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Theory of spin hydrodynamic generation
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Spin-current generation by fluid motion is theoretically investigated. Based on quantum kinetic theory, the spin-
diffusion equation coupled with fluid vorticity is derived. We show that spin currents are generated by the vorticity
gradient in both laminar and turbulent flows and that the generated spin currents can be detected by the inverse
spin Hall voltage measurements, which are predicted to be proportional to the flow velocity in a laminar flow. In
contrast, the voltage in a turbulent flow is proportional to the square of the flow velocity. This study will pave the
way to fluid spintronics.
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I. INTRODUCTION

Spintronics is an emerging field in condensed matter
physics, which focuses on the generation, manipulation, and
detection of spin currents [1]. Two mechanisms of spin-current
generation have been repeatedly confirmed: the spin-orbit cou-
pling driven and the exchange coupling driven mechanisms.
The spin-Hall effect [2–4] belongs to the former class as it
relies on the spin-orbit scattering. A typical example of the
latter class is the spin pumping [5–7], which originates from
the dynamical torque-transfer process during magnetization
due to nonequilibrium spin accumulation.

Recently, an alternative scheme has been proposed, wherein
spin-rotation coupling [8] is exploited for generating spin
currents [9–11]. The spin-rotation coupling refers to the
fundamental coupling between spin and mechanical rotational
motion and emerges in both ferromagnetic [12] and para-
magnetic [13,14] metals as well as in nuclear spin systems
[15,16]. This coupling allows the interconversion of spin and
mechanical angular momentum.

Spin-current generation has been experimentally demon-
strated using the mechanical rotation of a liquid metal [17]. In
the experiment, the induced mechanical rotation in a turbulent
pipe flow of Hg and Ga alloys is utilized to generate the spin
current.

In this paper, we theoretically investigate the fluid-
mechanical generation of spin current in both laminar and
turbulent flows of a liquid metal and predict that the fluid
velocity dependence of the spin current under laminar condi-
tions will be qualitatively different from that in the turbulent
flow. First, we show that the spin-vorticity coupling emerges
in a liquid metal and derive the spin-diffusion equation in a
liquid-metal flow based on quantum kinetic theory. We solve
the spin-diffusion equation and reveal that the spin current is
generated by the vorticity gradient. By solving the equation
under both laminar- and turbulent-flow conditions, the inverse
spin Hall voltage in the laminar liquid flow is predicted to be
linearly proportional to the flow velocity, whereas the voltage
in the turbulent flow is proportional to the square of the flow
velocity. Our study will pave the way to fluid spintronics,
where spin and fluid motion are harmonized.

II. SPIN VORTICITY COUPLING

To consider the inertial effect on an electron due to nonuni-
form acceleration, we begin with the generally covariant Dirac

equation [18], which governs the fundamental theory for a
spin-1/2 particle in a curved space-time:

[iγ μ(pμ − qAμ − ih̄�μ) + mc]� = 0, (1)

where c,h̄,q = −e, and m represent the speed of light, the
Planck’s constant, the charge of an electron, and the mass
of an electron, respectively. Equation (1) includes two types
of gauge potentials: the U(1) gauge potential, Aμ, and the
spin connection, �μ. The former originates from external
electromagnetic fields and the latter describes gravitational
and inertial effects upon electron charge and spin. The spin
connection, �μ, is determined by the metric gμν(x). The
coordinate-dependent Clifford algebra can be expressed by
γ μ = γ μ(x), and it satisfies {γ μ(x),γ ν(x)} = 2gμν(x) (μ,ν =
0,1,2,3) with the inverse metric given by gμν(x).

In the following, we focus on a single electron in a
conductive viscous fluid. The motion of the viscous fluid
is effectively described by its flow velocity, v(x), which is
the source of the gauge potential on an electron, �μ, and
reproduces inertial effects on the electron charge and spin, as
explained below. We assume that the flow velocity is much less
than the speed of light, |v| � c. The coordinate transformation
from a local rest frame of the fluid to an inertial frame is written
as dr′ = dr + v(x)dt, and the space-time line element in the
local rest frame is

ds2 = gμνdxμdxν

= [−c2 + v2]dt2 + 2v · drdt + dr2. (2)

Then, the metric becomes

g00 = −1 + v2/c2, g0i = gi0 = vi/c, gij = δij . (3)

Equations (1) and (3) lead to the Dirac Hamiltonian in the local
rest frame:

H = βmc2 + cα · π + qA0 − 1
2qA · v − 1

2 {v,π} − 1
2� · ω.

