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Information propagation in isolated quantum systems
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Entanglement growth and out-of-time-order correlators (OTOC) are used to assess the propagation of
information in isolated quantum systems. In this work, using large scale exact time evolution we show that
for weakly disordered nonintegrable systems information propagates behind a ballistically moving front, and
the entanglement entropy growths linearly in time. For stronger disorder the motion of the information front is
algebraic and subballistic and is characterized by an exponent, which depends on the strength of the disorder,
similarly to the sublinear growth of the entanglement entropy. We show that the dynamical exponent associated
with the information front coincides with the exponent of the growth of the entanglement entropy for both weak
and strong disorder. We also demonstrate that the temporal dependence of the OTOC is characterized by a fast
nonexponential growth, followed by a slow saturation after the passage of the information front. Finally, we
discuss the implications of this behavioral change on the growth of the entanglement entropy.
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Introduction. While the speed of light is the absolute
upper limit of information propagation in both classical and
quantum relativistic systems, surprisingly a velocity, which
plays a similar role exists also for short-range interacting
nonrelativistic quantum systems. This velocity, known as the
Lieb-Robinson velocity, bounds the spreading of correlations
in the system and implies that information about local initial
excitations propagates within a causal “light cone,” similarly to
the light cone encountered in the theory of special relativity [1].
The shape of the light cone can be obtained from the correlation
function

C
β

i (t) = − 1

Z
Tr e−βĤ [Âi(t),B̂j=0]2, (1)

where Ĥ is the Hamiltonian, β is the inverse temperature,
Âi(t) and B̂j=0 are local Hermitian operators in the Heisenberg
picture operating on sites i and j = 0, and [.,.] is the commu-
tator and Z = Tr e−βĤ is the partition function. For β = 0,
Lieb and Robinson proved that for short-range interacting
Hamiltonians this correlation function [which in that case is
identical to the Frobenius norm of the commutator [Âi(t),B̂j ]
and is commonly known as the out-of-time-order corre-
lator (OTOC)], is bounded by C

β

i (t) � c exp [−a(i − vt)],
where a, c are constants and v is the Lieb-Robinson (LR)
velocity. The OTOC was first introduced by Larkin and
Ovchinnikov [2], who noted that it embodies a signature of
classical chaos in the corresponding quantum system. In the
semiclassical limit, the commutator is replaced by Poisson
brackets and for the choice of the operators Â(t) → q(t) and
B̂ → p, gives Cβ(t) ∼ h̄2(∂q(t)/∂q)2. The OTOC therefore
measures the sensitivity of classical trajectories to their initial
conditions, which for chaotic systems implies that the OTOC
grows exponentially in time, Cβ(t) ∼ exp [2λLt], where λL
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is the classical Lyapunov exponent. A related manifestation
of classical chaos in quantum systems was introduced in
Ref. [3]. The time scale td ∼ λ−1

L is a purely classical time
scale, and quantum effects become appreciable only on a
parametrically longer time scale known as the Ehrenfest
time, tEhrenfest ∼ λ−1

L ln [scl/h̄], with the typical classical action
scl [4–7]. For quantum systems without a proper semiclassical
limit, the concept of Ehrenfest time does not directly apply, and
the exponential growth of the OTOC, while plausible, cannot
be similarly motivated. Moreover, for quantum systems with
a finite local Hilbert space dimension it is easy to show that
the OTOC is bounded from above uniformly in time. Indeed,
the growth saturates after a time known as the “scrambling
time,” tsc [8,9]. This creates an additional hurdle for the
observation of the exponential growth of the OTOC in systems
with a small local Hilbert space dimension, since the regime of
exponential growth is pronounced only for times td � t � tsc.
This difficulty can be remedied either by increasing the local
Hilbert space dimension, or by studying OTOCs of extensive
operators as recently proposed in Ref. [10].

