically for the spin S = 5/2 diamond lattice
antiferromagnet MnSc2S4 that a very weak third-neighbor
interaction could lift the continuous degeneracy [34]. Here,
the quantum paramagnetic phase is a robust state, the presence
of a weak further neighbor interaction cannot destabilize it, and
we expect the general structure of the phase diagram in Fig. 2
to remain intact. The effect of other weak interactions on the
excitation in quantum paramagnets is a very-low-energy scale
property and may not be visible under the current experimental
resolution.

Note added. Recently, we became aware of Ref. [44], which
studied a modified exchange model for NiRh2O4. Their results
are complementary to ours.
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