(4)

Here, β and α are the Dirac matrices and � is the spin operator.
Moreover, π = p − qA refers to the mechanical momentum,
ω = ∇ × v is the vorticity of the fluid, and {v,π} = vπ + πv.
Equation (4) is a generalization of the Dirac equation in a
rigidly rotating frame. If the velocity is chosen to be v(x) =
� × r with a constant rotation frequency �, then the fourth
term {v,π}/2 is a representative of the coupling of the rotation
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and the orbital angular momentum, −� · (r × π), which
reproduces quantum-mechanical versions of the Coriolis,
centrifugal, and Euler forces, as shown below. The fifth term,
−� · ω/2, can be called the “spin-vorticity coupling”, which
reproduces the spin-rotation coupling −� · � because the
vorticity ω is reduced to the rotation frequency � as ω = 2�

for rigid motion. Thus Eq. (4) reproduces the Dirac equation
in the rotating frame.

III. INERTIAL FORCES ON AN ELECTRON DUE TO
VISCOUS-FLUID MOTION

Using the lowest order of the Foldy-Wouthuysen-Tani
expansion [19] for Eq. (4), we obtain the Schrödinger equation
for an electron’s two-spinor wave function, ψ , in the fluid:

ih̄
∂ψ

∂t
= Hψ, H = 1

2m
π2 + qA0 − μBσ · B

− 1

2
qA · v − 1

2
{v,π} − 1

2
S · ω, (5)

with μB = qh̄/2m, B = ∇ × A, and S = (h̄/2)σ .
From Eq. (5), the Heisenberg equation for an electron in

the fluid is obtained as

ṙ = 1

ih̄
[r,H ] = π

m
+ v, (6)

mr̈ = 1

ih̄
[mṙ,H ] + m

∂v
∂t

= F, (7)

where the operator Fi whose expectation value corresponds to
a semi-classical force is given by

F = Fem + Fc + Fσ , (8)

Fem = q(E + (ṙ − v) × B), (9)

Fc = m(ṙ · ∇)v − (∇vi)ṙi + (∇vi)vi + m
∂v
∂t

, (10)

Fσ = ∇
{
μBσ ·

(
B + ω

2γ

)}
. (11)

Equation (9) represents the electromagnetic force in a conduc-
tive viscous fluid. In the case of a rigid rotation, v(x) = � × r,
the first and second terms in Eq. (10) reproduce the Coriolis
force, −2mṙ × �, the third term becomes the centrifugal force,
m� × (� × r), and the last term corresponds to the Euler
force.

Equation (11) is an expression for the Stern–Gerlach force,
which originates from the gradient of the combination of the
Zeeman term, μBσ · B, and the spin-vorticity coupling term,
h̄σ · ω/2:

Hσ = −μBσ ·
(

B + ω

2γ

)
, (12)

where γ = gq/2m is the gyromagnetic ratio with g = 2. This
indicates that the inertial effect due to fluid motion is equivalent
to the effective magnetic field Bω = γ −1ω/2. In the following
paragraphs, we demonstrate that the effective field is crucial
for generating the spin current.

IV. SPIN-DIFFUSION EQUATION IN
A LIQUID-METAL FLOW

To investigate spin-current generation due to the spin-
vorticity coupling, we derive the spin-diffusion equation by
using quantum kinetic theory. Starting with the quantum
kinetic equation:

∂G<

∂t
− 1

h̄

∂Re�R

∂R

∂G<

∂k
+ vk

∂G<

∂R

= 1

h̄
(GK Im�R − ImGR�K ), (13)

where G is the nonequilibrium Green’s function of an electron,
� is the self-energy of the electron, and vk is the group velocity
of the electron. We consider the effects of the impurity poten-
tial, the spin-orbit potential, and the spin-vorticity coupling:

Hint = Vimp + ηsoσ · (∇Vimp × p) − h̄

4
σ · ω, (14)

where Vimp is an ordinary impurity potential and ηso is
the spin-orbit coupling parameter. Using a quasi-particle
approximation, the quantum kinetic equation reduces to the
spin-dependent kinetic equation:

∂f σ
ktr

∂t
− 1

h̄

∂�
σ,R
kε

∂R

∂f σ
krt

∂k
+ vk

∂f σ
krt

∂R

= −f σ
ktr − f 0

k

τimp
− f σ

ktr − f −σ
ktr

τ̃sf
, (15)

where f σ
krt is the distribution function of an electron with spin

σ , f 0 is the equilibrium distribution function of an electron,
and τimp is the transport-relaxation time given by

τ−1
imp = 2πnimpDFV

2
imp/h̄ (16)

with the impurity density nimp. The spin-flip relaxation time
τ̃sf is given by

τ̃−1
sf (k) = τ−1

sf (k) + τ−1
sv (k), (17)

where the spin lifetime due to the spin-orbit coupling is

τ−1
sf = 2η−2

so τ−1
imp (18)

and the spin lifetime due to the spin-vorticity coupling τsv is
given by

τ−1
sv (r,k,t,ω) = DFω̃(r,k,t,ω), (19)

where ω̃(r,k,t,ω) is the Wigner representation of the kinetic
component of the two-particle correlation function defined by

ω̃(r,k,t,ω) ≡
∫

δrδt
ω̃(r,δr,t,δt)ei(k·δr−ωδt) (20)

with

ω̃(r,δr,t,δt)

= Tr

[
ρ̂ω+

(
r − δr

2
,t − δt

2

)
ω−

(
r + δr

2
,t + δt

2

)]
. (21)

Here, ρ̂ is the density matrix of the fluid (Fig. 1).
Using the expansion

f σ
krt = f 0

k + ∂Ek
f 0

k (σδμ + h̄ωkrt /2), (22)

020401-2



RAPID COMMUNICATIONS

THEORY OF SPIN HYDRODYNAMIC GENERATION PHYSICAL REVIEW B 96, 020401(R) (2017)

FIG. 1. Contribution to the self-energy � originating from the
spin-vorticity coupling.

the momentum average of the kinetic equation is reduced to
the generalized spin-diffusion equation:

(
∂t − Ds∂

2
x + τ̃sf(kF )−1

)
δμS = − h̄

τ̃sf(kF )
ζωz, (23)

where Ds is the diffusion constant and ζ is the renormalization
factor of the spin-vorticity coupling defined by

ζ =
∫ kF

0 dk
[
∂kf

0
k ωz

rkt τ̃sf(k)−1
]

ωz(r,t)τ̃sf(kF )−1
∫ kF

0 dk
[
∂kf

0
k

] (24)

with the Fermi wave number kF . Based on the nonequilibrium
Green’s function method, the renormalization factor is found to
depend on the microscopic parameters including the transport-
relaxation time, the spin-flip lifetime, resulting from impurity
scatterings and an extrinsic spin-orbit coupling.

In nonequilibrium steady-state conditions, this equation
may be further reduced to(

∇2 − 1

λ2

)
δμs = h̄ζω

λ2
, (25)

where λ denotes the spin-diffusion length.

V. SPIN CURRENT FROM FLUID MOTION

A. Spin current from laminar flow between plates

We now solve the spin-diffusion equation under a typical
laminar flow condition. The equations of motion for an
incompressible viscous fluid are well described by the Navier-
Stokes (NS) equation:

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇p + η

ρ
∇2v, (26)

where ρ is the fluid density, η is the viscosity coefficient, and p

is the pressure. In the following derivation, we use a solution of
the NS equation. Moreover, the vorticity field calculated from
the solution is inserted into the static spin-diffusion equation
in (25) to obtain the generated spin current.