The interest in OTOCs was revived by Kitaev [11,12],
who using the AdS-CFT correspondence established a duality
between some strongly coupled quantum systems and black
holes [9,13–15]. The spreading of the OTOCs in space
directly corresponds to the spreading of information on
local excitations. Surprisingly, while transport in generic
systems is diffusive, the LR bound suggests that information
spreads behind a ballistically propagating front, namely that
it resides within a linear light cone. This was observed in
the study of the growth of the entanglement entropy, a global
measure of quantum information, where it was conjectured
that entanglement is transmitted “on contact,” similarly to the
spread of fire, and therefore inherently spreads faster than
particles or energy [16]. The ballistic spreading of OTOCs
was directly established and linked to combustion theory in
Ref. [17]. In this work, a relation between the entanglement
entropy growth and the spreading of the OTOC was also
conjectured [17] (cf. Ref. [18] for a connection to the second
Rényi entropy).
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In this work, we examine the spreading of quantum
information using both OTOCs and the entanglement entropy
(EE) growth and establish the relationship between the two for
diffusive and subdiffusive systems. We also provide a detailed
analysis of the shape of the OTOCs in space and time.

Model. We study the one-dimensional spin- 1
2 Heisenberg

chain of length L in a random magnetic field,

Ĥ = J

L−1∑

i=1

�Si · �Si+1 +
L∑

i=1

hiŜ
z
i , (2)

with the coupling between the spins J = 1, and the random
fields hi ∈ [−W,W ] drawn from a uniform distribution with
disorder strength W . This model exhibits an ergodic to noner-
godic transition [19], which for infinite temperature occurs at
Wc ≈ 3.7 [20,21]. Interestingly, even in the nonergodic phase,
where transport is completely frozen, information continues
to spread logarithmically in time via dephasing [22], as was
initially established using the growth of the EE [23,24] and
later using OTOCs [18,25–31]. In contrast, the spreading of in-
formation in noninteracting Anderson insulators is completely
frozen [32,33]. The ergodic phase of this model, occurring
for W < Wc, exhibits anomalous subdiffusive spin transport
characterized by a dynamical exponent varying continuously
with disorder strength [34–44], but also a sublinear EE
growth [36] (cf. Ref. [45] for a review). Here we focus solely
on the ergodic phase and on the infinite temperature limit. In
the weakly disordered limit, the disorder can be considered as
an integrability breaking perturbation, allowing us to draw
conclusions on generic clean systems. Here, information
spread is bounded by normal linear light cones, as displayed
in the left panel of Fig. 1. For stronger disorder, information is
contained within anomalously shaped light cones, which are
well described by power laws (see right panel of Fig. 1). Such
anomalous light cones were previously predicted for the XY

spin chain in a quasiperiodic potential [46], however to the
best of our knowledge were never observed.
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FIG. 1. OTOC [see Eq. (3)] for the L = 31 random Heisenberg
chain in the Sz = 1

2 sector at weak disorder W = 0.3 (left) and
intermediate disorder W = 1.8 (right). At weak disorder, a linear
light cone is visible (contour lines at three thresholds indicated on the
color bar), which changes to a power-law light cone at intermediate
disorder, with considerably slower information spreading. Here, we
average over a modest number of disorder realizations (n = 10 for
W = 0.3 and n = 45 for W = 1.8), but symmetrize the OTOC,
effectively doubling the number of realizations.

Calculation of the OTOC. For the system (2), the OTOC
can be simplified to

C
β=0
i (t) = 1

8
− 2

Z
Re Tr

(
Ŝz

i (t)Ŝz
j=0Ŝ

z
i (t)Ŝz

j=0

)
, (3)

where to utilize the conservation of the total spin we take,
Âi(t) = Ŝz

i (t) and B̂j=0 = Ŝz
j=0. The numerical calculation

of the correlation function in (3) for large enough system
sizes is a challenging task and several approaches have been
used previously, relying on the propagation of operators in the
Heisenberg picture using either exact diagonalization (ED) of
the Hamiltonian [27] or a representation in terms of matrix
product operators (MPO) [47]. Although these approaches
yield accurate results, they severely suffer from an exponential
scaling with either system size (ED) or time (MPO). In
order to alleviate these problems, we calculate the OTOC in
the Schrödinger picture using an exact time-evolution with
a Krylov space method [45,48,49]. Our method still scales
exponentially in system size, however much larger system
sizes can be reached compared to exact diagonalization of the
Hamiltonian. In this work, we report results for system sizes
up to L = 31 (cf. Fig. 1). To evaluate the trace in (3) we
utilize Lévy’s lemma and the concept of quantum typicality
[45,50–52]. The trace is approximated by an expectation value
with respect to a pure random state |ψ̃〉 drawn from the Haar
measure, such that, Ci(t) ≈ 〈ψ̃ |Ŝz

i (t)Ŝz
0Ŝ

z
i (t)Ŝz

0|ψ̃〉. As was
shown by Lévy, the error of this approximation is inversely
proportional to the dimension of the Hilbert space if the
operator can be written as a Lipshitz continuous function
on a hypersphere on which the state is represented as a
point. It is convenient to calculate independently |ψ1(t)〉 =
Ŝz

i (t)Ŝz
0|ψ̃〉 and |ψ2(t)〉 = Ŝz

0Ŝ
z
i (t)|ψ̃〉, for various values of i.