We consider the parallel flow enclosed between two parallel
planes with a distance of 2y0 as shown in Fig. 2. The solution
to Eq. (26) is the well-known two-dimensional Poiseuille
flow [20]:

vx = v0{1 − (y/y0)2}, vy = vz = 0, (27)

where

v0

y2
0

= − 1

2η

dp

dx
. (28)

In this case, the vorticity becomes

ω = ∇ × v = (0,0,2v0y/y2
0 ). (29)

FIG. 2. Representation of the spin current in the two-dimensional
Poiseuille flow. The parallel flow between the two parallel planes, y =
±y0, creates the velocity field v = (v0(1 − y2/y2

0 ),0,0). The vorticity
of the flow emerges in the z-direction: ∇ × v = (0,0,2v0y/y2

0 ). Then,
the gradient of the vorticity generates the z-polarized spin-current in
the y direction.

Inserting Eq. (29) into Eq. (25), we obtain the z-polarized spin
current as

J z
s,y = σ0

e

∂

∂y
δμz

s(y) = 2ζ
h̄σ0

e

v0

y2
0

[
1 − cosh(y/λ)

cosh(y0/λ)

]

≈ 2ζ
h̄σ0

e

v0

y2
0

, (30)

when y0 � λ.

B. Spin current from laminar flow in a pipe

Let us consider a steady flow in a pipe of circular cross-
section with radius r0 (Fig. 3). In this case, the solution to
Eq. (26) is the Hagen-Poiseuille flow [20]:

vx = v0{1 − (r/r0)2}, vr = vθ = 0, (31)

when

v0

r2
0

= − 1

4η

dp

dx
. (32)

The θ -polarized spin current, which flows in the radial
direction, is given by

J θ
s,r ≈ 2ζ

h̄σ0

e

v0

r2
0

. (33)

C. Spin current from turbulent flow in a pipe

We also consider a turbulent flow in the pipe. Velocity
distribution in a turbulent flow in a pipe is well described
as [20]

vx(r)

v∗
=

{
v∗(r0−r)

ν
(r0 − δ0 < r < r0)

1
κ

ln v∗(r0−r)
ν

+ A (0 < r < r0 − δ0)
, (34)
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FIG. 3. Representation of the spin current for the Hagen-
Poiseuille flow. A steady viscous flow in a pipe of circular cross-
section with radius r0 creates the velocity field, (vx,vr ,vθ ) = (v0(1 −
r2/r2

0 ),0,0), in the cylindrical coordinate (x,r,θ ). In this case, the
vorticity gradient generates the θ -polarized spin current in the radial
direction. The inset shows the cross section of the pipe.

where v∗ is the friction velocity, r0 is the internal radius of
the pipe, ν is the kinetic viscosity, κ is the Karman constant,
A = 5.5 for the mercury, and δ0 is the thickness of the
viscous sublayer. The friction velocity is related to the velocity

distribution vx(r) as v∗ =
√
ν| ∂vx

∂r
|
r=r0

. The region near the inner

wall (r0 − δ0 < r < r0) is called the viscous sublayer.
In the cylindrical coordinate (x,r,θ ) (Fig. 3), the vorticity,

ωθ (r) = −∂rvx(r), is given by

ωθ (r) =
{

v2
∗
ν

(r0 − δ0 < r < r0)
v∗
κ

1
r0−r

(0 < r < r0 − δ0)
. (35)

The spin current is generated mostly near the viscous sublayer,
especially around r ≈ ro − δ0, where the vorticity gradient is
the largest. Then, the spin current becomes

J θ
s,r ≈ 2ζ

h̄σ0

e

v∗
κ(r − r0)2

. (36)

D. Inverse spin Hall voltage

Finally, we investigate the inverse spin Hall voltage owing
to the spin-current generation under the laminar and turbulent
flow conditions. Following the voltage measurement by Taka-
hashi et al. [17], we consider the inverse spin Hall voltage to
be parallel to the flow velocity (the x direction). The spin
current is then converted into the electric voltage because
of the spin-orbit coupling in the liquid metal and can be
expressed as

V Lam
ISHE = L

σ0

2e

h̄
θSHEJs, (37)

where VISHE is the inverse spin Hall voltage, L is the length of
the channel, θSHE is the spin Hall angle of the liquid metal, and
Js represents the generated spin current: J z

s,y = J z
s or J θ

s,r . In

the case of the Hagen-Poiseuille flow, the voltage is given by

V Lam
ISHE = 2ζθSHE

h̄

e

L

y2
0

v0. (38)

This indicates that the generated voltage in a laminar flow is
proportional to the flow velocity v0.

Contrary to the laminar flow case, the voltage in a turbulent
flow is proportional to the square of the flow velocity:

V Turb
ISHE = θSHEL

σ0πr2
0

×
(∫ r0−δ0

0
+

∫ r0

r0−δ0

)
2πrdrJ θ

s,r

≈ ζθSHE
4L

r0

h̄

e

1

κνReδ
v 2

∗ , (39)

where Reδ = δ0v∗/ν is the Reynolds number defined by the
friction velocity.

Making use of the material parameter values for the
turbulent condition of the mercury [17], κ = 1.2 × 10−7, ν =
1.2 × 10−7m2s−1, L = 400 × 10−3 m, r0 = 0.2 × 10−3 m,
v∗ = 0.1 m/s and V Turb

ISHE = 100× nV, we obtain ζθSHE = 1.1.
Taking θSHE = 10−2 as an example, we find the renormaliza-
tion factor ζ to be 102.

Furthermore, we estimate the voltage in the Hagen–
Poiseuille flow. Although the renormalization factor ζ under a
laminar-flow condition is generally different from that under a
turbulent condition, we assume that the factor in a laminar flow
is the same order of that in the turbulent flow as ζθSHE ≈ 1.
Then choosing L = 80 mm and r0 = 0.1 mm, the computed
inverse spin Hall voltage is VISHE ≈ 4 nV.

VI. CONCLUSION

In this paper, we have investigated spin-current generation
due to fluid motion. The spin-vorticity coupling was obtained
from the low energy expansion of the Dirac equation in
the fluid. Owing to the coupling, the fluid vorticity field
acts on electron spins as an effective magnetic field. We
have derived the generalized spin-diffusion equation in the
presence of the effective field based on the quantum kinetic
theory. Moreover, we have evaluated the spin current generated
under both laminar- and turbulent-flow conditions, including
the Poiseuille and Hagen-Poiseuille flow scenarios, and the
turbulent flow in a fine pipe. The generated inverse spin Hall
voltage is linearly proportional to the flow velocity, whereas
that in a turbulent-flow environment is proportional to the
square of the velocity. Our theory proposed here will bridge
the gap between spintronics and fluid physics, and pave the
way to fluid spintronics.
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52 (2016); See also, I. Zutić and A. Matos-Abiague, ibid. 12,
24 (2016); D. Ciudad, Nat. Mater. 14, 1188 (2015); J. Stajic,
Science 20, 924 (2015).

[18] D. Brill and J. Wheeler, Rev. Mod. Phys. 29, 465 (1957); N. D.
Birrell and P. C. W. Davies, Quantum Fields in Curved Space
(Cambridge University Press, Cambridge, 1982).

[19] L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950); S.
Tani, Prog. Theor. Phys. 6, 267 (1951).

[20] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon,
Oxford, 1987).