These calculations employ the exact propagation of a single
wave function using a projection of the matrix exponential
exp [−iHt] on the Krylov space of the Hamiltonian H (cf.
Sec. V A of Ref. [45] for details). The OTOC is then given by
the overlap Ci(t) = 〈ψ2(t)|ψ1(t)〉. While at each time step a
full propagation back to time t = 0 is necessary, this procedure
can be carried out efficiently, allowing us to access system sizes
up to L = 31 (Hilbert space dimension 3 × 108).

Tomography of the OTOC. As explained in the introduction,
the OTOC for two local operators with a fixed distance is
expected to grow exponentially with time. In Fig. 2, we test this
assertion for a number of distances and two disorder strengths.
The growth of the OTOC shows two clear regimes: a fast
initial growth, associated with the advance of the information
front, followed by a slow saturation to the maximal value after
the front has passed (bottom panels of Fig. 2). Surprisingly,
the growth is not well described by an exponential, even
for very weak disorder (W = 0.3), as is apparent from the
logarithmic derivative on the upper panel of Fig. 2. This
derivative monotonically decreases to zero, without a visible
reversal trend for larger distances and longer times. For
stronger disorder, within the subdiffusive phase, one might
suspect either a stretched exponential [46] or a power law
growth of the OTOC [18]. However, our data do not support
these forms, possibly due to the very limited time range of
their validity.

In Fig. 3, we study the spatial profile of the OTOC for
fixed times. The LR bound establishes that the spatial decay
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FIG. 2. OTOC at fixed distances (indicated by numbers) from the
initial excitation in the middle of the lattice as function of time, for two
disorder strengths W = 0.3 [n = 10] (bottom left) and 1.8 [n = 45]
(bottom right). Darker colors represent longer distances, x = 3−15.
Upper panels show the logarithmic derivative of the corresponding
bottom panel. System size is L = 31.

of the OTOC should be at least exponential. In Fig. 3, we
show the spatial profiles for different times (lower panels) and
the corresponding semilogarithmic derivative in space (upper
panels). The decay appears to be faster than exponential,
suggesting that the LR bound is not saturated, however, for
longer times and distances, the profile does appear to converge
to an exponential form, which is more apparent for the case of
stronger disorder.
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FIG. 3. OTOC at fixed times as function of site index, for two
disorder strengths W = 0.3 [n = 10] (bottom left) and 1.8 [n = 45]
(bottom right). Darker colors represent later times on a linear grid,
t = 0.6, . . . ,12, and the lines are shifted for clarity. Upper panels
show the semi-logarithmic derivative of the corresponding bottom
panel. System size is L = 31.

Light cone shape. A qualitative inspection of the OTOC in
Fig. 1 reveals a presumably linear propagation of the OTOC
front at weak disorder and a sublinear propagation at stronger
disorder. To confirm this observation quantitatively, we extract
the contour lines of the OTOC, Ci(t) = η, as a function of
space and time for different thresholds, 10−4 < η < 10−1 [the
OTOC in (3) is bounded from above by 0.125]. The contour
lines are obtained from the times at which the OTOC exceeds
the threshold η at each lattice site, and the statistical error is
estimated by a bootstrap resampling. Motivated by the usual
algebraic relation between space and time, which applies for
diffusive and subdiffusive systems, we assume such a relation
also for the shape of the contour lines, x ∼ tα . Typical results
for different thresholds are shown in Figs. 1 and 4 with very
good fits to this form. Since the domain of the fits is clearly
restricted in both space and time, we proceed by assessing
the finite size effects. The left panels of Fig. 4 show that
contour lines obtained for the same threshold η but different
system sizes agree well within error bars. The right panels
of Fig. 4 show the exponent α as a function of the threshold
for various system sizes. Here we observe a strong systematic
dependence of the exponent on the value of the threshold, such
that α(η) exhibits a maximum at a threshold of the order of
η ≈ 10−2. Finite size effects are the strongest for very large and
very small thresholds, where the power-law fits are severely
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FIG. 4. (Left column) Extraction of the dynamical exponents
from the shape of the OTOC “light cones” for two disorder strengths
W = 0.9 and 1.8 [n > 100, except for L = 31, where we used the
same realizations as shown in Fig. 1], two thresholds (3.24 × 10−4