020401-5

https://doi.org/10.1038/nature04937
https://doi.org/10.1038/nature04937
https://doi.org/10.1038/nature04937
https://doi.org/10.1038/nature04937
https://doi.org/10.1063/1.2199473
https://doi.org/10.1063/1.2199473
https://doi.org/10.1063/1.2199473
https://doi.org/10.1063/1.2199473
https://doi.org/10.1103/PhysRevLett.98.156601
https://doi.org/10.1103/PhysRevLett.98.156601
https://doi.org/10.1103/PhysRevLett.98.156601
https://doi.org/10.1103/PhysRevLett.98.156601
https://doi.org/10.1103/PhysRevLett.99.226604
https://doi.org/10.1103/PhysRevLett.99.226604
https://doi.org/10.1103/PhysRevLett.99.226604
https://doi.org/10.1103/PhysRevLett.99.226604
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1103/PhysRevLett.88.117601
https://doi.org/10.1038/nature07321
https://doi.org/10.1038/nature07321
https://doi.org/10.1038/nature07321
https://doi.org/10.1038/nature07321
https://doi.org/10.1038/nmat3099
https://doi.org/10.1038/nmat3099
https://doi.org/10.1038/nmat3099
https://doi.org/10.1038/nmat3099
https://doi.org/10.1007/BF02816716
https://doi.org/10.1007/BF02816716
https://doi.org/10.1007/BF02816716
https://doi.org/10.1007/BF02816716
https://doi.org/10.1103/PhysRevLett.61.2639
https://doi.org/10.1103/PhysRevLett.61.2639
https://doi.org/10.1103/PhysRevLett.61.2639
https://doi.org/10.1103/PhysRevLett.61.2639
https://doi.org/10.1103/PhysRevD.42.2045
https://doi.org/10.1103/PhysRevD.42.2045
https://doi.org/10.1103/PhysRevD.42.2045
https://doi.org/10.1103/PhysRevD.42.2045
https://doi.org/10.1103/PhysRevLett.106.076601
https://doi.org/10.1103/PhysRevLett.106.076601
https://doi.org/10.1103/PhysRevLett.106.076601
https://doi.org/10.1103/PhysRevLett.106.076601
https://doi.org/10.1063/1.3597220
https://doi.org/10.1063/1.3597220
https://doi.org/10.1063/1.3597220
https://doi.org/10.1063/1.3597220
https://doi.org/10.1103/PhysRevB.84.104410
https://doi.org/10.1103/PhysRevB.84.104410
https://doi.org/10.1103/PhysRevB.84.104410
https://doi.org/10.1103/PhysRevB.84.104410
https://doi.org/10.1103/PhysRevB.87.180402
https://doi.org/10.1103/PhysRevB.87.180402
https://doi.org/10.1103/PhysRevB.87.180402
https://doi.org/10.1103/PhysRevB.87.180402
https://doi.org/10.1103/PhysRevB.92.060409
https://doi.org/10.1103/PhysRevB.92.060409
https://doi.org/10.1103/PhysRevB.92.060409
https://doi.org/10.1103/PhysRevB.92.060409
https://doi.org/10.1103/PhysRev.6.239
https://doi.org/10.1103/PhysRev.6.239
https://doi.org/10.1103/PhysRev.6.239
https://doi.org/10.1103/PhysRev.6.239
https://doi.org/10.1103/PhysRevB.92.174424
https://doi.org/10.1103/PhysRevB.92.174424
https://doi.org/10.1103/PhysRevB.92.174424
https://doi.org/10.1103/PhysRevB.92.174424
https://doi.org/10.1063/1.4976998
https://doi.org/10.1063/1.4976998
https://doi.org/10.1063/1.4976998
https://doi.org/10.1063/1.4976998
https://doi.org/10.7567/APEX.7.063004
https://doi.org/10.7567/APEX.7.063004
https://doi.org/10.7567/APEX.7.063004
https://doi.org/10.7567/APEX.7.063004
https://doi.org/10.7566/JPSJ.84.043601
https://doi.org/10.7566/JPSJ.84.043601
https://doi.org/10.7566/JPSJ.84.043601
https://doi.org/10.7566/JPSJ.84.043601
https://doi.org/10.1038/nphys3526
https://doi.org/10.1038/nphys3526
https://doi.org/10.1038/nphys3526
https://doi.org/10.1038/nphys3526
https://doi.org/10.1038/nmat4499
https://doi.org/10.1038/nmat4499
https://doi.org/10.1038/nmat4499
https://doi.org/10.1038/nmat4499
https://doi.org/10.1126/science.350.6263.924-d
https://doi.org/10.1126/science.350.6263.924-d
https://doi.org/10.1126/science.350.6263.924-d
https://doi.org/10.1126/science.350.6263.924-d
https://doi.org/10.1103/RevModPhys.29.465
https://doi.org/10.1103/RevModPhys.29.465
https://doi.org/10.1103/RevModPhys.29.465
https://doi.org/10.1103/RevModPhys.29.465
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1103/PhysRev.78.29
https://doi.org/10.1143/ptp/6.3.267
https://doi.org/10.1143/ptp/6.3.267
https://doi.org/10.1143/ptp/6.3.267
https://doi.org/10.1143/ptp/6.3.267