and 0.0186, corresponding to the two distinctive groups of colored
lines on each panel) and various system sizes, L = 17, 21, 25, and
31 (larger sizes correspond to more intense color). The dashed black
lines are power law fits to the contour lines. The dependence of
the extracted dynamical exponent on the threshold is plotted on the
right column, for same disorder strengths and system sizes. The
dashed black line here marks the thresholds used for the data on
the left column, the orange solid line represents the final selection of
the dynamical exponent, which does not depend on the size of the
system asymptotically. Error bars represent the statistical errors in
the extraction of the contours or the exponents, correspondingly.
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FIG. 5. Dynamical exponent relating space and time as extracted
from the shape of the OTOC “light cones” for a system size of L = 25
(blue line), and the spread of the entanglement entropy (black line).
The dynamical exponent for the entanglement entropy was taken from
Ref. [36] for L = 28. Error bars indicate the statistical uncertainty
and do not include systematic errors. As the exponent depends on the
choice of the threshold, we show the maximal exponent as well as
the exponent of the front propagation for large threshold (η = 0.02).

bounded either in space or in time. Hence we cannot exclude
that α(η) is a monotonic function in the thermodynamic limit.

We interpret the maximal value of the dynamical exponent
α as the fastest mode of information spreading in the system,
corresponding to the propagation of the tail of the OTOC,
and extract its value for different disorder strengths W [see
Fig. 5 (blue)]. The error bars in this figure are statistical and
do not include systematic errors, such as finite size effects. We
observe a monotonously decreasing exponent as a function
of disorder strength, starting from a value close to α = 1 at
very weak disorder, consistent with a linear light cone. We
compare this exponent to the dynamical exponent obtained
from the growth of the EE as a function of time starting
from a random product state (data is taken from Ref. [36]).
While the two exponents match very well at weak disorder,
they seem to deviate from each other starting from W ≈ 1,

suggesting that the tail of the light cone spreads faster than
EE. Extracting the exponent α from contour lines obtained at a
larger threshold η = 0.02 (or larger) does produce a reasonable
match, indicating that the EE spreads as the front of the
OTOC.

Discussion. We studied information spreading in a generic
quantum system using the OTOC. We showed that at fixed
distance, the temporal growth of the OTOC does not appear
to have a finite regime of exponential growth neither for weak
nor stronger disorder, even for larger system sizes or longer
distances. This suggests that an exponential regime in local

quantum systems without a semiclassical limit is either absent
or very short. The spatial profile of the OTOC seems to decay
faster than exponentially, indicating that the LR bound could
be further improved. However, we note a weak trend towards
an exponential profile at larger times and stronger disorder.

We demonstrated that information mostly resides within
spatio-temporal light cones. For weak disorder, with diffusive
transport, we obtain light cones of linear shape. For stronger
disorder, information transport is suppressed, leading to a
deformation of the linear light cone into a power-law form,
consistent with the previously observed subdiffusive transport
as well as with the sublinear algebraic growth of the EE
after a quench from a random product state. We directly
compared the dynamical exponents extracted from the tail and
the propagating front of the OTOC. While our data suggests
that the tail of the OTOC propagates faster than the EE, the
propagation of the front of the OTOC and the EE coincide.
Unlike the EE, the front of the OTOC thus provides a glimpse
into the local structure of information propagation in the
system.

We also demonstrated that the growth of the OTOC is
markedly different before and after its front passes through
a given point in space. A fast initial growth is followed by a
much slower saturation to the maximal value of the OTOC.
This observation, combined with the association between the
EE growth and the propagation of the OTOC front, which
follows from our work, allows us to explain the apparent
slowing down of the initial fast growth of the EE, starting
from a product state, that was observed in a number of studies.
We argue that this slow saturation regime of both the EE and
OTOC occurs for times L1/α < t < tTh(L) (where tTh is the
generalized Thouless time, which scales algebraically with
system size [44]) and is a consequence of the conservation
laws in the system. It is therefore expected to be absent for
systems without any conservation laws, such as certain Floquet
systems. We leave the study of information propagation in this
regime for future work.
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